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A modification of the Wedepohl method for the determination of interatomic potentials be-
tween closed-shell atoms and iona was developed and applied to the rare gases. Both Slater
and Kohn-Sham exchange approximations were employed in the calculation of the atomic
charge distributions and also in the overlap region between the atoms. The He-Cu' and

short-range Cu -Cu' interactions were calculated by the same technique. Using five differ-
ent potentials to describe the copper lattice, the minimum energy configuration of an inter-
stitial He atom was determined. The (1,0, 0) octahedral position in the lattice was found

to be most stable, independent of the potential. Despite the variations in the potentials, the
activation energy for He migration was found to lie within the narrow range 0.45 to 0. 71 eV
and the path of migration was found to be along a & 110& crystallographic direction. Our
calculations therefore show that interstitial He atoms will be mobile at or below room tem-
perature in a trap-free copper lattice.

I. INTRODUCTION

By far the majority of theoretical investigations
of the characteristics of inert gases in crystals
have been confined to macroscopic considerations. '
Notable exceptions are the early work of Bimmer
and Cottrell on inert gases in metals; the calcula-
tions of Anderman and Gehman on Xe in Cu; stud-
ies by Norgett and Lidiard on Ar and Kr migra-
tion in potassium and rubidium halides; and the
more recent calculations by Dellin et al. , Wilson
and Johnson, Harrison and Fischer, 7 and Jaswal
and Striefler on He in LiH. These calculations
are atomistic in nature, and as such require a de-
tailed knowledge of the interatomic potentials in-
volved over a wide range of internuclear separa-
tions. The accuracy of these calculations is there-
fore limited by the approximations used for these
pot;entials.

In the case of LiH, there are few enough elec-
trons to t;reat the problem from a "first-principles"
point of view; that is, interatomic potentials for
Li'-H, H -H, Li'-Li', He-H, and He-Li' could be
obtained using molecular-orbital theory, ' and then
a polarizable and perhaps also deformable point-
ion calculation performed to obtain the He migra-
tion energies. Harrison and Fischer calculated
the activation energy for He migration in LiH com-
pletely quantum mechanically, and this perhaps
represents the most basic defect calculation per-
formed to date. It is encouraging that the range
of activation energies is so narrow (0. 60 eV, 0. 69
eV, 0. 54 eV, 0. 65 eV ) considering the differ-
ences in the models and calculational techniques
employed.

For many-electron systems, host-atom poten-
tials are usually fitted to available experimental
crystal data and then some appropriate approxima-

tion made to the rare-gas-lattice-atom interaction.
Rimmer and Cottrella averaged the Cu-Cu and He-

He potentials to obtain the He-Cu interaction; Nor-
gett and Lidiard used the mean of the K" and Cl
radii as the Ar radius in the generalized Huggins-
Mayer form to obtain their Ar-K" and Ar-Cl inter-
actions. Since the host-atom potentials themselves
are known only about the interionic separation (hav-

ing been fitted to crystal data) the use of these po-
tentials in cases where relaxations of lattice atoms
are appreciable can lead to errors which are dif-
ficult to estimate.

The present work is concerned with the develop-
ment of a technique for obtaining pairwise inter-
atomic potentials for closed-shell atoms and ions
for use in defect studies. Because of the great deal
of experimental and theoretical effort which has al. —

ready been devoted to the study of rare gases,
these systems form a convenient starting point for
our investigations.

Over the past three decades, Amdur and co-
workers' '" have studied rare-gas interactions us-
ing molecular beam scattering techniques. This
method gives detailed information about the poten-
tial over a limited range of interatomic separa-
tions, depending upon the energy of the beam parti-
cles. Their studies have, to date, yielded accu-
rate potentials for homonuclear systems'0 (exclud-
ing radon) and a few heteronuclear cases such as
He-Ar and Ne-Ar. " Kamnev and Leonas' have
also used scattering techniques to determine He-

He, Ne-Ne, Ar-Ar, He-Ar, He-Ne, and Ne-Ar po-
tentials over internuclear distances of 0. 87-3. 14
A, depending upon the system studied. High-tem-
perature diffusion measurements of the He-Ar sys-
tem have been performed by Walker and Westen-
berg' in the 2. 21-2. 57 A range of interatomic
separations. In these ranges the attractive part

3984



INERT GASES IN SO/ IDSe ~ ~ 3985

of the potential is negligible, that is, both scatter-
ing and high-temperature diffusion measurements
study the repulsive portion of the potential energy
curve between rare gases.

