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Eq. (13)]. More complicated correlations can be handled

by taking recourse to the factorization property of aver-
ages of b's, as explained in Hecht (Ref. 16). The other two

averages (Q~Q~) and (&~&~) provideuswithacross ch-eck

of our result that correlation functions with I'& 0 vanish
for infinitesimal coupling strength along the line.

See the discussion in Ref. 1, immediately below Eq.
(II 2.6). Incidentally, this equation is misprinted; it

should read

e(p, )= t-(Ae'~3-1.)/(A-e' )]' '.
Also, the operators 0 of this reference are located on the

y axis, as indicated by their coordinates (0, k) and not
on the x axis as stated in the text.

See, for instance, N. I. Achieser, Theory of approxi-
mation (Ungar, New York, 1956), p. 19.
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The properties of finite, but large, two-dimensional crystal lattices are discussed in the

light of the lack of long-range order. We confirm, with qualifications, the. important basic re-
sult that the susceptibility diverges below a critical temperature. The details of our previous

paper on Bragg peaks in scattering from the two-dimensional lattice are presented and the be-
havior of the dynamic structure factor S(k, cu) about the peaks is analyzed. The lattice is shown

to produce a Mossbauer peak with a non-Lorentzian line shape but with a Mossbauer strength
of the same order of magnitude as that of the three-dimensional lattice. Finally, it is argued
that finite phonon lifetimes would affect our results quantit tively but not qualitatively.

I. INTRODUCTION

The subject of long-range order in various one-
and two-dimensional (2-d) systems has recently
become a matter of great interest. There exist
2-d systems which possess long-range order, nota-
bly the Ising and probably the anisotropic Heisen-
berg models. On the other hand, we have many
examples of 2-d systems for which long-range order
can be rigorously shown not to exist, ' for example,
the isotropic Heisenberg model, a Bose condensate,
electron pair superconductivity, and a crystallinea
lattice. However, there is an increasing number of
indications ' that these last systems exhibit a va-
riety of properties not too different from those
characterising the three-dimensional (3-d) ordered
analogs.

The reason for the interest in 2-d systems of the
last type is that one would like to understand better
the connection between mathematical long- range
order and physical properties. Furthermore, it
may be hoped that a 2-d geometry may be a good
approximation for very thin layers and films and

for materials with rod structures, when interest
is focused on the motion perpendicular to the axis
of alignment.

The 2-d crystal offers a particularly simple ex-
ample. In the harmonic approximation it admits
of an exact solution, and may serve, as shown by
Jancovici, 6 as m example of a system with no long-
range order that still has an "infinite" susceptibil-
ity. It has also been observed that this nonordered
structure gives rise to Bragg-like peaks in the
x-ray structure factor, reminiscent of those ob-
tained in ordered lattice structures. The reason
for this effect is that the "divergence" in the mean-
square fluctuation in the position of an atom, which
leads to a vanishing order parameter, is caused by
long-wavelength phonons, thus not affecting the
short-range order. Related to this is the fact that
the correlation function falls off slowly, as l/x,
and not exponentially.

The case of x-ray scattering is particularly
simple because what is observed is the integral
over all frequencies of the dynamic structure fac-
tor S$, &), which is related to the equal-time cor-
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relation function. In the case of neutron scattering,
however, one may have to discuss the detailed
structure of S(%, &). A related problem is the
"incoherent" or "self"-dynamic structure factor,
which determines the Mossbauer line shape. When
anharmonicity effects are considered, the problem
becomes much more difficult. While the rigorous
proofs of the nonexistence of long-range crystalline
order have been carried over to the anharmonic
case, we have only been able to present semiquan-
titative arguments (including sum rules) which in-
dicate that our conclusions should remain valid also
in the presence of weak phonon interactions.

In Sec. II we recapitulate the results for the sus-
ceptibility and the long-range behavior of the cor-
relation function. Though these results are not new

we stress that one may easily be led into significant
errors by not being cautious enough with the pro-
cedure of taking the thermodynamic limit.

