3 DETERMINATION OF AN

Eq. (13)]. More complicated correlations can be handled
by taking recourse to the factorization property of aver-
ages of b’s, as explained in Hecht (Ref. 16). The other two
averages {(Q,®,) and (P,P,) provideus witha cross-check
of our result that correlation functions with I'# 0 vanish
for infinitesimal coupling strength along the line.

%See the discussion in Ref. 1, immediately below Eq.
(II 2.6). Incidentally, this equation is misprinted; it

PHYSICAL REVIEW B

VOLUME 3,

OPERATOR ALGEBRA... 3939

should read
B(p)= [ (Aeity=1)/(A—ei®)]/2,

Also, the operators o of this reference are located on the
y axis, as indicated by their coordinates (0, k) and not
on the x axis as stated in the text.

%gee, for instance, N. I. Achieser, Theory of Approxi-
mation (Ungar, New York, 1956), p. 19.
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The properties of finite, but large, two-dimensional crystal lattices are discussed in the
light of the lack of long-range order. We confirm, with qualifications, the important basic re-
sult that the susceptibility diverges below a critical temperature. The details of our previous
paper on Bragg peaks in scattering from the two-dimensional lattice are presented and the be-
havior of the dynamic structure factor S(ﬁ, w) about the peaks is analyzed. The lattice is shown
to produce a MGssbauer peak with a non-Lorentzian line shape but with a Mdssbauer strength

of the same order of magnitude as that of the three-dimensional lattice.

Finally, it is argued

that finite phonon lifetimes would affect our results quantit.tively but not qualitatively.

I. INTRODUCTION

The subject of long-range order in various one-
and two-dimensional (2-d) systems has recently
become a matter of great interest. There exist
2-d systems which possess long-range order, nota-
bly the Ising and probably the anisotropic Heisen-
berg models. On the other hand, we have many
examples of 2-d systems for which long-range order
can be rigorously shown not to exist, ! for example,
the isotropic Heisenberg model, a Bose condensate,
electron pair superconductivity, and a crystalline?
lattice. However, there is an increasing number of
indications®~® that these last systems exhibit a va-
riety of properties not too different from those
characterising the three-dimensional (3-d) ordered
analogs.

The reason for the interest in 2-d systems of the
last type is that one would like to understand better
the connection between mathematical long-range
order and physical properties. Furthermore, it
may be hoped that a 2-d geometry may be a good
approximation for very thin layers and films and

for materials with rod structures, when interest
is focused on the motion perpendicular to the axis
of alignment.

The 2-d crystal offers a particularly simple ex-
ample. In the harmonic approximation it admits
of an exact solution, and may serve, as shown by
Jancovici, ® as an example of a system with no long-
range order that still has an “infinite” susceptibil-
ity. It has also been observed® that this nonordered
structure gives rise to Bragg-like peaks in the
x-ray structure factor, reminiscent of those ob-
tained in ordered lattice structures. The reason
for this effect is that the “divergence” in the mean-
square fluctuation in the position of an atom, which
leads to a vanishing order parameter, is caused by
long-wavelength phonons, thus not affecting the
short-range order. Related to this is the fact that
the correlation function falls off slowly, as 1/7%,
and not exponentially.

The case of x-ray scattering is particularly
simple because what is observed is the integral
over all frequencies of the dynamic structure fac-
tor S(k, w), which is related to the equal-time cor-
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relation function. In the case of neutron scattering,
however, one may have to discuss the detailed
structure of Sk, w). A related problem is the
“incoherent” or “self”-dynamic structure factor, "
which determines® the Mssbauer line shape. When
anharmonicity effects are considered, the problem
becomes much more difficult. While the rigorous
proofs of the nonexistence of long-range crystalline
order have been carried over to the anharmonic
case, we have only been able to present semiquan-
titative arguments (including -sum rules) which in-
dicate that our conclusions should remain valid also
in the presence of weak phonon interactions.

In Sec. II we recapitulate the results for the sus-
ceptibility and the long-range behavior of the cor-
relation function. Though these results are not new
we stress that one may easily be led into significant
errors by not being cautious enough with the pro-
cedure of taking the thermodynamic limit.