Several theoretical papers on rare gases have
also appeared. Phillipson" has performed a sin-
gle-configuration molecular-orbital calculation of
the He-He repulsive interaction. Matcha and Nes-
bet" have calculated He-Ne, He-Ar, and Ne-Ar
repulsive potentials in the molecular Hartree-Fock
approximation. Gilbert and Wahl' have calculated
He-He, Ne-Ne, and Ar-Ar potentials, also using
the complete self-consistent-field (SCF) approach.
Although these calculations represent the best first-
principles treatment of inert gas interactions, the
effort involved in their determination can be pro-
hibitive except for the simplest cases (such as
LiH mentioned above). For example, Gilbert and
Wahl point out that a single SCF calculation on Ne-
Ne required 80 min on an IBM 7094 without optimiz-
ing the exponents in their wave functions. It is
clear that approximate methods must be sought
which will make possible the calculation of inter-
atomic potentials for a wide variety of atoms and
lons.

The Thomas-Fermi model of Firsov' represents
an early attempt at such an approximation. Abra-
hamson, Hatcher, and Vineyard' included exchange
effects in the free-electron approximation to es-
tablish the Thomas-Fermi-Dirac (TFD) approxi-
mation. Subsequent calculations by Abrahamson'
are to our knowledge the most complete set of rare-
gas interactions. Recently, Abrahamson used the
TFD approximation to determine potentials between
all neutral atoms from atomic number Z = 2 to Z
= 105. One of the shortcomings of the method is
that the charge distributions do not exhibit the quan-
tum-mechanical shell structure known to exist, and
therefore the effect of this structure on the inter-
actions cannot be determined. Another problem
is that the distributions have an arbitrary cutoff
"radius" beyond which they abruptly drop to zero.
The method is quite rapid, however, and the re-
sults are in reasonable agreement with experiment.

Another approximate procedure, the one we shall
most closely follow here, is due to Wedepohl. ' In
this method, the interaction between two charge
distributions and nuclei is classically determined
and the increase in kinetic and exchange energies
in the overlap region included as a correction in
the Slater free-electron approximation. Because
the purpose of Wedepohl's work was to determine
the influence of the charge distributions of atoms
and ions on the interatomic potentials, no attempt
was made to calculate these distributions —existing
SCF and TFD densities were employed. Further-
more, several of the necessary integrals were
evaluated numerically, although they could have

been reduced to analytic form.
In Sec. II, a brief discussion of the modified

Wedepohl method is given and the technique applied
to the determination of the repulsive region of all
pairwise rare-gas potentials. The effect of ex-
change and "tail-corrections" are also discussed
in Sec. II and the He-Cu' potentials needed for the
defect calculations presented. Section III contains
the required host-atom potentials and in Sec. IV
the results of our calculations of interstitial rare-
gas configurations and activation energies for mo-
tion of these atoms are presented. The effect of
using various potentials in the defect calculation is
also discussed in Sec. IV.

II. RARE-GAS INTERACTIONS

As mentioned earlier, the present work is a
modification of the Wedepohl ' method. Wave func-
tions and, hence, charge distributions were deter-
mined using the Herman-Skillman program which
employs the Slater approximation to the exchange.
A similar method has been independently developed
by Harrison. We write the total energy of inter-
action between two charge distributions as the sum
of the electron-electron E«, electron-nuclear
E,„; nuclear-nuclear E„„;kinetic E„and exchange
energy E,:

+E

The last two terms are evaluated in the overlap re-
gion only. The electrostatic interaction between
the two spherical charge distributions, E«, is deter-
mined by dividing the distributions into elementary
spherical shells and then obtaining the interaction
between these shells classically. Unlike Wedepohl,
the integration over x, the distance between the
shell centers or nuclei, was done analytically to
eliminate an unnecessary logarithmic interpolation
scheme and possible numerical inaccuracy. Also,
the distributions were not cut off at some arbitrary
radius but the complete set of Hartree-Fock-Slater
radial wave functions were used to determine the
distributions. In all the numerical work we used
the Herman-Skillman 441 point integration mesh and
a six-point Newton-Cotes integration procedure.
Gauss's law considerations were employed in the cal-
culation of the electron-nuclear E« term —again to
eliminate the integration over r. The nuclear-nu-
clear term is, of course, straightforward. The ki-
netic and exchange terms were calculated by first
transforming the coordinate system into one which
allows direct integration over the Herman-Skillman
mesh —a procedure outlined by Abrahamson. '
Wedepohl used a 61 point mesh for this calculation
and a different coordinate system but we found the
EI, and E, terms to be a very slowly converging func-
tion of this grid size.