In Sec. III we discuss Bragg scattering in some
detail. In Sec. IV we discuss the Mossbauer effect.
Surprisingly we find that in the harmonic approxima-
tion a Mossbauer-like peak is possible with a shape
differing from but reflecting the natural line shape.
This happens in spite of the fact that the Debye-
Waller factor is zero and is due to inelastic effects
with small net energy transfer. The anharmonic
problem is extremely delicate for the Mossbauer
effect, ' and we present only a rough argument indi-
cating that our above result is preserved. It should
be noted that in Sec. III stronger statements
are made about anharmonicity effects in the co-
herent S(k, ur), using sum rules and the "de Gennes
narrowing effect. "Most mathematical details are
dealt with in Appendixes A and B.

II. SUSCEPTIBILITY AND LONG-RANGE ORDER

The intensive order parameter of a crystal lat-
tice is given by the thermal average of the Fourier
transform of the particle density,

& p~& =& (1/N) &.e"'"&, (2 1)

where k is a reciprocal-lattice vector, say G, N is
the number of atoms in the crystal, and r„ is the
position vector of the nth atom. We can write

r„=H„+X„

where X~is the displacement from the equilibrium
position R„of the nth atom. Then,

& pa& =&$)(e'"'""& (2. 2)

where

where e is the Debye-Wailer factor. & is well
known to diverge for any 2-d lattice and thus there
is no infinite-range order in infinite 2-d lattices.
This is easily seen for the Debye lattice, when

2W'=, d~ coth—
0

(2. 5)

where &D is the Debye frequency, m the atomic
mass, e the sound velocity, and we have set Boltz-
mann's constant equal to unity. The integral di-
verges logarithmically as &- 0, a property inde-
pendent of the Debye approximation. For simplic-
ity, in the remainder of this paper, we will refer
to the classical 2-d lattice. Quantum effects exist
once T & L„but they will have a crucial effect only
for T «uD/N'~ . In the classical limit,

2W= (2T/T~) f d&u (I/+) (2 6)

where T„=4mmc~/vk2 and v is the unit-cell area.
A few years ago, Jancovici pointed out that while

there is. no infinite range order in the lattice, the
susceptibility X, diverges when 4 =6 and the tem-
perature is less than T&. This was very
interesting for the reason that physicists have often
accepted a singular susceptibility as an indication
that the system has an instability which is dealt
with by a change of state. Furthermore, numerical
studies of the 2-d isotropic Heisenberg ferromagnet
indicated that its susceptibility would diverge at
some nonzero temperature, whereas it can be rig-
orously shown' that no ferromagnetic state exists.
Jancovici's result seemed to lend credence to these
results.

The susceptibility Xg measures the linear re-
sponse of the lattice to an external potential Q(r),
the interaction energy being '

(2. I)&i.~=-Npf&a,

when Q(r) = P~e"'. Then, in the classical limit,

X~= (N/T) 1&p'&- (pa&'j . (2. 8)

~.= ~.(~/N)'" (2 9)

where n is a constant of order unity,

We thus see that we should consider a large finite
crystal and carefully let X- .

It was pointed out recently' that for a finite crys-
tal the logarithmic divergence of 2W'is not very
serious. In fact, there is a natural long-wavelength
(and hence low-frequency) cutoff in the integral,
namely, the linear dimension of the sample. Thus,
with a cutoff frequency

F(k) =-(1/N) Z„e""- (2. 2)

has sharp peaks at k= G. For a. harmonic lattice'0
2W = (T/T ~) In(N/o. ')

so that

(2. 10)

(elf Xq& e ((k.g~)2&I2 -w
) (2. 4) N (p )2 ~r I reNi-r l rg (2. 11)
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This is quite significant since, as Jancovici showed

(see Appendix A), when T& Tg,

N(p26) ~ N' T/Tg+ const of order unity, (2. 12)

and thus the term N(pg) cannot be neglected in

(2. 8). In fact, when T & Tg,

PT/Tg Nl T/Tg
N(p6) =

/
+const of order unity

We can express S(k, &u) as

S(k, ~) =N(p-. )' 6(~)+Ss%, ~), (3. 6)

where 5(&) is the Dirac 5 function and S„(k,&) will
be shown to be well behaved (for finite N) but sharp-
ly peaked at +=0.

