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By modifying the sound-wave dispersion relation for a two-band superconductor, the ultra-
sonic attenuation coefficient for transverse waves in pure two-band superconductors near Hgy
is obtained. An explicit expression for the attenuation is obtained by the use of an “unverified”
conjecture used by the author previously to obtain the ultrasonic attenuation of longitudinal
waves in pure superconducting niobium near Hg. It is then shown that the Brandt-Pesch-Te-
wordt method can be applied to pure two-band superconductors near H, to produce results
which are in agreement with those obtained by the use of the unverified conjecture that the ef-
fect of the magnetic field on the two energy gaps in a pure two-band superconductor near H,,
is similar to that of an uniform current in both bands.

I. INTRODUCTION

In a recent paper, ! the present author was able
to obtain the two-band expressions for the ultra-
sonic attenuation of longitudinal waves, which were
applicable to pure type-II transition-metal super-
conductors in the mixed state. One of the purposes
of this addendum is to show that with only a slight
modification of Eq. (2.9) of Ref. 1, the attenuation
coefficient for transverse waves can be obtained in
the limitgl <1 (g being the wave vector of the sound
wave and ! being the electronic mean free path) in
pure two-band superconductors in the mixed state.
The various correlation functions appearing in the
two-band transverse-wave attenuation coefficient
are evaluated using the same conjecture used in
Ref. 1. The conjecture makes it possible to apply
the technique developed by Maki? to circumvent the
difficulties associated with the perturbation ex-
pansion® of the various correlation functions in
powers of the order parameter in pure type-II
superconductors near H,.

This brings us to the second purpose of this ad-
dendum. While the conjecture used by Maki for
evaluating the correlation functions in a one-band
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superconductor in high fields has been verified,

the conjecture used to evaluate the correlation func-
tions for a two-band superconductor near H,, has
not been verified. In the second part of this adden-
dum, we will show that results obtained by the use
of the conjecture to evaluate the correlation func-
tions can be obtained using a modification of the
Brandt-Pesch-Tewordt* (BPT) method to evaluate
the correlation functions. The BPT method allows
us to obtain explicit expressions for the Green’s
functions for the two-band superconductors near
H,, without having to iterate the Gor’kov equations®
for the superconductors near H,, (this being the
cause of the difficulties mentioned previously).

We will see that the results for the attenuation of
longitudinal waves in the limit ¢/ >1 obtained by the
BPT method are in agreement with the results ob-
tained by the use of the conjecture to evaluate the
various correlation functions.

II. TRANSVERSE ATTENUATION COEFFICIENT

The propagation of transverse sound waves in a
pure two-band superconductor is described by the
same sound-wave dispersion relation (2.9) found
in Ref. 1:
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The definitions of all the terms can be found in

Ref. 1. To obtain the transverse attenuation coef-
ficient, we note that for transverse waves, the dis-
placement vector ¢ (q, z) is perpendicular to the
wave vector q. Taking q to be pointing in the z
direction and the displacement vector $(q, z) to be
in the x direction, we obtain the transverse attenua-
tion coefficient
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Remembering that the sound-wave dispersion re-
lation (1) was obtained in a system which still con-
tained the long-range electron-electron interactions
we now transform to a fictitious system which does
not contain any long-range Coulomb interactions. 8
'While in most situations, the long-range Coulomb
interactions will give rise to relativistic correc-
tions, in the present situation, this interaction will
produce some important corrections. Following
Kadanoff and Fal’ko, ® we arrive at
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where the averages are now over the fictitious sys-
tem.

In the limit of low frequencies (w <Ay, Eq. (5)
reduces to
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The first two terms in (6) are the “collision-drag”
terms treated by Kadanoff and Fal’ko. The last
two terms are the electromagnetic terms which
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may be neglected in the limit ¢/ <1,

Since the Gor’kov equations for the two-band
superconductors in high fields® are identical in
form to the Gor’kov equations for a one-band super-
conductor near H,,, we expect that the usual per-
turbation expansion of the various correlation func-
tions appearing in (6) for pure two-band supercon-
ductors near H,, will diverge in the same manner
as the expansion of the correlation functions for a
pure one-band superconductor near H,,. % To cir-
cumvent this difficulty, we make the conjecture
that the effect of the magnetic field on the two en-
ergy gaps is similar to that of an uniform current
in both bands. This would then allow us to for-
mally sum the divergent terms in the perturbation
expansion a la Maki. 2 By making the conjecture,
we can write the density of states in each band as

Ns(a)(w)=Ns(a>of“(ﬂ‘f da psayla, 2)
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(8)
The definitions of the various terms in (7) and (8)
can be found in Ref. 1. We can now evaluate the
various correlation functions appearing in (6) using
the techniques developed by Maki. " As was the
case of transverse attenuation in a one-band su-
perconductor in an external magnetic field, two
geometries have to be considered.