With respect to the exchange term; much interest
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correction is eliminated. We therefore investigated
the effect of using different exchange terms and were
careful to employ the same approximation in the
atomic and diatomic calculations.

In Figs. 1-6, the results of our calculations of
rare-gas pairwise potentials are given and compared
with results of other workers. Since we are inter-
ested only in the repulsive portion of the curves,
data such as that determined from low-temperature
diffusion measurements was not included. We have
also avoided plotting the repulsive portions of vari-
ous fits to potentials (such as exponential-6) be-
cause of the uncertainty in their range of validity.
The three solid lines in each figure are our theoret-
ical results for each of three approximations used.
The notation is as follows. HFS: Slater exchange
including tail correction; HFS": Kohn-Sham ex-
change including tail correction; HFS': Kohn-Sham
exchange excluding tail correction. (In an unpub-
lished report, we calculated the one-electron eigen-
values and expectation va.lues of e, (r), for each
of the rare-gas atoms and compared them to the
Hartree-Fock calculations of Nestor et al. It was
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FIG. 1. He-He interatomic potentials. The three
solid lines are the present results (see text for definitions
of HFS, HF8', and HFS") . The firs t five references in
the legend refer to experimental results and the remain-
ing three to theoretical work.
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has recently arisen from a suggestion by Gaspar '
and Kohn and Sham that the Slater approximation
to the exchange overestimates the effect by a factor
of —,'. In a recent paper by Slater, Wilson, and

Wood, five different approximations to the exchange
were compared with the Hartree- Fock method for the
Cu'ion. Itwasfoundthat the "Xn" method, which con-
sists of multiplying the Slater expression by n, gave
nearly as good results for the energy of the atomfor
a value of n = 0. '?7 as a much more complicated
method of using different exchange potentials for
each orbital. In an examination of exchange approx-
imations for neutral argon, Cowan et al. concluded
that the orbitals determined using the Kohn-Sham
exchange (n = e) gave the best agreement with the
Hartree-Fock orbitals but that the Slater (re = 1) ex-
change gave the best one-electron energies. Follow-
ing a suggestion made by Sham, Cowan et aE. 8 also
investigated the effect of excluding the "tail correc-
tion" on the eigenvalues and eigenfunctions of Ar.
Their results show that a significant improvement
in the one-electron wave functions can result if this
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FIG. 2. Ne-Ne interatomic potentials. The three sol-
id lines are the present results {see text for definitions
of HFS, HFS', and HFS"). The first three references in
the legend refer to experimental results and the remain-
ing three to theoretical work.
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imation, there is a tendency for the energy to be-
come negative. Although not shown in the figures,
these negative values actually exhibit "well-like"
behavior with depth of the order of 0. 001 eV, much
like a w'eakly bound state of the diatomic system.
These negative minima are consistent with the clas-
sical behavior to be expected from the method as
discussed by %'edepoM. %e do not attribute any
real physical significance to these minima because
of the approximations used but recognize the possi-
bility of the existence of weakly bound states of this
order in such interactions.

In Figs. 1-6, the HFS curve lies lowest
and the HFS" curve highest in energy, consistent
with the magnitude of the (negative) exchange in-
cluded in each of these approximations. The differ-
ence between the HFS and HFS" curves increases
with separation becoming as much as an order of
magnitude in energy. Since the total energy of in-
teraction is given bya sum of positive and negative
terms, the numerical accuracy of the calculation
decreases with increasing separation. Unfortunate-
ly, this is also true of the Hartree-Fock calcula-
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FIG. 3. Ar-Ar interatom~e potentials. The three
som lines are the present results {see text for definitions
of HFS, HFS', and HFS"). The first four references in
the legend refer to experimental results and the remain-
ing three to theoretical work'.