In the case of typical x-ray scattering experi-
ments one measures I(k), ' which can be expressed
in terms of S(k&),

(2. 13) I(k) =N(pi) = f „d1g S(k, (g) (3.6)

where P is a constant of order unity. Since yo is
positive definite, we must have

(Both 12 and p depend upon the crystal symmetry,
shape, and boundary conditions. )

It is interesting to note that XG also diverges in
a 3-d lattice, which has infinite-range order and

no instability. In particular (see Appendix A),

Xg= (TITg)N'" . (2. 14)

k= G+K /1 « I/1/'/2

I$) IT ( T
I(P') 4 Tg k Tg

= 1 ———~1 ——22L2, vL «1

Thus [cf. Eq. (2. 13)], there will be a Bragg peak
atk=Gwhen T&T&. In Appendix B we derive the
following behavior of I$) about a Bragg peak. With
L the linear size of the lattice and

In neither case [Eqs. (2. 13) or (2. 14)] does yg di-
verge as fast as N.

Jancovici's conclusion remains valid, namely,
that

1 —T/T g
(KL )2(1 T / Tg& r

sin(2L ——,
'

1/)

(&L)2&2

T/Tg & 4

T/Tg &-,'
1« tcL « N

XG as N ~, T&T&

const of order unity
XG IN--- T T as T- TG

0

(2. 15)
Thus the 2-d crystal is an example of a system
whose susceptibility diverges without an instability
occurring.

(3. 7)

The oscillations which appear when T/Tg &~1are

analogous to those appearing in the 3-d lattice.
Suppose now that neutrons are scattered off the

crystal and that only energy transfers correspond-
ing to the frequencies

/cu/ &a

are detected. Then one measures

III. COHERENT SCATTERING AND BRAGG PEAKS

The cross section for coherent scattering of
particles by a many-body system, with momentum
transfer Sk and energy transfer h(d to the system,
is well known to depend upon the system only
through the dynamical structure factor S(k, &) given
by

I~(k)= J d~S(k, &)

We show in Appendix B that as long as

t1»c/L

we have

I,$)=l(k) .

(3. 8)

(3. 9)

S(k, ~)= f (dt/21/)e '"'Igc, t) (3. 1)

where I(k, t) is the dynamical correlation function
of the density fluctuation p2(t):

Thus S(k, &) has a sharp peak about &= 0 of width
on the order of c/L. Typically, we have t1=10"
sec ' = 10 eV, c = 10 cm/sec, and L = 1 cm, in
which case

I(k, t) = N (p (t) pf(0)) (3. 2) Lh/c = 107

We have already discussed two limiting behaviors
of I(k, t),

Nevertheless, suppose «&c/L, then Bragg peaks
would still be observed,

I(k) -=I/, t=0)=N(pf) (3.3)
(f ) I(f t ~) N(p )2 y (k)2/2T/T2N1-T/T2

referred to as the "structure factor, " and
as &-0 (3. 10)

I(k, t ~) =N(pg)2 (3. 4)
We should like to point out that this type of behavior
is very general and will also occur when anharmo-
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iicity is present provided only that it does not effect
;he peaks in f(k). The reason is that the narrowing
&f S(G, &) follows from exact sum rules. In fact,
.t is an extreme manifestation of the well-known
fe Gennes narrowing effect. As noted by de
mnnes, the normalized second moment of (the
:oherent) S$, +) is given by

f (o' S(k, (u) d(o/ f S(k, (o) did = O' T/mf(k) (3. 11)

in the classical approximation. Further details
sf the system appear only in the higher moments.
For k near a peak of I(k) the normalized second
moment will be greatly reduced. In our case, as-
'uming that the static I(k) has a peak with a height
&f order N for T «T~ (Eg. 2. 13) (this "static" fea-
:ure should not depend strongly on anharmonicity),
ve find that the normalized second moment of
&(G, ~) is of the order of N ' and the typical width
.s therefore of the order of N ' . For finite
I'/To, the sum-rule argument gives, in general,
I, sharpening of S(G, ~), but it is weaker than in
;he pure harmonic case, the width being of the
order of X ~ ~ ~~' . We note in passing that
&(G, It&) can have any large a& tail which will not
lffect the second moment [e. g. , S(G, ~)o-&g ",
t &3 behavior]. This tail will also certainly not
Iffect the zeroth moment I(k), but the moments
1igher than the second may well be large.