In Sec. III we discuss Bragg scattering in some
detail. In Sec. IV we discuss the MOssbauer effect.
Surprisingly we find that in the harmonic approxima-
tion a MOssbauer-like peak is possible with a shape
differing from but reflecting the natural line shape.
This happens in spite of the fact that the Debye-
Waller factor is zero and is due to inelastic effects
with small net energy transfer. The anharmonic
problem is extremely delicate for the M&ssbauer
effect, ° and we present only a rough argument indi-
cating that our above result is preserved. It should
be noted that in Sec. III stronger statements
are made..about anharmonicity effects in the co-
herent S(k, w), using sum rules and the “de Gennes
narrowing effect. ” Most mathematical details are
dealt with in Appendixes A and B.

II. SUSCEPTIBILITY AND LONG-RANGE ORDER

The intensive order parameter of a crystal lat-
tice is given by the thermal average of the Fourier
transform of the particle density,

(pz) =( (1/N) D,e'FHny |

where k is a reciprocal-lattice vector, say 3, N is
the number of atoms in the crystal, and T, is the
position vector of the nth atom. We can write

. - -
r,=R,+X, ,

@.1)

where IT(,LES the displacement from the equilibrium
position R, of the nth atom. Then,

(pry=F@®)(eF%ny | 2.2)
where
FE)=(1/N)Z,e'% 2.3)

has sharp peaks at k=G. For a harmonic lattice!®

(e'Bkny - o=<EXNB/2_ oW (2.4)

’
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where ¢"?" is the Debye-Waller factor. W is well
known to diverge for any 2-d lattice and thus there
is no infinite-range order in infinite 2-d lattices.
This is easily seen for the Debye lattice, when

nk? “p <ﬁw>
ZW_W.[ dwcothﬁ ,

where wj, is the Debye frequency, m the atomic
mass, ¢ the sound velocity, and we have set Boltz-
mann’s constant equal to unity. The integral di-
verges logarithmically as w— 0, a property inde-
pendent of the Debye approximation. For simplic-
ity, in the remainder of this paper, we will refer
to the classical 2-d lattice. Quantum effects exist
once T'swp, but they will have a crucial effect only
for TSw,/N*/2, In the classical limit,

(2.5)

2W = (2T/T,) [,"Pdw (1/w) | (2.6)

where T,=4mmc?/vk? and v is the unit-cell area.

A few years ago, J ancovi(‘:i6 pointed out that while
there is. no infinite range order in the lattice, the
susceptibility x, diverges when 2 =G and the tem-
perature is less than T;. This was very
interesting for the reason that physicists have often
accepted a singular susceptibility as an indication
that the system has an instability which is dealt
with by a change of state. Furthermore, numerical
studies of the 2-d isotropic Heisenberg ferromagnet
indicated® that its susceptibility would diverge at
some nonzero temperature, whereas it can be rig-
orously shown® that no ferromagnetic state exists.
Jancovici’s result seemed to lend credence to these
results.

The susceptibility x3 measures the linear re-
sponse of the lattice to an external potential qb(f),
the interaction energy being!!

Elnt=_NpE¢! ’

when ¢{)= ¢ge'™%. Then, in the classical limit,

xe= OV/T) [(p%) - (p2)?] .

We thus see that we should consider a large finite
crystal and carefully let N -,

It was pointed out recently'? that for a finite crys-
tal the logarithmic divergence of 2Wis not very
serious. In fact, there is a natural long-wavelength
(and hence low-frequency) cutoff in the integral,

2.7

(2.8)

namely, the linear dimension of the sample. Thus,
with a cutoff frequency

w,=wp (a/N)H/? (2.9)
where « is a constant of order unity,

2W=(T/T,) In(N/a) , (2.10)
so that

N<p_G.>2:aT/TGN1-T/TG 2.11)
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This is quite significant since, as Jancovici showed
(see Appendix A), when T< Tg,

N{p&)o N'-T/T¢ const of order unity , (2.12)

and thus the term N(pg)? cannot be neglected in
(2.8). Infact, when T <Tg,

BT/TGNI-T/TG

N<p(2}>= l—T/TG

+const of order unity ,

(2.13)

where B is a constant of order unity. Since xg is
positive definite, we must have

Bza .