found that for Ne, Ar, Kr, and Xe the (r) for the
outermost orbital was best in the HFS' approxima-
tion, -consistent with the results of Cowan et gl.
For Ar, Kr, and Xe, the HFS gives the best Over-
all one-electron functions, whereas for He, the HFS
or Eater approximation to the exchange was closest
to the Hartree-Fock values. In all cases, the one-
electron eigenvalues were best in the HFS approxi-
mation. )

There are some general features of all the curves
(Figs. 1-6) that are to be noted. Over several or-
ders of magnitude in the energy, . for intermediate
values of internuclear separation, the curves are
very nearly straight lines on a semilog scale, that
is, Born-Mayer behavior obtains for a large por-
tion of each curve. At smaller separations there is
a rapid deviation from this behavior, energy vary-
ing as 1/r, where r is the internuclear separation.
This is the familiar Bohr dependence on distance
which occurs because of the dominance of the nu-
clear-nuclear interaction at small separations. At
large separations, particularly for the HFS approx-
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FIG. 4. He-Ne interatomic potentials. The three
solid lines are the present results {see text for definitions
of HFS, HFS', and HFS"). The first reference in the
legend refers to experimental vrork and the remaining
two to theoretical results.
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tions, which was pointed out by Matcha and Nesbet"
(and also by Ritchie'3), making comparison with an
exact value difficult. There is a smaller difference
between the HFS and HFS results, indicating that
the tail correction is less important than the ex-
change approximation.

For all six rare-gas potential energy curves
(Figs. 1-6), a good agreement with experiment is
obtained using the HFS approximation, and the HFS'
case gives the closest agreement with molecular-
orbital theory. For example, the He-Ar potential
curve (Fig. 6) calculated in the HFS approximation
is in excellent agreement with the experimental re-
sults of Colgate et al. ' arid also Amdur et al.
(The experimental results of Kamnev and LeonasL~

consistently indicate a different slope from that de-
termined by other workers, both experimental and
theoretical, and hence may be attributed to some
experimental difficulty. ) On the other hand, the
HFS curve for He-Ar agrees quite well with the
values calculated by Matcha and Nesbet. ' These
authors ascribe the disagreement between molecu. -
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FIG. 6. He-Ar interatomic potentials. The three
solid lines are the present results (see text for defini-
tions of HFS, HFS', and HFS"). The first four references
in the legend refer to experimental work and the last two
to theoretical results.
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FIG. 5. Ne-Ar interatomic potentials. The three
solid lines are the present results (see text for definitions
of HFS, HFS', and HFS"). The first and last references
in the legend refer to experimental work and the others
to theoretical results.

lar-orbital theory and experiment to correlation ef-
fects. Our results are consistent with the inter-
pretation that the HFS approximation, being best
for the atomic wave functions, ' also gives results
for diatomic interactions in closest agreement with
molecular Hartree-Fock theory. The HFS approxi-
mation, in overestimating the exchange, has in some
way corrected for the higher energies obtained in
this approximation and are consistently, for all rare
gases, in excellent agreement with experiment. Be-
cause of the difficulties involved, we do not know if
the HFS approximation would be improved by a
proper inclusion of correlation effects.

It should be noted that Wedepohl's results, shown

in Figs. 2 and 3, were obtained using different
charge distributions from those employed here,
making only a rough comparison possible.

Based on the results shown in Figs. 1-6, the
HFS ' approximation is clearly the poorest, giving
interaction curves which are always even higher than
the molecular-orbital theory or HFS' results. In

the He-Cu' and Cu'-Cu' interactions needed for the
defect calculations, therefore, we have rejected the
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FIG. 7. Cu -He interatomic potentials employed in the
defect calculations (see text for definitions of HFS and
BFS').

FIG. 8. Short-range Cu -Cu interatomic potentials
used in the defect calculations (see text for definitions of
HFS and HFS'). Note the agreement between the Gibson

et al. potential and the ab initio HFS results of this work.

use of the HFS approximation. Because of its
demonstrated agreement with experiment on rare
gases, the HFS approximation is considered to be
the best, but the HFS is included for comparison.
In.Fig. 7, the He-Cu' interaction is plotted in the
HFS and HFS approximations. These curves dis-
play the same general features as the rare-gas po-
tentials but no experimental data is available for
comparison.