IV. MOSSBAUER SPECTRUM

Above, &D is the Debye frequency, ln&=0. 577. . .
is Euler's constant, ci(x) is the cosine-integral
function, ' and

T'o = 2&t»tc'/vq' .
One should note that To = ,'To -[cf. Eq. (2. 6)) and
that

(4. 6)

To- (@(og) /Rp,

where Ao is the recoil energy of the unbound atom.
To see what the order of magnitude of T~ is, sup-
pose Ro is 10 eV a.ndk~~ is 200 K, then Tz- 4000 'K.

For large I', i. e. , ~~I»1,
ci(td~t)- sin(tdat)/Id~t,

so tha, t

P(td) = P„((O)+ P„(td),

where

(4. 6)

Since ~D is on the order of 10" sec ' and thus ~D
» I', we can be in this long-time region even
when I't» 1. We are led to consider two tempera-
ture regimes: When T& To, P(td) is essentially in-
dependent of 1 and has a characteristic width on
the order of ~n. When T & To, P(td) depends upon
I' for ~& I". To see this, we will decompose P(&u)

into a sum of two parts,

In this section we ca).ulate the Mossbauer line
~hape due to the emission of a y-ray photon of mo-
nentum Q from an atom in a 2-d crystal. We will
)egin with the harmonic crystal and later discuss
lualitatively the effects of anharmonicity and im-
)urities.

The line shape is given by '
ol

(+) f (dt/2 ) e- i(ut rItl/(y t-)T/rt&

I [1 —T/T' ] 1 ' 'I&

P&t(td) =, ,P(r. Re . . (4. 7)
m&'V~~ j I +i&

P(ld) = f (dt/2») e '"' "
C(Q, t), (4. 1)

(4. 2)

vith X(t) the displacement vector of the emitting
&tom from its equilibrium position at time t and
'

) signifying a thermal average at temperature T.
Using the usual procedure for calculating such

a thermal average, 'o we obtain for the infinite 2-d
:lassical Bebye model

vhere I" is the natural linewidth of the photon (typ-
ically about 10 sec ') and

Here, I"[x] is the 1' function of x.'t Thus p„(~) has
a width 1". It is easily seen that Ps(td) has a width

Q) g.
We get an idea of the strength of the Mossbauer

peak by looking at

I p (I )- (I /~ )r&r'I —e- Ir&r'q&&«&t&&r& (4 6)

This quantity should be compared with its analog in
three dimensions, the Debye-%'aller factor e ~,
where

2W=6ROT/(tttd») = T/Tt& .

vhere

f (Q, t) = (T/T'q) f, did a) (1 —costdt)/(d'

f (Q, t) = (T/Tt&) [Inytt&»t —ci(co»t)] .

(4. 3)

(4. 4)

%e thus see that except for numerical factors of
the order of unity in the exponents, there is no sig-
nificant difference between the Mossbauer strengths
in two and three dimensions. %hat is most signifi-
cant is the non-Lorentzian line shape in two dimen-
sions. However, unless T/To is of order unity,
this shape will hardly be differentiated from a
Lorentzian,
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P„(&p)- p p as T/T'o-0 .
Q) +I

In three dimensions, the Mossbauer effect is a
zero-phonon process, wherein the Mossbauer peak
has the nuclear line shape. In tmo dimensions,
however, the zero-phonon processes have a meight
zero, but a high concentration of multiphonon pro-
cesses of very low net energy transfer leads to a
low-frequency peak in P(&0) which remarkably still
reflects the natural line shape.