(a) §IH (the propagation vector is parallel to
ﬁ): Since we are considering the limit g/ <1, only
the first two terms in (6) contribute to the trans-
verse attenuation. Following Maki, we obtain
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Year=qlsway lsw) is the s(d) electronic mean free
path, g(y) is the Pippard function, and g(y)=-3 y-3

I-MING TANG

3

X[-y+(y2+1)arctany]. The asymptotic forms of
the attenuation are given by
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In the above equations, a%(s) [a’7(d)] is the nor- where
mal-state attenuation in a metal containing only
s[d] electrons. i ( P 3924,
(b) dLlH (the propagation vector is perpendicular rs@)\& Vsays #)= 7 -2say

to ﬁ): In this case, the attenuation is given by
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with 2’ = (1 - 2% %cos¢, x'=zk-(1- 22)V?
X (1 -#%)!%sin¢, and k=cosf (6 being the angle
between the polarization vector and H).

The asymptotic forms of the above attenuation
are
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and K(z) and E(z) are the complete elliptic integrals.

The recent discoveries of a second enery gap®
and a second transition temperature® in pure nio-
bium superconductors clearly point to the need to
use the two-band model!® as the basis for super-
conductivity in niobium and other transition-metal
superconductors. That the two-band nature of the
niobium superconductor will affect the ultrasonic
attenuation is seen in the longitudinal attenuation
measurements in niobium superconductors by Tsuda
and Suzuki'*, The longitudinal attenuation in zero field
was seen to depart from the Bardeen, Cooper, and
Schrieffer!? behavior. A similar departure of the
longitudinal attenuations in mercury*® and lead!*
superconductors was explained by the use of a
phenomenological multiband attenuation coefficient. '°

A clear indication that the one-band mixed-state
attenuation coefficients obtained by Maki” are wrong
is the discrepancy in the density of states needed to
achieve a fit of the longitudinal and transverse at-
tenuation data on a niobium superconductor having
a residual resistivity ratio (RRR) 150. To fit their
data on the transverse attenuation in a RRR-150
niobium superconductor near H,, and on the longi-
tudinal attenuation in a RRR-300 niobium super-
conductor near H,,, Kagiwada et al.'® used the same
value of 1.5x10% state/cm? erg for the densities
of states in both samples. The value of 1.5x10%
state/cm®erg for the density of states in a RRR-
300 sample was consistent with the values obtained
by Tsuda et al. from their mixed-state longitudinal
attenuationdata. Thelongitudinal data of Tsuda and
Suzuki indicate that the density of states for the
RRR-150 sample is 3.4 X10% and not 1.5x10%.

In addition, neither of these values are in agree-
ment with the value 5.6%10% state/cm®erg obtained
from the specific-heat measurements.!” The
specific-heat measurements also indicate that the
density of states does not change appreciably when
a small amount of impurities are added to the tran-
sition-metal superconductor.

The advantage of the two-band attenuation coef-
ficients is that the density of states in the d band,
which governs the behavior of thermodynamic prop-
erties, can remain constant while the attenuation
changes drastically when impurities are added.
Unpublished results'® of Vinen and Gough on the
transverse attenuation in pure niobium supercon-
ductors show a purity dependence similar to that
seen in the longitudinal attenuation in the same
niobium superconductors.!® At the present time,
it is not possible to fit the transverse attenuation
data on a RRR-150 niobium superconductor near
H,, to the two-band expression (12) since none of
the two-band parameters for the RRR-150 sample
are known.!® The two-band parameters cannot be
obtained by extrapolating from the known two-band
parameters in a RRR-110 sample and a very pure
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sample (RRR > 2100) since the two samples are at
the opposite end of the purity spectrum that can be
considered (the tunneling experiments of Hafstrom
and MacVicar® indicate that a RRR-100 niobium
sample is not clean enough to exhibit two-band
effects).

III. BPT METHOD APPLIED TO TWO-BAND
SUPERCONDUCTORS NEAR #,

As we have seen in Sec. II, the various correla-
tion functions can be evaluated if we make the con-
jecture that the effects of the magnetic field on the
two energy gaps in a pure two-band (type-II) super-
conductor near H,, are similar to those of an uni-
form current in both bands. As was mentioned, the
need for making his conjecture results from the
fact that the usual perturbation expansion in powers
of the order parameters (or energy gaps) diverges
for the case of pure type-II superconductors in high
magnetic fields. de Gennes® showed that the density
of states for a pure one-band superconductor near
H,, obtained by means of a perturbation expansion
in powers of the order parameter developed a log-
arithmic singularity at zero excitation energy.
Since the Gor’kov equations for a pure two-band
superconductor in high fields are identical in form
to the one-band Gor’kov equations, we expect that
the densities of states obtained by iterating the
Gor’kov equations will develop the same logarithmic
singularity. Therefore, the ultrasonic attenuation
coefficients for two-band superconductors in high
fields obtained by a perturbation expansion of the
correlation functions should be as unphysical as the
one-band attenuation coefficient obtained by the
perturbation expansion technique. ?

