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not appear to be at all sensitive to the first-order
transition.

Further elucidation of the magnetic structure be-
low 86 °K will have to await a neutron diffraction
study in an applied field, preferably with a polar-
ized beam, which is currently being planned.

Note added in proof. A paper by J. B. Goodenough
et al. [Phys. Rev. B 2, 4640 (1970)] has recently
come to our attention. This deals with the effects
of hydrostatic pressure and Jahn-Teller distor-
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tions on the magnetic properties of RbFeF;, and
presents a plausible explanation for many of the
puzzling experimental observations previously re-
ported.
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The method of the two-time temperature-dependent Green’s function has been used to an-
alyze the Ising model of a ferromagnet in an external magnetic field. The selection of a
particular Green’s function enables us to write an exact expression for the equation of mo-
tion, We are then led to a differential difference equation for the correlation function cor-

responding to the Green’s function.

tion is exact for both arbitrary spin and range of interaction.

No decoupling assumptions have been made, so the equa-

It is shown how various approx-

imate theories may be extracted from our formalism. The exact differential difference equa-

tion may be reduced to a partial differential equation.
relations among the magnetization and spin-spin correlation functions.

The latter form allows us to generate
These relations are

given in detail for the case of spin 3 and z nearest neighbors.

I. INTRODUCTION

The method of the two-time temperature-depen-
dent Green’s function! has been used extensively
to study magnetic systems based on the Heisen-

berg?~® and Ising”~!! models. To obtain tractable

solutions, decoupling procedures have been invoked
to terminate the hierarchy of Green’s functions
generated by the equations of motion. In this paper
we consider the Ising model of a ferromagnet with
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arbitrary spin and range of interaction. Selection
of a particular Green’s function enables us to gen-
erate those of higher order and thus write the equa-
tions of motion in closed form. The correlation
function corresponding to the Green’s function is
then found to satisfy a certain differential differ-
ence equation. No approximations have been made
so the result is perfectly general.

Section II presents the formalism of our method
and derives the differential difference equation.
This is the basis equation used throughout the rest
of the paper. In Sec. III we show how the Weiss
molecular field, ! and Bethe- Peierls-Weiss!3~15
approximations may be obtained from our results;
Sec. IV shows how the differential difference equa-
tion may be reduced to a partial differential equa-
tion. Although it has not been possible to solve the
equation, it does permit one to obtain exact rela-
tions among the correlation functions in a systemat-
ic manner. We consider the case of S =% and spe-
cifically calculate these relations for one-, two-, and
three-dimensional systems. Some of these rela-
tions have appeared in the works of Doman and ter
Haar, " Callen, ° Tahir-Kheli, ®!° Oguchi and Ono, !!
and Fisher. '8

’

II. FORMALISM

The Ising model Hamiltonian! is given by

R=- wHL S{-2 J,,SiS5 (2.1)
1 ]

where uS is the magnetic moment per ion, H is the
external magnetic field directed along the negative
z axis, S{is the z component of the spin operator
for the ion at the lattice site 7, and Jy; is the ex-
change integral between the ions at the sites ¢ and
Jj. It will be assumed that the exchange integral is
a function only of the distance between ions and it
is a positive quantity such that the ground state of
the system will be ferromagnetically aligned. The
method of two-time temperature-dependent Green’s
functions has been reviewed extensively!; hence,
only the definitions and results of the analysis will
be presented here. The Green’s function involving
the two operators A and B is defined by

-i0t)([A(),B)) (t>0)

<<A(f);3>>5{ie(_t)<[A(t),B]> (t<0).

(2.2)

The function 6(¢) is the unit step (zero for nega-
tive argument and unity for positive argument),
the single angular brackets denote an average with
respect to the density operator e™®® (8=1/kT), the
square brackets denote the commutator, and A (¢)
is the operator A in the Heisenberg representation
at time . The time Fourier transform of Eq.
(2.2) is a function of E=%w, and is denoted by
{(A;B))5. The equation of motion satisfied by
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this function is
E((A;B))g=31([A,B])+({[4,3];B))s . (2.3)

Knowledge of ({A ;B))g suffices to determine the
correlation function (BA (£)). The relation between
the two is given by

(BA(t))
 Yses ’w«A;B>> we e"((A;B» w=feg =fw
—151?:[“ ne‘m"—l huste o=t g,

(2. 4)
We introduce the conventional spin raising and low-
ering operators Sf:S’,‘iiS‘,’. The following commu-
tation relations will prove useful:

[s%, S7]=25{5,, , (2.5)
[S%, S§]==S%5,, , (2.8)
[, e%57 )= (™= 1)e%Tsis,, . (2.7)

The last relation follows from Eq. (2.6), where a
is a ¢ number. Furthermore, one obtains the op-
erator identity

5;8}=8(S +1)—Sf- (S%)? . (2. 8)

For reasons which will become evident later, we
consider the Green’s function

<<eXp(EiaiS:)S;;S;)>E .