We now briefly discuss the effect of phonon scat-
tering on our result. In three dimensions, the
hfossbauer peak remains the Lorentzian,

2 p2 )

and one expects merely that the Debye-Wailer fac-
tor will be modified. In two dimensions, the prob-
lem is more complicated, since P„(&0) depends
strongly on how rapidly the function f(t) diverges
We are not able to say anything definite. A crude
estimate of the effect of phonon scattering mould
be to replace the phonon frequencies z, by co, + ip, .

In effect, in Eq. (2. 3),

cos~t - cos~t e "'"' "
and, in the denominator of the integrand,

&0 &d + 7 (&0) ~

The fact that 28' still diverges indicates that gen-
erally y(&d) must go to zero at least linea, rly as &p

goes to zero. Then, if it goes to zero linearly,
e. g. ,

r(&d) - wp&o,

the only change in P„(&p) is a renormalization
of Tg,

To- To(I+y'p) .
If y(&d) goes to zero faster, there is no change

in P„(&o). It is important to point out again that the
above a,rgument is rough. It may be that phonon
interactions will dominate the low-frequency be-
havior of P(w), in which case the Mossbauer effect
would be a convenient method of studying phonon
interactions.
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APPENDIX A: SUSCEPTIBILITY XG

)tf&=N(&pg) -&po)'),
where

N&PG) =Ne

(Al)

(A2)

and the Debye-Wailer factor e is finite in three
dimensions but given by [cf. Eq. (2. II)]

should mention the Bragg-like peaks in the struc-
ture factor of some lipid systems, recently dis-
cussed in terms of a very simplified model by
de Gennes. The recently observed' Mossbauer
effect in a smectic (layered) liquid crystal phase
is a,iso an outstanding example.

Finally, we should like to comment on the nature
of the order para, meter which one should like to
define for a 2-d crystal. Even though &X )
"diverges, "the motion of an atom in a 2-d lattice
is very different from that in a fluid. First, for
the lattice &XP) = O(lnN), while that for a fluid

&XP) = 0(N). What is more important is the fact that
in the ha, rmonic lattice the. excursions of the pa.r-
ticle, however big, take place around a well-defined
average position and nearest-neighbor distances
have small fluctuations. In the 'liquid, however,
each particle can cover the whole liquid volume.
Once anharmonicity is introduced, diffusion jumps
may be allowed among different lattice equilibrium
positions. It seems that the crucial characterization
of the lattice is that the typical jump diffusion time
v'& be much longer than the longest lattice vibration
time (&dpN' ) '=7p. As long as r&» 7p and we ob-
serve the lattice on a time scale shorter than 7&,

then after coarse graining over a, time comparable
to vo, itmill appear as a static mell-defined lattice.
This is reminiscent of having superconductivity
on a restricted time domain in a thin ("one-dimen-
sional") sample. '

V. CONCLUDING REMARKS

The 2-d lattice is an instructive case demonstrat-
ing that while "long-range ordering" is sufficient,
it is by no means necessary for the existence of
physical properties mhich mere supposed to be
characteristic of the ordered phase. It mould be
interesting to find real systems'~ for which the
2-d description is accurate. However, the qualita-
tive moral drawn from our simple example is use-
ful also for more complicated systems. Here one

-,5V T / Tg ~ Z / 1'g

in tmo dimensions. We also have'

&p)N& +&e&op~e&65~)
fop m

-&r. a (x„-x0)]~&/2~n

- pep e&(5' +) (G xp)&
n

(As)
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Thus,

-2w [Q ((5' x„) (5 xP)) N] (A6)

When 1» T/Tc —1» 1/inN, we have

N(po) = const/(T —Te) . (Als)

TG'v'" '"&) sin((oR„/c)
2&( mc „(oR„/c

To'v"' " " ' sing
R„2p'mc g

dx
0

x

-A/R„ as R„

where v' ' is the volume of the unit cell and

We first deal with the 3-d case. In the Debye
approximation,

lnf„—= ( (G X„)(G Xo))

When T=Tc, we have

N(phd) =lnN. (A14)

Using (2. 8), (2. 11), and (A12), we obtain the
leading terms of g@ as N- ~ for temperatures close
to or less than Tc,

T /Tc (N1- T /Tc
—(k cN' ~ c . (A15)

1 T/T,-
We note that ~ has a maximum which occurs at

the temperature

T/T =1/lnN,

at which point,
A-=TG'v'"/2 'mc'

Vfe can then express gp as

g;= e Z„a/R„+ e Z„g„,
where

g„=f„—1 —A/—R„.

