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The barrier height at metal-semiconductor and metal-insulator interfaces is calculated for
a simple model of the system, in which the metal is replaced by a jellium model and the semi-
conductor and insulator by a continuum with a static dielectric constant. The spreading out of
electronic charge into the dielectric continuum is determined by a variational procedure, which
is an extension of the Smith's theory of the work function. Approximately, the calculated bar-
rier height increases linearly with the work function of the metals. The slope increases with
the ionicity of the semiconductors. The model, however, cannot explain the abrupt covalent-
ionic transition.

The dependence of the barrier height Pe at metal-
semiconductor and metal-insulator interfaces on
the work function P„of the metal is known to be
approximated by the linear relation'

where S and $0 are constants characteristic of the
semiconductor and insulator. The slope S increases
with lonlcltp from 0. 1 (covalent materials) to 1
(ionic materials).

Recently it has been suggested by Phillips that

a theory of the barrier height may do without the
knowledge of surface states. In this payer we con-
sider the problem in the same spirit, but from a
different point of view. We simplify the problem
by introducing a model of the metal-semiconductor
and metal-insulator systems, that is, a jellium
model for the metal and a "dielectric continuum"
model for the semiconductor and insulator. In the
jellium model the positive charges are replaced by
a uniform background of density

n.(z)=n. , x&0.
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dielectric continuum. The corresponding Coulomb
potential is

2mn, ~ 2m',,' e —,' 1+-, a&0
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Thus P can be determined by Eq. (2. 11) of Ref. 2,
where the first term should be replaced by
w(1+1/c)n, /48'. The barrier height is, in atomic
units,

FIG. 1. Barrier height vs calculated work function of
metals. Estimated slope is shown in the figure.

0 056Sy + 0 0059lly g (3 g)2/3 2/3
(0 079 "')'

(5)

In the dielectric continuum model, the semicon-
ductor and insulator are replaced by a continuum
with the static dielectric constant &. We assume
that the electron number density n(z) has the fol-
lowing form, as in the work of Smith:

n(z) = n, —,' n, e ', z &—0

n(z) = ,'n, e— g)Q

where P is a variational parameter and describes
the spreading out of the e1.ectronic charge into the

Smith's work function is a special case with & = 1.
Calculated results are shown in Table I and Fig.

1. The estimated slope (Fig. 1) increases with

ionicity in agreement with experiments, but the
value is too large for the covalent materials and

too small for the ionic materials. A preliminary
calculation including the Friedel oscillations gives
smaller values to the slope of the covalent materials
than those estimated here. It should be noted,
however, that the potential of the interface double
layer changes smoothly with the change of the static
dielectric constant, and thus the static dielectric
constant by itself cannot describe the dramatic
covalent-ionic transition.

TABLE I. Barrier height ft)~ (in eV) and spreading-out constant p (in a. u. ). Values of n+ (in 10 a. u. ) and & are
taken from Refs. 2 and 3. The value of P is shown in parentheses. The third column for vacuum is the result obtained
by Smith (Ref. 3).

Vacuum
1

A1203
3. 1

Si02
4. 3

GaSe
7

CdSe
5. 8

CdTe
7. 2

AIAs
10.3

Si
12. 0

Ge
16.0

Cs 1.33

3. 77

8. 80

Mg 12. 8

Zn 19.5

Ta 41.3

Mo 57. 4

Al 26. 9

2. 64
(1.33)
2. 93

(1.2v)
3. 19

(1.23)
3. 33
(l. 22)
3.50
(1.22)
3.64

(1.24)
3. 80
(1.27)
3. 92
(1.3o)

2. 56
(1.29)
2 ~ 76
(1.1v)
2. 93
(1.ov)
3. 05
(1.o4)
3.19
(1.o3)
3.31
(1.o3)
3.45
(1.o5)
3.54
(1.ov)

2. 55
(1.28)
2. 73
(1.16)
2. 89
{1.o4)
3. 00

(1.o1)
3.15
(1.oo)
3.26
(1.00)
3.40

(1.02)
3.49
(1.o4)

2. 55
(1.28)
2. 73
(1.16)
2. 89
(1.o4)
3.00
(1.o1)
3, 14

(o. 99)
3.25

(1.oo)
3.39
(1.o1)
3.48

(1.o3)