The summation in the exponential runs over the N
lattice sites and the a;’s are a set of N c-number
parameters, eventually to be set equal to zero. Us-
ing Eq. (2.3), the equation of motion satisfied by
the Green’s function Eq. (2. 9) is

(B - pH) ((expQl;a;S9)8}; 870 p- 22047 4

(2.9)

X <<exp(2 {a{s:)sj ;;s;>>E= ¢|’, 1/21T ) (2' 10)

where

be,1={[expQJ ;a; S5)S%.S7]) . (2.11)

The second term on the left-hand side of Eq. (2.10)
is a Green’s function of higher order than the origi-
nal one, Eq. (2.9), owingto the presence of the op-
erator S;. In previous works this higher-order
Green’s function was determined by either finding
its equation of motion or by making some kind of
approximation. The approximation invoked by
Tyablikov,2for example, consisted of replacing the
operator S§ by its average value 5. This proce-
dure leads to the Weiss'? molecular-field result.
Owing to our choice of the Green’s function, it is
unnecessary to resort to any approximation. We
point out that the higher-order Green’s function
((exp (3;a,;57)S5S;;S7)) s may be generated by taking
the partial derivative of the original Green’s func-
tion Eq. (2.9), with respect to the parameter a;.
Thus Eq. (2.10) may be rewritten as



3952

QE" MH - 221":/5%) ((expQJ;a,89)5%;S7 )5 = %‘;TL .
(2.12)

The correlation function {Sjexp (3; a;5f)S}) may be
found by using Eqs. (2.4) and (2. 12); taking £=0,

(Syexp (23;a,5%)S%)
9 -1
=|:exp<BpLH+ZBEIJ,“E>—1] b1, (2.13)

The commutation relations Eqs. (2.5)-(2.7) enable
us to evaluate the function ¢,,;. The result is

be,1=2 (exp (2312, 59)SE) 8,y
+(1—e®t){exp (25,a,5%)S;S%) . (2.14)
It is convenient to introduce the function
2 ({a,}) =(exp (2ya,59) , (2.15)

where {a,} means the set of the N parameters a;.
Letting g =1 and again using the commutation rela-
tions, all of the correlation functions may be ex-
pressed in terms of Q and its partial derivatives as
follows:

) 82
e% [S(S+1)—3~— ]sz

a; Oag

9 -1
= [exp (ﬁ}lH-f— ZBEngi r'i')—- 1]

] L8 82
X{Zba—ﬁ-(l—ea")l}(s+l)"a“—w]}ﬂ .
¢ )

4 14

(2. 18)

Upon rearrangement we obtain the major result of
this section

' o \[ez o
{exp(a,+BuH+2ﬁE,J“- EE W“LW—S(SJFI)
£ 14

2
- [%?-%_S(sn)]} Q=0. (.17
Equation (2. 17) is a differential difference equation
for the function © of the N-independent variables
a,. No approximations have been used in deriving
Eq. (2.17), so it is an exact equation for arbitrary
spin S, and range of interaction J,;. The differen-
tial operator in the exponential has the effect of
translating the arguments of Q from a; to a;+ 2BJ;.
Notice that when the lattice index i =g, then J,,=0,
so that the operator 3;J,;9/9a; commutes with a,,
9/9a,, and 32/3af,. In order to completely specify
the solution to Eq. (2.17), further conditions are
needed. One of these is immediately obtained from
the definition of € in Eq. (2. 15),

F. BURR ANDERSON 3

Q({a;}=0)=1. (2. 18)

In addition, a set of N conditions is obtained from
the operator identity

S

II si-p)=0.

AL (2.19)

In terms of the differential operator 8/8a; and the
function 2, Eq. (2.19) may be expressed as

ft () oo, o

p=aS aa’
Taking the average value of Eq. (2.19), one obtains
Eq. (2.20), but with the function £ and its deriva-
tives evaluated for {a;}=0. This is the analog of
Eq. (47) in Callen’s* paper, and represents an ini-
tial condition. However, we emphasize that Eq.
(2. 20) is valid for the entire range of the indepen-
dent variables a;. Hence Eq. (2.20) may be re-
garded as a set of N subsidiary partial differential
equations that Q must satisfy; Eq. (2.17) explicitly
shows the independent variable a,, but since the
index g ranges over the N lattice sites there are
actually N differential difference equations. Fur-
ther initial conditions may be obtained by physical
reasoning. For example, translational invariance
requires that the magnetization

19}
da,

(§7)=
{ap}=0

be independent of the lattice site 7, and thus

19
Bal

9

= — 2.21
{ap}=0 aai ( )

{ap}=0

for all ¢ and j.