(A8)

)(t&= N/ln N.

APPENDIX B: DETAILED STUDY OF I(k,t)

We have

I%, t) =N(p„"(t)pk(0))

(A16)

The first term diverges as N, while the second
term can be shown to be of lower order in the
limit N-.

In the case of the 2-d Debye model,

Q ( e&k Ph(&) - &k ~ 'f~(0))
N „~

G q)

(A9)

where"

I&„(t)=——ln(e&k
' xn(&) e&k' )(&)&o))

where Te =4&(mc /vG . Thus,

D n/
1 d ( )

I&„=
J

dx
0

(A10)

By integrating by parts we find

I&„-(2T/TG)ln(y(o&)R„/2c) as R„-~,

(All�)

N(p(f) -Q e-"n

where lny=0. 577. . . is Euler's constant. We

replace the sum Q by an integral 2&(f dR„R„/v with an
appropriate multiplicative constant and change the
variable of integration to x =Rjv'~k, obtaining

2 (5 ' [X (t) Xo(0)]}')
It can easily be shown in the Debye model that

2T "&) 1 —cos((ot) Z, ((oR„/c)
d('d

Tg co

where Th= 4&(mc /vt&-
We first study I(k) The behavi. or of I(G) has

been discussed in Appendix A. . We therefore con-
centrate on the behavior of I(k) about the Bragg
peak k = G. Let

k =G+&(, &(«1/v'~h;

then

gi/2
=2P c dxx' c+term finite I(k)- ( e " (0) J (&(R) .0

0

(B4)

N' '~/~c —]= P ~ c, +term finite
1 —Ty Tc

as N-~ . (A12)

Below TG, we can replace I&„(0) by its asymp-
totic behavior for large R„[cf. (All)],

I&„(0)- (2T/T, ) in(y(o, R„/2c) .

Thus, we obtain
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I(k) 2(1 —T/T )

I(5) (KL)2(1- T/Tc)
+ 0

dxx' ' cJ (x) . (B5)
2T " (1 —cosx) Jo(xR„/ct)

kdo x

Very close to k = G, when &L«1, we expand the
Bessel function

Zo(x) =1--,' x'+ ~ ~ ~,
"td Z„/C;

[1 —cos(xct/R„)] Jo(x)
( 1 )

obtaining

I(k) 1 T T
I(G) 4 Tg Tg

=1 ———1 ——t&L+ (B6)

(BV)

when 1& T/Tc& —,', and 1 «xL«N'i~, where I'(x)
is the 1" function.

When T/Tc &-,', the integral diverges as xL-~.
We can obtain the asymptotic behavior of the inte-
gral by using the asymptotic behavior of J'0(x) as

14

When xL» 1, the behavior of I(k) depends upon
the ratio T/Tc. When T/Tc & —,', we can replace the
upper limit of the integral in (B4) by infinity, ob-
taining

The important range of R„values is R„-L, while
the important range of I; values is t- 6 '.

From Ref. 14 we obtain

(1 —cosx) J,(xR„/ct)
dx

4p

cosh '(ct/R„), ct/R„& 1

0, ct/R„&1 . (811)

1 —cos(xct/R„) cos(x —&v)
1/3

Thus, this integral vanishes in the significant re-
gions if

c/a L&1.

When ~~pc» 1, the last integral is on the order
of

I(k) i(3 2
t sin(xL ——,v),

vLi

when T/Tc & —,
' and N' » xL» 1 .

Let us define the quantity

I~(k) = fd(o S-(k, (g)

= (b,/m) f dtI$, t) [sin(n, t)/At] .

We can rewrite h„(t) as

(BQ)

COg)+/C

) 1/8
dxx = 2i

i

«1 . (B12)

and thus

I~(fc) =I(k) when 6» c/L .

Thus, we expect (we have not proved this rigorous-
ly)

I(k, t)=I(k, 0) when t«L/c
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