(Both @ and B depend upon the crystal symmetry,
shape, and boundary conditions. )

It is interesting to note that xg also diverges in
a 3-d lattice, which has infinite-range order and
no instability. In particular (see Appendix A),

Xe® (T/T)N?/® (2. 14)

In neither case [Eqs. (2.13) or (2. 14)] does ¢ di-
verge as fast as N.

Jancovici’s conclusion remains valid, namely,
that

Xg—® asN-wo T<T,
const of order unity
XalN=uo" T— T, as T’TE .
(2. 15)

Thus the 2-d crystal is an example of a system
whose susceptibility diverges without an instability
occurring.

III. COHERENT SCATTERING AND BRAGG PEAKS

The cross section for coherent scattering of
particles by a many-body system, with momentum
transfer %Kk and energy transfer %w to the system,
is well known to depend upon the system only
through the dynamical structure factor S(‘E, w) given
by

Sk, w)= [ @t/2me etk ) | (3.1)

where I(k, ¢) is the dynamical correlation function
of the density fluctuation p3(?):

I(k,t)=N {pg(t) p(0)) -

We have already discussed two limiting behaviors
of Ik, t),

3.2)

I&)=1I(k,t=0)=N(p}) , (3.3)
referred to as the “structure factor,” and
I(&, t~©)=N(pg)? . (3.4)
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We can express S(k, w) as

S(&, w)=N(pg)? 6(w)+Sg(k, @) , (3.5)

where 6(w) is the Dirac 6 function and SR(E, w) will
be shown to be well behaved (for finite N) but sharp-
ly peaked at w=0.

In the case of typical x-ray scattering experi-
ments one measures I(k), ! which can be expressed
in terms of S (kw),

I®)=N(pt)= [ dw Sk, w) .

Thus [cf. Eq. (2.13)], there will be a Bragg peak
at k=G when T < T;. In Appendix B we derive the
following behavior of I(k) about a Bragg peak. With
L the linear size of the lattice and

(3.6)

k=G+% , K< 1/v!/2
I(k) 1T T\ 5.,

~] - —— —_ — <&
&1 (1 Tc>x1,, kL <1

1-T/T,

~ 1
(kL)PETTTS T/Te>3 e
. 1<kL KN .
. Sin(kL - im /T, < S
(KL)QE ’ G~ 4

3.7

The oscillations which appear when T/Tg <i— are
analogous to those appearing in the 3-d lattice.

Suppose now that neutrons are scattered off the
crystal and that only energy transfers correspond-
ing to the frequencies

lw|<A

are detected. Then one measures

I,®)= [f, dwSEk, o) . (3.8)
We show in Appendix B that as long as

A>»c/L
we have

IL,@®=~IE) . (3.9)

Thus S(k, @) has a sharp peak about w=0 of width
on the order of ¢/L. Typically, we have A=~ 10!
sec'~10™ eV, c~10* cm/sec, and L~1 cm, in
which case

LA/c~10" .

Nevertheless, suppose A <<c/L, then Bragg peaks
would still be observed,

I,®)~ (&, ~ )= N(pg)?=F (k)2 a7/ TAN1-T/ s
as A-0 . (3.10)

We should like to point out that this type of behavior
is very general and will also occur when anharmo-
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aicity is present provided only that it does not effect
‘he peaks in I(k). The reason is that the narrowing
f S(a, w) follows from exact sum rules. In fact,

t is an extreme manifestation of the well-known

le Gennes narrowing effect.** As noted by de
3ennes, the normalized second moment of (the
:oherent) S(k, w) is given by

J0?S&, w)dw/ [ S&, w)dw =K2T/mI&) (3.11)

in the classical approximation. Further details

»f the system appear only in the higher moments.
For Kk near a peak of I(E) the normalized second
noment will be greatly reduced. In our case, as-
suming that the static I(K) has a peak with a height
of order N for T<« T, (Eq. 2.13) (this “static” fea-
ure should not depend strongly on anharmonicity),
ve find that the normalized second moment of

5(G, w) is of the order of N™! and the typical width
s therefore of the order of N°'/2, For finite
T/T,;, the sum-rule argument gives, in general,

1 sharpening of S(G, w), but it is weaker than in
he pure harmonic case, the width being of the
rder of N-4-T/T¢)/2 We note in passing that

3(G, w) can have any large w tail which will not
ffect the second moment [e. g., S(G, w)xw™",
1>3 behavior]. This tail will also certainly not
ffect the zeroth moment I (E), but the moments
1igher than the second may well be large.