Once the function @ has been determined, all of
the higher-order correlation functions may be ob-
tained by repeated partial differentiation.

III. APPROXIMATE THEORIES

We shall show how the Weiss*?molecular field and
Bethe-Peierls-Weiss!*~!® (BPW) theories may be
extracted from our formalism Eq. (2. 17). However,
let us first derive some general results which do
not depend on any approximations. Introducing the
notation

- : a"
= — fjassel, = —mm————
i aa‘ ) D 1112 n aa‘l aaiz . aa‘"

h=puH , 8.1)

the differential equations which  must satisfy, Eqgs.
(2.17) and (2. 20), are written as

{explag+h + 2823 J ¢ Dy)[D2+D =S (S+1)]
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-[Pi-D,-S(S+1)]}0Q=0, (3.2)

s

O o;-p)@=0.

b==S

(3.3)
The most general solution may be put in the form

9=(2§0A‘n,,exp[&adn,m,)], (3.4)
ngla

where the first sum means the sum over all positive
integers n;, the sum in the exponential runs over the
N lattice sites, the expansion coefficients A, are
functions only of the integers n;, and finally the 2,

are as yet undetermined constants. Inserting Eq.
(3.4) into Eq. (3.3), we obtain

ad s
2z Apyexp[2ia; i+ 2)] I @y+2=p)=0.
{ni}=0 p==S

(3.5)
The above must be true for all values of ¢, and fur-

thermore A ,,,=0 for #;>S - X; or n; <-S - ;. Hence
the n;’s are restricted, and Eq. (3.4) becomes

{S-?Li)

Q= 2

tngd=(=5-24)

A (o) €XP [Ziaiei+2)].  (3.6)

In addition \;, S-S, since #;20. The constants )\,
are found from the indicial equation, obtained by
putting Eq. (3.6) into Eq. (3. 2), thus,

Mo -5@E+1)=0; (3.7

Eq. (3.7)yields ,;=-S, S+1, but only ;=-S5 will
satisfy the requirement X;<-S, so that the solution

takes the form
J

=11

N sinh(S +1)(@, +h + 287z (SF))/sinh ()@, + h + 287z (S2))
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. 28
Q= 2 AyyexplDa, (y-9)], (3.8)

{n;}=0

which is a perfectly general result.

The physics of the cooperative phenomena is con-
tained in the operator exp (28;J,;D;). Expanding
the exponential and operating on , Eq. (2.15), it
is seen that all of the higher-order spin-spin cor-
relation functions are generated. Molecular-field
theory ignores these correlations in the sense that
it replaces the average of spin products by the prod-
uct of the averages. Hence, the operator 28};J,,D;
in the exponential may be replaced by 283, (S{)
and Eq. (3. 2) becomes an ordinary second-order
differential equation. Putting Eq. (3. 8) into Eq.

(3. 2) and letting J be the exchange integral for z
nearest neighbors, we find a recursion relation
among the coefficients A(nﬂ’ namely,

z
h+2BJ, (S{ ) A
npocengs o

A =€

nl...n‘,-vl....nN conmy s

(3.9)
whose solution is

_ ong(m28T 2 (SEY
Anln--np---rw"‘e i An]_,

ey econy -
(3.10)

The summation over #, may now be performed, and

the functional dependence on the variable a, is given

by

sinh(a,+5 + 2892 (SH)(S +3)
sinh} (@, +h+ 267z S%))

The procedure may be repeated for all values of g,
and is identical to Eq. (3. 11), except for the label
index on a. The constants Ay ..., can be evaluated
from the initial condition Eq. (2. 18), and the total
solution for @ is

(3.11)

Notice that the solution is a product of individual
functions, which is consistent with the original as-
sumption. The magnetization is obtained by differ-
entiating Eq. (3. 12) with respect to a; and subse-
quently setting {a;}=0. The result is

(5%)=S B[S +2872(S))], (3.13)

where Bg(x) is the familiar Brillouin function de-
fined by

S+ S+3 1 x

S coth g ¥ 2 coth-z—s .

o=

Bg(x)= (3.14)

The expression for (S{) is, of course, the result giv-

en by molecular-field theory.