2. 54
(1.28)
2. 71
(1.15)
2. 87
(1.o2)
2. 98

(0. 99)
3. 12
{0.98)
3.23

(o. 9s)
3.37

(1.00)
3.45

(1.02)

2. 54
(1.28)
2. 70
(1.14)
2. 85

(1.o1)
2. 96

(o. 98)
3.10

(o. 9v)
3.21

(o. 9v)
3.35

(0, 98)
3.44
(1.oo)

2. 54
(1.27)
2. 69
(1.13)
2. 84
(1.oo)
2. 94

(o. 9v)
3. 08

(o. 95)
3. 19

(o. 95)
3.33
(o. 9v)
3.41
{0.98}

2. 53
(1.27)
2. 69
(1.13)
2. 83
(1.oo)
2. 93

(o. 96)
3.07

(o. 95)
3.18

(o. 95)
3.32
(o. 96)
3.40

(o. 9s)

2. 53
(1.27)
2. 68
(1.13)
2. 82

(0. 99)
2. 92

(o. 96}
3. 06

(0. 94)
3. 17

(o. 94)
3, 31
(o. 95)
3.39

(o. 9v)
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The symmetry properties of nonlinear optical susceptibilities in the electric dipole approxi-
mation for collinear circularly or elliptically polarized light waves have been analyzed on the
basis of group-theoretical considerations. Selection rules are obtained for the nonlinear inter-
action of arbitrary order along any symmetry axis of the 32 crystallographic groups and the
three-dimensional rotation group.

I. INTRODUCTION

It is weQ known that nonlineax' optical interactions
in crystalline substances are dependent on both the
symmetry properties of the medium and the state
of polarization of the interacting radiation. With
respect to the latter, the primary reseax ch empha-
sis has been in considering the radiation to be
linearly polarized. In the last few years, however,
there has been an increasing interest in the use of
circularly polarized waves in nonlinear processes.
First, the anticipated selection rules involving cir-
cularly polarized radiation for both second- and
.third-harmonic generation have been substan-
tiated. 1 4 For example, a circularly polarized
laser wave produces a second harmonic with op-
posite sense of circular polarization along a three-
fold axis, and no third harmonic can be produced
in an isotropic medium using circularly polarized
radiation. In addition, harmonic generat1on em-
ploying circularly polarized laser radiation has been
recently correlated with the unique symmetry prop-
erties of a liquid-crystal medium. ' Second, the
question of conservation of angulax momentum of
nonlinear interactions of circularly polarized waves
has been investigated. Thirds c11cular b11'ef1 1n-
gence may be employed in phase matching a non-
linear optical interaction, '~' and this technique
has been applied to difference-frequency generation
in the far infrared. 9 Fourth, the use of circularly
polarized waves in third-harmonic generation has
resulted in a new measurement of the time duration
of picosecond optical pulses. '

In Table I a summary is presented of experi-
mental results for the nonlinear interactions of

circularly polarized radiation. The. media em-
ployed, the corresponding symmetry group, and the
axis of symmetry in the direction of propagation
are indicated. All these results are in agreement
with the theoretical predictions discussed in the
various references cited. Previous theoretical
work in accounting for the behavior of nonlinear
interactions of circularly polarized waves has been
based primarily upon explicit calculations from the
known forms of the second- and third-order non-
linear susceptibilities or of the crystal field for
particular point groups. These results have been
obtained to third order in the nonlinearity. ' The
connection between these selection rules and the
conservation of angular momentum have been dis-
cussed in detail by Bloembergen. '6

In this paper, a general method of obtaining the
selection rules for the nonlinear interactions of
collinear circularly polarized waves has been de-
veloped using group-theoretical considex'ations. It
has similarly been applied to collinear elliptically
polarized waves. The method is described in Sec.
II and applied to all 32 point groups and the three-
dimensional rotation group and it is appli. cable to
any order in the nonlinearity. Fux'thermore, this
treatment leads to the prediction of the existence
of recursion relations connecting the polarization
behavior of lower- and higher-order processes.
The results are summarized in Sec. III.

To avoid any possible misunderstanding later,
we emphasize that, when we discuss the cases in-
volving circularly polarized fundamental waves,
we consider the fundamental wave which is normally
incident upon the crystal to be circulax ly polarized
and ask the question whether a particular harmonic