III. HOST-ATOM POTENTIALS FOR COPPER

Considerable experimental and theoretical work
has been done on copper. Phonon dispersion
curves, elastic constants, the single-vacancy
formation energy, andthe threshold energy for dis-

placement of a lattice atom3~ are quite well known

for this material. Moreover, neutron irradiation
and ion implantation studies of the formation and ag-
glomeration of inert gas atoms in copper have been
performed. This great wealth of information makes
the calculation of the characteristics of inert gases
in copper an obvious first step.

Several workers have developed potentials for the
copper lattice. Huntington used a Born-Mayer
potential to study self-interstitial migration, Gira-
falco and Weizer' used a Morse potential to obtain
the strains produced by vacancies, and Gibson et
al. used a Born-Mayer potential to study the dy-
namics of radiation-damaged events. The Gibson

TABLE I. Cu-Cu interatomic potentials employed in the He interstitial calculations. Potentials I-IV are fifth-power

polynomials for r„&r&r~; potential V has cubic form. In all cases, V(r,) = &'(r~) = 0; r~ is the nearest-neighbor dis-
tance.

1.70 1.50

Cu-Cu interatomic potential
III

1.70 1.50

V

1.97

~'(r), &"(r)

V(r —r„), V'(r„)
taken from:

He-Cu potential

Elastic
constants

Reference 40

Fig. 7
(HFS)

Phonon

dispersion
curves

Fig. 8
(HFS)

Fig. 7
(HFS)

Pho non
dispersion
curves

Fig. 8
(HFS)

Fig. 7
(HFS)

Phonon
dispersion
curves

Fig. 8
(HFS')

Fig. 7
(HFS')

Elastic
constants

Reference 40

Fig. 7
(HFS)
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et al. potential was chosen because it gave reason-
able agreement with the threshold energy for dis-
placement of a Cu atom. Recent work by Ander-
man gIld by Johnson employed potent1als which
were fitted to this Born-Mayer form at some small
separation x„. Anderman used a composite cubic po-
tentlRl at 1ntel mediate sepRrRtlons having cutoff be-
tween first and second nearest neighbors, the pa-
rameters in which were fitted to the elastic con-
stants. This was done because of Johnson's earlier
success with such a potential for iron and nickel.

Johnson has recently suggested a f1fth-power po-
tential for copper at separations greater than some
arbitrary ~„, with the Gibson ef, al. ' potential again
used for smaller internuclear distances. The value
V(r„) and first derivative V (r„) of this potential are
fitted to the Gibson et a/. potential; the value V(r, )
(where r, is the first-nearest-neighbor distance) is
fitted to the vacancy formation energy
[V(r,) = —O. 2 eV]; V'(r, ) and V"(r,) are given by
either the elastic constants oiyhonon dispersion
curves; and the value V(r,) and first derivative
V (r,) are set to zero at a cutoff radius r, which
is determined by the choice of x„. In this way,
the potential is constructed with one adjustable pa-
rameter ~„, which Johnson varied within reasonable
limits in his calculation of interstitials and vacan-
cies in copper. This model, however simple, gives
excellent agreement with the yhonon dispersion
curves for Cu over the entire Brillouin zone.

Our choices of potentials are similar to Johnson's
in that the same functional form and general condi-
tions are employed. The short-range potential,
however, was determined by the %edepohl method
in the HFS and HFS approximations. In Fig. 8, a
comparison of these potentials with the empirical
Gibson et al. potential is given. Again, the HFS
approximation agrees closely with the empirical
yotential which was fitted to the experimental crys-
tal data. The HFS approximation lies higher than
the empirical results would indicate (as it did for the
rare gases) but is included for comparisonpurposes.

%e have employed five Cu-Cu potentials in our de-
fect calculations. Potential I is Johnson's potential

FIG. 9. Possible interstitia1 positions of an inert gas
atom in an fcc lattice. The sma11 solid spheres repre-
sent He atoms and the larger spheres Cu atoms.

for r„=1.VO A (fitted to the elastic constants and the
Gibson et al. 0 short-range form). Potential II is a
modification of this potential which is fitted to the
Cu'-Cu' (HFS) potential given in Fig. 8 at a value of
r„= l. 50 A and also to the full phonon dispersion
curves rather than the long-wavelength limit only
(elastic constants). Potential III is the same as 11

except that here x„=1.VO A; potential IV is the same
as II with the exceytion of using the HFS instead of
the HFS Cu'-Cu' potential. Anderman's cubic poten-
tial4 was taken as potential V. The choice of po-
tentials II-IV will enable us at least to determine the
sensitivity of our results to the value of r„and to the
HFS or HFS approximations. Potentials I and V
were chosen specifically because of their previous
use in the calculations of Johnson and Anderman.
The above descriptions of the potentials are sum-
marized in Table I.