The BPW method considers a cluster of spins,
where the interaction between the central spin and .
its z nearest neighbors within the cluster is treated

i sinn(+ D+ 287z (57))/sinh)(k + 287z (57) )

(3.12)

exactly. The remaining interactions are then ap-
proximated by an effective internal field which is
determined self-consistently. Let us designate the
variable associated with the central spin as @, and
those of the z nearest neighbors as a;, where ¢
=1,2,*++2. The operator 28} ;J,;D; will have the
following forms for the values of g and i:

287 (Dy+Dy++++D,)

forg=0, i=1,2,:+-2 (3.15)
2BJDy+h(z -1
Zﬁz;lJeiDt= 0 l( )
forg=1,2,++2z, i#g (3.16)
hyz
forg, i#=0,1,2,-+--2. (3.17)
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The exact value of the operator hasbeen used when
g is the central spin with z nearest neighbors. When
£ is within the cluster, but not the central spin, we
use the exact expression for the interaction between
the cluster and central spin (23JD,), but approxi-
mate the remaining z — 1 interactions by an effective
field per nearest pair %,, hence the term %,(z - 1).
Finally, for any spin £ outside the cluster having
2 nearest neighbors the effective field per nearest-
neighbor pair is again used, yielding the term %,2.
The detailed solution to € is given in the Appendix.
The magnetization is found by differentiating the
solution for § with respect to a;, and then setting
{a,}:O. The resulting equations are the BPW ex-
pressions for spin S, and nearest-neighbor inter-
actions.

IV. EXACT RESULTS

It is possible to make further simplifications in
our theory by examining the operator e?*/¢Pi more
carefully; Eq. (2.20) is a polynomial equation of
order 2S+1 in the operator D;. Hence D%5*! may be
written in terms of D35*! D353 ... where the co-
efficients of the operators depend on S. Using this
expression in the formal expansion for e?#7#:21 one
would ebtain a series in D;, whose highest power
would be 25. Rather than explicitly calculate the
polynomial for D5*!  let us set

2s

eI 2s (B0, S0}, (4.1)
where the coefficients F; depend only on BJ,; andS,
To evaluate the F;, use Eq. (3.8) for £, and let Eq.
(4. 1) operate on ©, such that

28 N
27 A (n) €XP (2 a:(ni-s)+23§=}:k(nk-s))

{n{}=0 i=1

28 Z_LS‘
= Z) FI(BJgk'S) )—I A{ni)
1=0 {ng}=0

N
X exp <§1 a,(n,-—S))(nk—S)’ . 4.2

Equating like powers of eak, the following equations
are found for the F;:

Fo+ (= S)Fy+ (= SPFy+ -+ (= 8)*Fyg =28’

Fo+ (= S+ 1)Fy+ (= S+ 1)2F,+++ (= S+ 1)*SFyg

-287,,(-1)
=g ek ,

Fo+ (S=1)Fy+ (S=1¥Fy+ -+ (S=1)SFy
=ée
Fo+SF +S%Fp+ - - S? Fpg = €erS |

280gp(S-1)

4.3)
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There are 2S+1 equations and this is just the num-
ber of unknowns F,(8J,S). The set of simultaneous
equations has been solved for the values S= 3, 1,

%, 2, and the coefficients F,(8J,S) are listed in
Table I. The differential difference equation, Eq.
(8. 2), has thus been reduced to a partial differential
equation. Assuming nearest-neighbor interactions
only (J is the value of the exchange integral for z
nearest neighbors), Eq. (3. 2) with the aid of Eq.
(4.1) becomes

z [ 2S
{e“f“ II [Z} F,(8J, s)p}] [D2+ D, - 5(S+1)]

i=1 L 1=0

-[D}-D,-S(S+ 1)]}9:0 S C X))
Notice that the two highest-order derivatives in
Eq. (4.4) are D%, and D% ;. Now for the
case of S= 3, the highest-order derivative is

DI ..., Since D =1Q. However, by writing Eq.
(3.2) in a slightly different form, we may reduce

the order from D} 4, to D, ...y, as follows:

{D, - ilexpla,+ h+28 23 J,;D;) - 1]

x [expla,+ h+ 2B 23 JD))+ 1]} =0, (4.5)

where we have explicitly used D2 = 1@ for S= 3.
Equation (4. 5) is identical to Eq. (4) of Callen’s
paper when it is evaluated for {a;} =0. Thus
[D,2](4,1-0=(S;), so that

(S5)= 3(tanhs (h+28 23 J,, S9)) .