IV. MOSSBAUER SPECTRUM

In this section we calculate the M6éssbauer line
shape due to the emission of a y-ray photon of mo-
nentum Q from an atom in a 2-d crystal. We will
»egin with the harmonic crystal and later discuss
ualitatively the effects of anharmonicity and im-
urities.

The line shape is given by

Plw)=[_ (@/2m) e """ c@Q, 1),

8,10
(4.1)

vhere T is the natural linewidth of the photon (typ-
ically about 10® sec"?) and
c(-Q', ) :(eié'- ) e i@ i(O)) , (4.2)

vith X(¢) the displacement vector of the emitting
itom from its equilibrium position at time ¢ and
') signifying a thermal average at temperature 7.

Using the usual procedure for calculating such
1 thermal average,!® we obtain for the infinite 2-d
:lassical Debye model

CQ t)=e @D, 4.3)
vhere

F@Q 0)=(1/7%) [ dw w (1 - coswt)/w?
or

F@Q )= (7/T4) [Invwpt - cilwpt)] - 4.4)
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Above, wp is the Debye frequency, Iny=0.577...
is Euler’s constant, ci(x) is the cosine-integral
function, and

0= 2rmc?/vQ?® . (4.5)

One should note that Tg =37, [cf. Eq. (2.6)] and
that

Té) i (;pr)z/Ro ’

where R, is the recoil energy of the unbound atom.
To see what the order of magnitude of Tj, is, sup-
pose R, is 107 eV and 7w, is 200 °K, then T,
~ 4000 °K.

For large ¢, i.e., wpt>1,

cilwpt)~ sinwpt)/wpt ,

so that

C@Q, )~ (ywpt) T/%a .

Since wp is on the order of 103 sec™ and thus w)
> T, we can be in this long-time region even

when I't> 1. We are led to consider two tempera-
ture regimes: When T> Ty, P(w) is essentially in-
dependent of T and has a characteristic width on
the order of w,. When T< Ty, P(w) depends upon
T for w<I'. To see this, we will decompose P(w)
into a sum of two parts,

P(w)=Py(w)+Prlw), (4.6)
where
P,,,(w)=f_: (dt/2n) & 9T /(g 1)T/ Tl
or
IM1-71/T 1 \"T/Tq
Pulw)= 7(vwp)'*a Re (1"+iw) - @

Here, T'[x] is the I function of x.* Thus P, (w) has
a width ', It is easily seen that Pg(w) has a width
Wp-.

We get an idea of the strength of the Mdssbauer
peak by looking at

PPM(F),N.(F/wD)T/T'Q=e-(T/T'Q)ln(wD/I‘) i (4. 8)

This quantity should be compared with its analog in
three dimensions, the Debye-Waller factor ¢ ?,
where®-10

2W =6RyT/ (iwp )2~ T/ T, .

We thus see that except for numerical factors of
the order of unity in the exponents, there is no sig-
nificant difference between the Mossbauer strengths
in two and three dimensions. What is most signifi-
cant is the non-Lorentzian line shape in two dimen-
sions. However, unless T/ Tq is of order unity,
this shape will hardly be differentiated from a
Lorentzian,



leo

/7
Pulo)= e

as T/Tyh-0. (4.9)
In three dimensions, the Mdssbauer effect is a
zero-phonon process, wherein the Mdssbauer peak

has the nuclear line shape. In two dimensions,
however, the zero-phonon processes have a weight
zero, but a high concentration of multiphonon pro-
cesses of very low net energy transfer leads to a
low-frequency peak in P(w) which remarkably still
reflects the natural line shape.

We now briefly discuss the effect of phonon scat-
tering on our result. In three dimensions, the
Mossbauer peak remains the Lorentzian,

=G T/n
w+ T2

and one expects merely that the Debye-Waller fac-
tor will be modified. In two dimensions, the prob-
lem is more complicated, since P,(w) depends
strongly on how rapidly the function f(¢) diverges.
We are not able to say anything definite. A crude
estimate of the effect of phonon scattering would
be to replace the phonon frequencies w, by w,+7,.
In effect, in Eq. (2.3),

coswt ~ coswt " "Wt

and, in the denominator of the integrand,
W=+ W) .