As a check on our method, we calculated the va-
cancy formation energy E,~for all five potentials
(I-V). Johnson's potential I'gaveE,"„=1.19 eV
with 458 atoms allowed to relax, in excellent agree-
ment with Johnson's calculation of El&=1. 1V eV.
The small difference can be ascribed to the larger

TABLE H. Disp1acement parameters p~ assigned to first nearest neighbors in each of the interstitial rare-gas
0ollflgul atlons.

First-neares t-neighbor
coordinates

0, 0, 0
1, 1, 0
1, —1, 0
1, 0, —1
1, 0, 1
2, 0, 0
0, 1, 1

pf, »

0
0,
0,
0,

p$»

0, 0

pg, 0
-pg, 0

0, —Pg
0, pg
0, 0

Rare gas at
(1, 0, 0)

Bare gas at
(~, ~. 0)

-pg -p&
p& pg

Rare gas at

pi» pf» pf
pi» pi
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TABLE ITL Formation energies & in eV and first-
nearest-neighbor displacement parameters pi for a He
interstitial atom in a (1, 0, 0), (2, 2, 0), and (~, &, ~)
position (in units of the half-lattice constant) in a copper
lattice. The values of pi are given in parenthesis.

Potential
employed

He interstitial position
(1, o, o) (-,', —,', o) (&, &, &)

Activation
energy

(eV)

I
II
III
IV
v

1.99 (O. O75)
2.1o (o.o65)
1.97 (0.083)
3.22 (0.104)
1.74 (0.081)

2.61 (0.203)
2.81 (O. 196)
2.42 (0.222)
3.76 (0.234)
2.23 (0.222)

2.95 (0.076)
3.17 (0.070)
2.75 (0.085)
4. 16 (0.094)
2. 86 (0.073)

0.62
O. 71
0.45
0.54
0.49

number of atoms (530) and the inclusion of an iso-
tropic elastic continuum by Johnson, each of which
tend to lower the formation energy. Potentials
II-IV also gave Eq&= 1.19 eV, primarily because
of the fitting of these potentials to the same value,
V(rq) = —0. 2 eV, as in potential I. Potential V gave
Eq&= 1.04 e V in good agreement with the 0. 988 eV
value calculated by Anderman. Our calculated
relaxations were also in agreement with Johnson
and Anderman.

IV. INTERSTITIAL RARE-GAS CONFIGURATIONS

In this section, we describe the results of our
calculations of He interstitial configurations in Cu
using the potentials I-V derived above. The He-Cu'
potential used was the HFS shown in Fig. 7 for all
except potential IV, where the HFS'approximation
was used to be consistent with the Cu'-Cu' choice.
The total energy relative to the perfect Cu lattice
is expressed as a function of the displacement pa-
rameters assigned to the host atoms surrounding
the rare-gas impurity. This energy is then mini-
mized with respect to each of these parameters in
an iterative fashion. To lower the computer time,
the 3n degrees of freedom (where n is the number
of relaxed atoms) were reduced by making use of
the symmetry of each configuration. Many authors
include an elastic continuum which is added to the
relaxed region of atoms. Such techniques, how-
ever, do not take into account the anisotropy of the
relaxations and are therefore quite approximate.
Besides, if enough atoms are allowed to displace,
the effects of the continuum can be made quite
small. We, therefore, performed several of our
calculations with an increased number of relaxed
atoms to determine the effect of neglecting the elas-
tic continuum.

In Fig. 9, the three primary He interstitial con-
figurations (1,0, 0), (—,', &, 0), and (~, —,', —,') in units
of the half-lattice constant ~o are shown. From a
knowledge of the formation energy of each of these
configurations the path and activation energy for
migration of rare-gas atoms can be determined.