An alternative method for calculating the Green’s
function for a pure one-band superconductor near
H_., was devised by Brandt, Pesch, and Tewordt.*
Their method was based on the existence of a peri-
odicity in the order parameter near H,, and did not
involve an iteration of the Gor’kov equations. Using
this method, Pesch? was able to calculate the nu-
clear-spin relaxation rate in a pure one-band super-
conductor near H,,.

Since the solutions of the two-band analog of the
Ginzburg-Landau equations® have the same peri-
odicity®® as the order parameter in the one-band
superconductor, the BPT method can be employed
to obtain the Green’s functions for the pure two-
band superconductor near H,,. Utilizing the BPT
method, we obtain the Green’s functions for the
two-band system, i.e.,
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where the vector K, = (2¢H,,)'/? is inversely propor -
tional to the spacing betten the flux lines, A4, is
the energy gap in the s(d) band, A2, = [Ayq 1%
Loty =k%/2mgs4y€r, 0 is the angle between % and

H, and

a7 . et?
vt [ wsth

=3 (18)

Being in possession of explicit forms for the
Green’s function of a pure two-band superconductor
near H,,, we can now evaluate the various correla-
tion functions without having to make the conjecture
used in Sec. II. Since nothing would be gained by
evaluating more than one type of correlation func-
tions using the new BPT method, we shall calculate
the longitudinal attenuation coefficient in the limit
ql >1. In this limit, the attenuation coefficient is

given by
2 2 \2
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where the retarded products { [n,, 7, qu and
(14,14 ])M are obtained by an analytic continuation
of the thermal product ([#;, 7]}y, from the set of
discrete points wy=2mn T to z=w,—1d (w, being the
angular frequency of the sound wave) Assuming
that the magnetic field inside the superconductor
can be replaced by its space average, the thermal
products {[74,7; ) e , near Hez can be written as®
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where GY,,,(f —1') is the normal-metal Green’s
function in the__ab_gence of the magnetic field, the
function V4, (ry, r,) being defined as

Vilry, 72) = Adry) AT (7))

x exp(—ie (H)(x; +x5) (v, —¥5) , (21)

w=(2n+1) 7T, and W, =W + Wy,

After the integration over the magnitude of K and
the polar angle, we have after the analytic contin-
uation,

2 2
We Z;WL%< PF )

Vsplon i 3mi

x | 4«
w

ar =

) {[zaem(z;o) 12

@

I-MING TANG

|

2
-2 ('_'L“') Re[K%(z,o)i(Jw)W; (z40) + | K (2 49)| 2

kv,

2Imz 0

o 2 (zyg) - Wf(z:n)_)_]}, (22)

where the summation is over the two bands, and
where
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In obtaining the above expressions, we have as-
sumed that qv;r> Ay, Ws T, <1, wgT; <1, and that
qll H. In addition, only terms of first order in wg
have been kept. In the region (H,,~-H)<<H,, where
the parameters i/k, v are both less than one, the
two functions K;(z4) and Wi(z,,) can be expanded

in powers of (A;/k.vr). 2 Noting that
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where the terms of higher order in A;/k.v,r have
been dropped. A further reduction occurs when
(Ay/k,vi5)?kol;<1. So that the longitudinal atten-
uation coefficient finally becomes
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The above expression (26) for the longitudinal
attenuation coefficient (in the limit g/> 1) of a pure
two-band superconductor in the mixed state is in

agreement with the results obtained by the use of
Maki’s conjecture. The attenuation resulting from
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the use of the conjecture regarding the effects of
the magnetic field on the two energy gaps is

TN mgv 4 A
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4

where the definitions of all the terms are found in
Ref. 1.
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Temperature Dependence of the Weak Ferromagnetic Moment of Hematite
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A recent proposal by Searle and Dean, which ascribes the anomalous temperature dependence
of the weak ferromagnetic moment of hematite to a large temperature-dependent inclination of
the antiferromagnetic axis out of the basal plane above the Morin temperature, is demonstrated
to be incompatible with Mdssbauer data. Some possible explanations of this effect are noted.

Recently Searle and Dean! have measured the tem- study by Flanders and Schule, ® they found that m

perature dependence of the weak ferromagnetic mo-
ment m of hematite (a-Fe,03) above its Morin tran-
sition? (T, = 260 °K), and, in agreement with a prior

drops more slowly than the sublattice magnetization
M. The observed increase of m/M is rather unex-
pected. The usual molecular-field treatment of the