The fact that 2W still diverges? indicates that gen-
erally ¥(w) must go to zero at least linearly as w
goes to zero. Then, if it goes to zero linearly,
e.g.,

Yw) = Yo ,

the only change in Py, (w) is a renormalization
of Tg,

Ty~ To(1+7) .

If v(w) goes to zero faster, there is no change
in Py(w). It is important to point out again that the
above argument is rough. It may be that phonon
interactions will dominate® the low-frequency be-
havior of P(w), in which case the Mossbauer effect
would be a convenient method of studying phonon
interactions.

V. CONCLUDING REMARKS

The 2-d lattice is an instructive case demonstrat-
ing that while “long-range ordering” is sufficient,
it is by no means necessary for the existence of
physical properties which were supposed to be
characteristic of the ordered phase. It would be
interesting to find real systems!® for which the
2-d description is accurate. However, the qualita-
tive moral drawn from our simple example is use-
ful also for more complicated systems. Here one
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should mention the Bragg-like peaks in the struc-
ture factor of some lipid systems, recently dis-
cussed in terms of a very simplified model by

de Gennes.'® The recently observed!” Mdssbauer
effect in a smectic (layered) liquid crystal phase
is also an outstanding example.

Finally, we should like to comment on the nature
of the order parameter which one should like to
define for a 2-d crystal. Even though { X?)
“diverges, ” the motion of an atom in a 2-d lattice
is very different from that in a fluid. First, for
the lattice (X 2) =O(InN), while that for a fluid
(X?) =0(N). What is more important is the fact that
in the harmonic lattice the excursions of the par-
ticle, however big, take place around a well-defined
average position and nearest-neighbor distances
have small fluctuations. In the liquid, however,
each particle can cover the whole liquid volume.
Once anharmonicity is introduced, diffusion jumps
may be allowed among different lattice equilibrium
positions, It seems that the cruciai characterization
of the lattice is that the typical jump diffusion time
7, be much longer than the longest lattice vibration
time (wpN'/2)'=17,. As long as 7,> 7, and we ob-
serve the lattice on a time scale shorter than 7,
then after coarse graining over a time comparable
to 7o, itwill appearas a static well-defined lattice.
This is reminiscent of having superconductivity
on a restricted time domain in a thin (“one-dimen-
sional”) sample. ®
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APPENDIX A: SUSCEPTIBILITY xg

We have
xa=N((p&) -{pa)?) , (A1)
where
M pg)i=Ne? (A2)

and the Debye-Waller factor ¢”# is finite in three
dimensions but given by [cf. Eq. (2.11)]

e-awzaT/TGN-T/TG (A3)
in two dimensions. We also have!?
N(p%) =N-12) (eié‘- ty ,miGe i~m>
nym
=Z),,e'“a‘ (K- K% /2
- e-zwzn o8 (G Xp) (G X)) (A4)
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Thus, When 1> T/T; -1> 1/In N, we have
Xg=e [, &G % (G- Ko _ ] | (A5) N(p%) = const/(T - Ty) . (A13)
We first deal with the 3-d case. In the Debye When T'=T;, we have
approximation, N{p%) =InN. (A14)

Inf, =( G- X,) G- X))

GZ (3)
7T mC j

sm(wR,,/c)
wR,/c

1 TG? f“DR"/" sinx
R; 27 2mc2 A
~A/R, asR,~x , (a6)
where v¥ is the volume of the unit cell and
A= TG /21%mc? . (A7)

We can then express xg as

xg=e¥2,A/R,+e¥ 2, g, , (A8)
where
g,=f,—~1-A/R, .