In Table II, the displacement parameters assigned
to the first nearest neighbors to the He atom in each
of the symmetrical configurations are given. Ta-
ble III gives the results of our calculations of the
formation energy of a single He atom in each of the
configurations shown for all five potentials. The
number of atoms allowed to relax about the defect
was kept nearly equal in each case, being 236,
232, and 226 for the (1, 0, 0), (—,, —,', 0), and (-,', —,', —,')
positions, respectively. To conserve space, only
the first-nearest-neighbor displacements are giv-
en in Table III.

It is first of all clear from Table III that the for-
mation energy of a particular configuration can be
significantly affected by the choice of potential. We
have already shown that the HFS approximation
gave energies much higher than experiment for all
rare gases and also for Cu'-Cu'. It is therefore
not surprising that potential IV, which uses this
approximation, gives the highest formation ener-
gies. We included this potential for comparison,
however, and were encouraged that it gave rise to
an activation energy of 0. 54 eV, which is within
the range predicted by the other potentials. In gen-
eral, the greatest differences in formation energies
were obtained in the (2, —,', 0) configuration. This is
due to the closer packing and hence larger relaxa-
tions (see P, values in Table III) for this case which
necessitates knowing the interatomic potential at
distances farther from the perfect lattice distances.
A comparison of potentials II and III indicates that
larger matching radii lead to lower formation en-
ergies. This seems to be the general trend because
the larger r„results in a potential which is more
negative over a larger region of internuclear sep-
aration.

Despite the many differences in the potentials,
the (1, 0, 0) configuration consistently lies the low-
est in energy with the (—,', —,', 0) and (-,', —,', —,') lying,
respectively, higher. The mechanism of diffusion
is therefore clearly established to be along a (110)
direction in the Cu lattice. Furthermore, the
activation energy for this motion is determined to
lie in the 0.45-0. 71-eV range. A He atom in Cu
will therefore be mobile at or somewhat below room
temperature.

In order to ensure that the saddle point for inter-
stitial migration of the He atom is indeed the (2, —,', 0)
position, we performed several additional calcula-
tions. The He atom was fixed at the (0. 4, 0. 4, 0),
(0. 6, 0. 4, 0), (0. 5, 0. 4, 0) positions and the mini-
mum energies for these configurations were de-
terminedtobe 2. 54, 2. 42, and 2. 45 eV, respectively.
This indicates that there is no lower energy path
than (1, 0, 0) to (—,', —,', 0) in the z = 0 plane. Similar-
ly, motion out of the plane was checked by fixing
the He atom at (0.4, 0. 4, 0. 1), (0. 6, 0. 4, 0. 1),
(0. 5, 0. 4, 0. 1), and (0. 5, 0. 5, 0. 1)with the resulting
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energies 2. 56, 2. 44, 2. 47, and 2. 45 eV, respec-
tively. All these calculations were done usirig po-

tential III which gives 2. 42 eV for the (0. 5, 0. 5, 0)
position.

*Work supported by the V. S. Atomic Energy Commis-
sion,

~F. A. Nichols, J. Nucl. Mater. 30 143 (1969).
2D. E. Rimmer and A. H. Cottrell, Phil. Mag. 2,

1345 (1957).
3A. Anderman and W. G. Gehman, Phys. Status Solidi

,
30 283 (1968).

4M. J. Norgett and A. B. Lidiard, Phil. Mag. 18,
11es (1e68).

T. A. Dellin, G. J. Dienes, C. R. Fischer, R. D.
Hatcher, and W. D. Wilson, Phys. Rev. B ~1 1745 (1970).

6W. D. Wilson and R. A. Johnson, Phys. Rev. B 1
3510 (1970).

~S. W. Harrison and C. R. Fischer, Bull. Am. Phys.
Soc. 14 612 (1969); also, S. W. Harrison, Ph. D. thesis
(City University of New York, 1970) (unpublished).

S. S. Jaswal and M. E. Striefler, Phys. Rev. B~1
4118 (1evo).

C. R. Fischer, T. A. Dellin, S. W. Harrison, R. D.
Hatcher, and W. D. Wilson, Phys. Rev. B ~1 876 {1970);
see also, R,. Tseng and J. R. Hardy, UCRI Report No.
13458, 1970 (unpublished).