Using the results of Table I for S= 3, we have

4.6)

e®7 Pi = coshBJ + 2(sinhBJ)D; . 4.7

The inverse operator [exp(ag+ h+2BY J,:D;) + 1]
could now be formally expanded and it is easily seen
that the highest-order derivative is D} _; , so we
have reduced the order of the derivatives by using
the form Eq. (4.5). Rather than expand the inverse
operator, let us set

2
1
{J; Gz(ag)il.iz,...i,Dil,iz...i,

= 3[exp(a,+ h+ 28J 23D;) - 1]

X[exp(a,+ h+28J 22D)+ 1],  (4.8)

where the coefficients G,(a,) are functions of the
independent variables a,, 8J, and z. The second
summation is over all /-tuples ¢,,7,, - ++4; having

g as the nearest neighbor. For example, [=2 is
the sum over the pairs (,j) which are nearest
neighbors of g and contains, then, 32(z - 1) terms.
Using Eq. (3.8) for Q with S= %, and letting Eq.
(4.17) operate on €, one has
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TABLE I. Coefficients F;(8J) in Eq. (4.1). sinhIfJ=8; and coshiBJ=C;,.
S F, Fy F, Fy Fy
3 c, 28, 0 0 0
1 1 C,—1 S, 0 0
3 4(9c,-Cy +278,-S,) i(c;-¢y 1(5;-35y) 0
i 1
2 1 1 (8s,~5, £(16C,~ C,~ 15) Ls,-2s,) +(3+C,-4C))

{ng)=0

= 2 Anpexp[Daytn - H] 5 1 expla,+h+ 2873 (= 1/2)] - 1

Z) Al 2Zayn, - 2)](Go(a,)+ G,(a,)z(n, 2)+Gz(ax) E (ny = $)ny = 3)+ -2+ + Gula)lyy, - 3)--- (”i,"%)>

2 expla,+h+2BJY ;- 1/2)]+1

Equating like powers of ¢’ yields
Gyolay) + Gy lag) 20 (n; = 3) + Gslay)
i

XE (ni -

Dy 3
(i,9) :

= ltanhi{a,+ h+ 289 2 (n; - 3)], (4.10)

where the #; can take the values 0 and 1. It would
appear that there are 2° equations; however, many
of these are redundant. The nonredundant equations
are obtained by letting all the #;=1, then all ;=1
except one, #n;=0, and so on until all the #;=0. In
this manner we obtain z+ 1 equations which is just
the correct number to determine the coefficients
G,(a,). These are

20 o e,

+ (% 3)°G,= 3tanh}(a, + h+ 28J) ,

(z- 1)2(2 - 4) (%)2 G,

-1)(z-2)(z-6
L )(zsl)(z )(2> Gy -

Goﬂ:Z%Gl

Got(2-2)3G, +

- (+ 3)°G,= 3tanh}[a, + hx (2 - 2)BJ] ,

22-9z+16 (1) G,

Got (2-4)3G, + 2 2

( 2 4 9
z = )(zsl)(z )(2>G3+

+(+ 3)°G,= % tanh3[a,+ h+ (2 -4)BJ], (4.11)

@.9)

I

The G,(a,) are listed in Table II for the values
2=2,3,4, and 6. Let us write out the differential
equation, Eq. (4.5), using Eq. (4.8):

D= (GO+GIZ}D,+GZ(E Dz,+63(2 D}
i,4s) i,4,k)

:)9 . @12

It has not been possible to solve the differential
equation but the above form proves very useful for
generating relations among the spin-spin correla-
tion functions. If we perform the indicated differ-
entiations, and then set {a,} =0, Eq. (4.12) yields
a relation among the magnetization, two-spin,
three-spin, etc., correlation functions. Further-
more, if we agree not to differentiate with respect
to a,, letting a,=0, and the external field 2=0, a
great simplification results. Table II shows that
for a,=h=0, all of the even coefficients Gy, G,, and
G,, vanish for all values of 2. Equation (4.12)
then predicts that for zero external field, the
odd-number spin correlation functions vanish for
T> T,, as was shown by Tahir-Kheli, °

The three cases for z=2,4,6 will now be con-
sidered in more detail.

The one-dimensional linear chain corresponds
to z=2, and labeling the spin indices by 1,2, -+ -#,
-»+N, Eq. (4.12) becomes

D,=G,(D,,+ D,,,)%

++++G,Dj
z iliz...

(a,=h=0). (4.13)

Equation (4. 13) immediately shows that the spon-
taneous magnetization vanishes for zero external
field, since translational invariance requires

(S =(S5i1)=(Siy)=(S%),
and thus
<5 -2G,)=0. (4.14)

Differentiating Eq. (4.13) with respect to a,,,, yields
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Dnz.mmﬂ’: Gl(Dr:z-l.mm+Dna#1,mm)Q (4- 15)

Designating the two-spin correlation function
(SZ, 8% ) by M,, where the spins are separated by
m lattice spacings, and setting {a,}: 0, we have

Mrn:Gl(Mm+1+Mm-l) . (4- 16)

Using Table II for G, the above recursion relation
is easily solved for M, and the result is

My = L (tanh28)™ . 4.17)

It is also possible to obtain the magnetization and
correlation functions for 7Z#0. By further differ-
entiations one may obtain recursion relations among
the quantities (SZS%), (S{SZS%), and (S§SZSZ), and
these again may be solved to yield the standard
results.