The first term diverges as N2/3, while the second
term can be shown to be of lower order in the
limit N—~oo,

In the case of the 2-d Debye model,

1= 4G X, - X)) = ZT[ dw (——ﬂ——ﬂ—l"’(“’R /C)),
Te (3]

(A9)
where T¢ =47 mc?/vG®. Thus,
2T [“DRnle 1.
h, 'T— dx __M . (A10)
G x

By integrating by parts we find

ko~ (2T/Tg)In(vwpR,/2c) as R,~« , (A11)

where Iny=0.577... is Euler’s constant. We
replace the sum 3, by an integral 27 [ dR, R,/vwithan
appropriate multiplicative constant and change the
variable of integration to x=R,/v'/?, obtaining

N<p2§> :Z}"g"‘n

yi/e
=267 /TGf dx x*¥ /Te 4 term finite
1
as N—-oo
NIT/Tg 1
=gr/T6 = finite
B 1-7/7, +term fini

as N—«» . (A12)

Using (2.8), (2.11), and (A12), we obtain the
leading terms of xz as N—« for temperatures close
to or less than Ty,

BT/TG(NI-T/TG - 1)
Xe* 7 1)1,

a/Te N©-T/Te  (A15)
We note that x; has a maximum which occurs at
the temperature
T/T;~1/InN,
at which point,

Xg~N/InN, (Al6)

APPENDIX B: DETAILED STUDY OF /(k )

We have

I, £)=N{p;(t) pz(0))

:l% > <eii- RO ii-r,,,w))
n,m
:E"eii-ﬁne-hn(t) , (B1)
where!®

Ry(t)= = 1n( %" Entt) _ yik- Tc[,w))

=3({k- [X,0)-X,0)]}2) . (B2)

It can easily be shown in the Debye model that

h(t)_Z_T dwl—cos(wt)Jo(wR,,/c) . (B3)

k w

where T,=4nmc?/vk?. N

We first study I(k). The behavior of I(G) has
been discussed in Appendix A. We therefore con-~
centrate on the behavior of I(k) about the Bragg
peak k= G Let

k=G+k, k<1/v'/2;

risuhdibl e-hn(o)Jo(KR) . (B4)
Below T, we can replace k,(0) by its asymp-
totic behavior for large R, [cf. (Al1)],
2,(0)~ (2T/T¢) In(vwp R,/ 2¢) .

Thus, we obtain
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- kL
117% ”Z(ST‘)Z‘TL’T#? ,[, dx " /T0 gy(x) . (BS)

Very close to k=G, when kL< 1, we expand the
Bessel function

Jow)=1-%2+...,

obtaining
1) 17 ( T\ 5. 5
=] - — (1 - — e, )
® 1 17, 1 TG)KL+ (B6

When kL> 1, the behavior of I(k) depends upon
the ratio 7/T;. When T/T; >4, we can replace the
upper limit of the integral in (B4) by infinity, ob-
taining

I®) (i T\A \-a- rQ-1/7¢)
I_(67~< —TG)(E xL) 2(1- T/T¢) T (B7)

when 1>T/T;>%, and 1 <«kL<N!/2 where I'(x)
is the I function.

When T/T,; <%, the integral diverges as kL~
We can obtain the asymptotic behavior of the inte-

gral by using the asymptotic behavior of Jy(x) as

X - 00,14

Il(% ~ 11'1/2<;22->3/a sin(kL - §m) , (B8)
when 7/T; <% and N2> ¢L>1 .
Let us define the quantity
L®)=[" do S )
= (a/n) [ dtI&, ¢)[sin(at)/at] . (B9)

We can rewrite h,(t) as
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)10 2 [ gy (L= com) iR/l
®Jy x
_ f dx[l—cos(x;t/Rn)]Jo(x) s10)

wpRy/ o

The important range of R, values is R,~ L, while
the important range of ¢ values is ¢~ A",
From Ref. 14 we obtain

J'odx 1- cosx’)cJQ(an/ct)
()

{cosh'l(ct/R,,), ct/R,>1
= (B11)

10, ct/R,<1 .

Thus, this integral vanishes in the significant re-
gions if
c/AL<1 .

When wpR,/c> 1, the last integral is on the order
of

= 1 - cos(xct/R,) cos(x —4r)
dx X w2
wpR/c
- 1/2
<J dxx‘3/2=2<———chR> «1. (B12)
“wpR/c

Thus, we expect (We have not proved this rigorous-
ly)

I&,t)~I(, 0) whent<L/c
and thus

I,(&)=1(&) when Aa> ¢/L .
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