~ He-He: I. A. Amdur and A. L. Harkness, J. Chem.
Phys. 22, 664 (1954); I. A. Amdur, J. E. Jordan, and S. O.
Colgate, ibid. ~34 1525 (1961); Ne-Ne: I. A. Amdur and
E. A. Mason, ibid. 23 415 (1955); Ar-Ar: ~22 670
(1954); S. O. Colgate, J. E. Jordan, I. A. Amdur, and
E. A. Mason, ibid. 51, 968 (1969); Kr-Kr: I. A. Amdur
and E. A. Mason, ibid. ~23 2268 (1955); Xe-Xe: 25
624 (1956).

He-Ar: I. A. Amdur, E. A. Mason, and A. L. Hark-
ness, J. Chem. Phys. 22, 1071 (1954); S. O. Colgate,
J. E. Jordan, I. A. Amdur, and E. A. Mason, ibid. ~25

632 (1e56).
12A. B. Kamnev and V. B. Leonas, Dokl. Akad. Nauk

SSSR 162, 798 (1965) [Soviet Phys. Doklady 10 529 (1965)].
~3R. E. Walker and A. A. Westenberg, J. Chem. Phys.

31 519 (1959).
4P. E. Phillipson, Phys. Rev. 125, 1981 (1962).
R. L. Matcha and R. K. Nesbet, Phys. Rev. 160,

v2 (1e6v).
6T. L. Gilbert and A. C. Wahl, J. Chem. Phys. 47,

s425 (1e6v).
70. B. Firsov, Zh. Eksperim. i Teor. Fiz. ~32 1464

(1957); 33, 696 (1957) fSov. Phys. JETP 5, 1192 {1957);
6, 534 (1958)].

A. A. Abrahamson, R. D. Hatcher, and G. H. Vine-

yard, Phys. Rev. 121, 159 (1961).
~9A. A. Abrahamson, Phys. Rev. 123, 538 (1961); 130,

693 (1963); 133, A990 (1964).
A. A. Abrahamson, Phys. Rev. 178, 76 (1969).
P. T. Wedepohl, Proc. Phys. Soc. (London) 92, 79

(196v).
J. C. Slater, Phys. Rev. 81 385 (1951).
F. Herman and S. Skillman, atomic &trlctu~e &alcu-

lctions (Prentice-Hall, Englewood Cliffs, N. J. , 1963).
24D. E. Harrison, Bull. Am. Phys. Soc. 14 315(1969).

R. Gaspar, Acta Phys. Acad. Sci. Hung. 3 263
(1964).

26W. Kohn and L. J. Sham, Phys. Rev. 140, A1133
(1965).

J. C. Slater, T. M. Wilson, and J. H. Wood, Phys.
Rev. 179, 28 (1969).

R. D. Cowan, A. C. Larson, D. Liberman, J. B.
Mann, and J. Waber, Phys. Rev. 144, 5 (1966).

29W. D. Wilson and C. Bisson, Sandia Laboratories
Report No. SCL-DC-70-45, 1970 (unpublished). Also
in this report the pairwise potentials for all other rare
gases are given.

C. W. Nestor, T. C. Tucker, T. A. Carlson, L. D.
Roberts, F. B. Malik, and C. Froese, Oak Ridge National
Laboratory Report No. ORNL-4027 {unpublished).

3~Henry F. Schaefer, III, Donald R. McLaughlin,
Frank E. Harris, and Hemi J. AIder, Phys. Rev. Letters
~25 988 (1970).

3 P. Bertoncini and Arnold C. Wahl, Phys. Rev. Letters
991 (19vo).

33A. B. Ritchie, J. Chem. Phys. ~52 2541 (1970).
34S. K. Sinha, Phys. Rev. 143, 422 (1966).
5W. C. Overton, Jr. and J. Gaffney, Phys. Rev. 98,

969 (1955).
6R. O. Simmons and R. W. Balluffi, Phys. Rev. 129,

15ss (196s).
A. Sosin, Phys. Rev. 126, 1698 (1962).
H. B. Huntington, Phys. Rev. ~91 1092 (1953).

39L. A. Girafalco and V. G. Weizer, Phys. Rev. 114,
68v (1e5e).

J. B. Gibson, A. N. Goland, M. Milgram, and G. H.
Vineyard, Phys. Rev. 120, 1229 (1960).

4~A. Anderman, Atomics International Report No.
AI-66-252, 1966 (unpublished).

42R. A. Johnson, Radiation Effects 2 1 (1969).
3R. A. Johnson, Phys. Rev. 134, A1329 (1964); 145,

423 (1966); 152, 629 (1966).