The two-dimensional lattices with 2=4 could
be either, say, the quadratic net or the Kagomé
lattices. For this case Eq. (4.12) becomes

D =[G,(Dy+ Dy + Dy+ D;)
+Gy (D5 3+ DP 5 4+ Dy, +D3s )0=0,

ay=h=0. (4.18)
The index zero refers to an arbitrary lattice point,
while the indices 1,2,3, and 4, correspond to the
four nearest neighbors of zero. Let us designate
the correlation functions by

(858%)=M,,,(S:5%5%)

EMi.J,k(SiSjSksz>EMi,j,k,x . (4.19)
The magnetization and three-spin correlation func-
tions are related by

(S#Y(1-4G,)=4GsM, 5 5 ,
since

My,2,3=My,2,4=My,3,4=Mp,3,4 « 4. 20)

Differentiating Eq. (4.18) with respect to a,, where
n refers to an arbitrary lattice point (not equal to
0,1,2,3, and 4), yields

My,n= Gl<Ml,n+Mz,n+ Mg, n+ My,n )

+Gg(My,2,3,0+ My2,4,n+ My,3,4,n+ Mz 3,4,n) -

(4.21)

The explicit dependence of the three-spin correla-
tion function may be found by using Onsager’s!® re-
sult for (S%) in Eq. (4.20). Similar considerations
can be applied to Eq. (4.21) to determine the four-
spin correlation function by using the calculations
of Kaufman and Onsager?!® for the two-spin correla-
tion function. Another relation is given by differ-
entiating with respect to a;, and then a,,

F. BURR ANDERSON

leo

Mo,1,n= G{ES ")+ My 5 p+ My 5,0+ My, 4,,)
+Gy[(3 My 3,0+ My g0+ Ms 4,,)

+My 2,340 - (4.22)

The above procedure can obviously be extended to
relate the correlation functions for an arbitrary
number of spin operators. It is interesting to note
that the functional forms for the correlations depend
only on the coordination number z. Thus, the mag-
netization and three-spin correlation function are
related in exactly the same way for the quadratic
net and Kagomé lattices. This is not to say that
the magnetizations are given by the same functional
dependence on BJ in the two cases. In principle,
one could establish recursion relations among the
correlation functions as in the one-dimensional case
and by also invoking the symmetry of the lattice.
As shown in Fig. 1, the four three-spin correla-
tions are identical in the quadratic lattice but not
in the Kagome. Hence the recursion relations
would differ in the two cases.

The simplest three~-dimensional case is given
by 2=6. Proceeding as above and using the same
notation, we have

<SZ>(1—6GI)=GSHE My,
2 dy
+Gs 2 Miyuum , (4.23)
(iydsRy1,m)
6
My,,=Gy 20 My,a+Gy 27 My, 4m
i=1 (i,4,k)
+Gs 20 Myypimn - @29

(2,4,k,2,m)

Equation (4. 23) relates the magnetization to the
three- and five-spin correlations, whereas Eq.
(4. 24) relaies the two-spin with the four- and six-
spin correlations.

The specific relations we have derived for z=2,
4, and 6 have previously been found by Oguchi and
Ono.!! For example, our Egs. (4.16) and (4.17)
are equivalent to their Eqgs. (2.25) and (2.26). They
consider each lattice separately and calculate the
necessary number of Green’s functions to determine
relations among the correlation functions. How-
ever, in our method one does not have to find the
various Green’s functions for each lattice. Thus
Eq. (4.12) may be used directly to find relations
among the correlation functions for any lattice.
Fisher!® has derived general expressions for the
two-spin correlations in terms of higher-order
correlations and explicitly works out the case for
#=3. Our results agree with his, and we have
specifically given the relations for z=4, 6 by Egs.
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TABLE II. Coefficients G, (a,) in Eq. (4.8). tanh%(angh +1BJ) =T,; and tanh %(ag+h) =T.
z
G, 2 3 4 6
G, ATy, +Tp+2T E T+ T YE (T +T.) 5[ Tag + T +6(Toy + T
+3(Tyy +T.91 + Ty + Ty + 371 +15(Tyy+ T.y) +207T]
G, §[Thy— T 3Ty~ Tog HTy-T,, F[Tug— T+ 4(Toy— T
+Ty—T. +2(Tyy = T_y)] +5(T4y— T.5)]
G, T+ Ty-2T) [T,y + T, YTy + T ~2T] [T+ T g+ 2(Tyy + Ty
— (T4 +T.p] ~ (Tyy+ T_)— 4T
Gy 0 HTyy— T 3Ty -T.) T[T = Tog=3(Tuy— Tyl
~3(Tyy—T.] = (Tyy—T.H]
G, 0 0 %[T.4 +T_ 4 %[Tﬂs +T g =2(Tyy+T.y
— 4(T4y+T.p) +6T] . = (T + T,y +4T]
G 0 0 0 3T~ T~ 4Ty~ Ty
+5(T+2— T.z)]
G, 0 0 0 T+ T g—6(Ty+T.y)

+15(T4y + T.p) —20T']

(4.21) and (4.23). The results of Griffiths’s®® work
on inequalities among the two-spin correlation func-
tions may also be extended to the higher-order
cases.

Although we have considered the spin-3 case for
z nearest neighbors in deriving specific results,
the formalism of our method enables one to make
similar calculations for arbitrary spin, without
much additional algebraic complexity.

V. CONCLUSION

The technique of the two-time temperature-de-
pendent Green’s functions has been used to analyze
the Ising model for a ferromagnet. We have shown
that the problem may be reduced to that of solving

Mi2,3=Mz3,4=M341=Ma,,2 M,,2,3=M3,42Mz2,3,4=Ma,,2

S

we
f
1

S

QUADRATIC KAGOME’

FIG. 1. Three-spin correlation functions in the quadratic
and Kagomé lattices.

a partial differential equation. Although it has not
been possible to solve the equation exactly, one
easily obtains the results of previous approximate
theories. Our method gives an orderly prescrip-
tion for generating exact relations among correla-
tion functions for an arbitrary number of spins,
having arbitrary spin and range of interaction.
Some of these exact results have appeared in the
literature as already stated.

The obfuscation of the physical approximations
resulting from the decoupling procedures is the
most disturbing part of the Green’s-function analy-
sis. The Tyablikov decoupling leads to molecular-
field theory and here the physical assumptions are
well understood. However, this is not the case
with more elaborate schemes, particularly in the
Heisenberg model where the results are noticeably
poor in the vicinity of the Curie temperature. It
is possible that our procedure for the Ising model
might be applied to the Heisenberg model and thus
give more insight to the approximations that have
been made.

APPENDIX

We now show by using the equations in Sec. II
how the BPW relations are obtained. Using Eq.
(3. 15) for the operator, and Eq. (3.8) for 2, Eq.
(3. 2) becomes

28 N1
E A(n‘) exp <Z; a,(ni—S)>

{nj}=0 i=0
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X I:(nD - 25)(ny+ 1) exp <a0+ h+28d Zz) (O S)>
i=1

_(no_zs-l)n(;|=0 . (A1)

To satisfy the above, one obtains a recursion rela-
tion for the coefficients Ay, )

z
An0+1m1m yees = €XP <h+23']§ (ni_s)>An0.n1,nzy"‘

A2)

This is easily solved and one has
|

{n; }=0

28 N1 z
E AO,nl,nz,"‘ exPl:‘Z a; (n,- - S) + 1 <h+ ZﬁJ Z} (n‘ - S)):l
=0 i=1

F. BURR ANDERSON 3

3
A injing,ees = €XD l:no (h+ 28J i}?l (n; —S)):\Ao,,,l,,,z...

(A3)

Putting this expression back into Eq. (3.8) for @
yields

28 N-1
Q= 2, A ngyng,r €XD [E a;(n; - S)
{n;)=0 i=0

2

+1y (h+ 28J 25 (n;- s)) ] . (A4)
i=1

Let us next take g to be one of the cluster spins

g+#0, then use Eq. (3.16) for the operator in the

differential equation, Eq. (3.2), and use Eq. (A4)

for Q. Taking g=1, for example, one has

X {ny = S)(n,+ 1) explay + h+ 28J(ng = S) + by (2 = 1)] = (1, = 2S = 1)m, } =0 . (A5)

Again, a recursion relation for the 4y ,, ., is ob-
hy N1y N2
tained

_  h+hi(g~1)=-28JS
Ao,,,l+1,,,2,... =e"t M Ao,,,l,,,a,... , (A6)
whose solution is
— onilh +hy(g= 1)~ 284S]
AO!"l’"Z"" =eM 1 AO,O,nz,"' . (A7)

Using the above expression in Eq. (A4), © becomes

28 N-1
Q= 2 Ao’o,,,zms'...exp[z a;(n; - S)
tn;}=0 i=0

+n0(h+2[3Ji; (n, —S)) +ny(h+ hy(z -1) - ZBJS)].

i=1

(A8)
The same procedure follows for g=2,3,:-+ z, so
one may immediately write Q as
S
2= i Ag, 0,000+ Mg+ 1 Mg s 2,000
fngl=0
N=1 £
x exp[E a;(n; —S)+n0<h+2ﬁJ 27 ;- S))
i=0 i=1

+ i;tni[h+h1(z -1)- ZBJS]:I, (A9)
i=

where we have now determined the coefficients
Apg,ny,++-n, Within the cluster. The remaining coef-
ficients may be found by using Eq. (3.17) in Eq.
(3.2) and Q given by Eq. (A9). Letting g=2z+1, for

example, one obtains the following recursion rela-

~
tion:
Ag0,0my, o 1,0e =€ M A g e (A10)
whose solution is
Ao,o,...,,“l,...=e"“l"'*"l"AO’O,...O,... . (A1)

An identical form obtains for all of the spins outside
the cluster, so one may now write the total solution
to  as

%5 N=1
Q=Aig exp[E a;(n; - S)
{n;}=0 i=0

+no<h+ ZBJél n, - S))]
XexpL‘EHn, [h+hy(z-1)-2pJS]

N-1
+ 2 n,(h+h1z):|. (A12)

i=g+1

The sums over n; are easily done, and we have for
the solution

2S
Q=0(0) 25 e“o*? o=

ng=0

x TT Qula; + bty (2 = 1) + 28761 = )]
i=1

N-1
X II 9la;+nr+nz), (A13)

i=g+1
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where
Q,(x) = sinhx(S + 3)/sinhi x (A14)

and ©(0) is the value of  for {z,}=0. To find the
magnetization, one differentiates Eq. (A13) with
respect to one of the variables g;, and then sets

(sty =Znmolig =S

5) "m0 S Qf [h+ by (2 = 1) + 287 (ng - S)]
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{a,}=0. Self-consistently we require
(S§y=(S%), i=1,2,-- (A15)

which will then determine both the magnetization
and effective field #,. Proceeding as described one
obtains

N-1

=m0 S0 [ hl(; -1)+ 287 (ny -

(89 =

Yas g etimo- S -t [h+h1(z =1)+28J(ny = S)] {D,2,[a; + h+ hy(z = 1) + 28T (g -

, (A16)

S)] }.at= o,

(S5) =SBs[S(h+n2)] ,

where By is the Brillouin function defined by Eq. (3.14).

the nearest-neighbor spin-spin correlation function

0 @ ST [ (2 - 1)+2[3J(7l0 S)]

-8) e S0 (B4 by (2 — 1) + 28T (g —

(A17)

(A18)

For completeness we also give the expression for

S){D;yla; + h+ hy(z = 1) + 287 (g = S)] oy =0

28
(s =2

23; 0 @0 [hiny(z-1)

+ 287 (1~ S)] (a19)

Equations (A16)-(A19) are the BPW equations for spin S, and nearest-neighbor interactions,

IN. N. Bogoliubov and S. V. Tyablikov, Dokl. Akad.
Nauk SSSR 126, 53 (1959) [Sov. Phys. Doklady 4, 589
(1959)]. A review article is given by D. N. Zubarev,
Usp. Fiz. Nauk 71, 71 (1960) [Sov. Phys. Usp. 3, 320
(1960)].

%S, V. Tyablikov, Ukr. Nat. Zh. 11, 287 (1961).

SR. A. Tahir-Kheli and D. ter Haar, Phys. Rev. 127,
88 (1962)

‘H. B. Callen, Phys. Rev. 130, 980 (1963).

5F. B. Anderson and H. B. Callen, Phys. Rev. 136,
A1068 (1964).

3. A. Copeland and H. A. Gersch, Phys. Rev. 143,
236 (1966).

"B. G. S. Doman and D. ter Haar, Phys. Letters 2,
15 (1962).

’R. A. Tahir-Kheli, B. G. S. Doman, and D. ter Haar
Phys. Letters 4, 5 (1963).

H. B. Callen, Phys. Letters 4, 161 (1963).

9R. A. Tahir-Kheli, Phys. Letters 9, 641 (1967).

tp, Oguchi and I. Ono, Progr. Theoret. Phys. (Kyoto)
35 998 (1966).

2p Weiss, J. Phys. Radium 4, 661 (1907).

154, A. Bethe, Proc. Roy. Soc. (London) Al150, 552
(1935).

14R. E. Peierls, Proc. Cambridge Phil. Soc. 32, 477
(1936).

P, R. Weiss, Phys. Rev. 74, 1493 (1948).

M. E. Fisher, Phys. Rev. 113, 969 (1959).

", Domb, Advan. Phys. 9, 149 (1960). A good re-
view of the Ising model is given, particularly for the two-
dimensional cases.

181, Onsager, Phys. Rev. 65, 117 (1944).

B. Kaufman and L. Onsager, Phys. Rev. 76, 1244
(1949).

B. R. Griffiths, J. Math. Phys. 478, 484 (1967).



