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A previous publication showed how the critical indices for the two-dimensional Ising model
could be derived from an assumed form of an operator algebra which describes how the prod-
uct of two fluctuating variables may be reduced to a linear combination of the basic fluctuat-
ing variables. In this paper, the previously used algebra is derived from the Onsager solu-
tion of the two-dimensional Ising model. The calculation makes use of a "disorder" variable
which is mathematically the result of applying the Kramers-Wannier transformation to the
Ising-model spin variable. The average of products of spin and disorder variables are eval-
uated at the critical point for the special case in which all the variables lie on a single straight
line. The ordering of these variables on the line determines a "quantum number" I' such that
the average is nonzero only for 7=0. Composition rules for this quantum number are derived
and used to develop an algebra for the multiplication of complex variables at the critical point.
Arguments are given to suggest the identifications of elements of the algebra as the spin, the

energy density, the Kaufman spinors, and a stress density. The result of this calculation is
the operator algebra which formed the starting point of the previous paper.

I. INTRODUCTION

Critical-point fluctuations can be described in
terms of correlations among a set of local fluctua-
tion variables, O„(r). This set will include, for
example, a local energy density and a local order
parameter, as well as several other quantities
which have fluctuations on a large spatial scale.
The concept of reducibility starts from the sug-
gestion that the set O„(r) might include only a
finite number of fluctuation variables with really
different large-scale fluctuations. If this is true,
then any product

X=II 0„(r,)
of variables within so~e small neighborhood must
be reducible to a linear combination of the basic
operators

There the A„'s are a set of numbers which can de-
pend upon the y& and the values of the spacial dif-
ferences r, —r&. In particular, the reducibility
hypothesis suggests that a product of two nearby
basic operators is reducible as

0 (r, ) 0~ (r,) = Z„A q „(r)O„(R)

r =r~ —r2, R= ~ (r, +rz}. (l. 1)

The coefficients A in the reducibility relations
describe a kind of algebra for critical fluctuations.
%e believe that an understanding of the structure
of this algebra is a powerful tool which perhaps
might be used for predicting critical indices.

This belief is based upon the result of a previous
calculation, ' in which all critical indices for the
two-dimensional Ising model were derived from:
(a) a listing of the O~, (b} the scaling concept, (c)
symmetry properties, and (d) a knowledge of which
of the coefficients Ao~ ~ were nonvanishing.

The present payer is devoted to defining the re-
duction algebra for the two-dimensional Ising mod-
el so as to exhibit the justification for the assump-
tions used in Ref. 2. Vfe begin by introducing, in
Sec. II, a new fluctuating variable p.~, which
roughly represents the amount of disorder in the
neighborhood of the point r. More precisely, this
new variable is the transform of the standard local
magnetization variable ap under the Kramers-
%annier transformation. This transformation
describes an important symmetry of the Ising
model which is very useful in determining sym-
metries in the coefficients A,

Section III lists the important fluctuation vari-
ables 0„. In addition to Op and p, p, this list in-

cludes the energy density and the components of a
stress tensor t&&. Kawasaki has used this tensor
for discussions of the liquid-gas transition, but its
importance in the Ising model has not been empha-
sized in the past. The remaining variables on this
list are the two-component spinor or "fermion"
variables used by Kaufman, ~ by Schultz, Mattis,
and Lieb, and by one of the present authors.

In Sec. IV, we consider correlations among the
basic variables for the special case in which the
variables aD lie on a single straight line. Previous
calculations of spin correlations' have shown that
special simplicities ensue for this ease. Even
more remarkable symmetry relations appear when

we consider correlations of products of o's and p, 's
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along a line. The ordering of the operators deter-
mines a "quantum number" I", where 2T' is an integer.
The value of I', which is in appearance similar to
an angular momentum label, determines whether
or not the correlation vanishes. By using operators
D„each of which has a well-defined value of I', we
can make the reduction relation (1.1) take a partic-
ularly simple form. Furthermore, the critical-
point correlations of any product of D„'s on the line
is found and written explicitly.

Section V lists the coefficients in the reduction
formulas (1.1).

All the calculations of the present paper are, of
course, derived from the Onsager solution' of the
Ising model. However, the main results are sets
of symmetry relations for A & „which might just
have been guessed without the Onsager solution.
Hence, similar symmetries might be found for other
critical fluctuation problems. If so, then the
methods of Ref. 2 could perhaps provide a technique
for finding critical indices from first principles.

II. DISORDER VARIABLES

A. Magnetic Dislocations

At zero magnetic field, the Ising model has a
partition function which can be expressed as a sum

over all spins according to
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FIG. 1. (a) A basic cell of the model used in the pres-
ent work. All the coupling constants E„and J}i„aredif-
ferent. (b)-(d) The p variables are denoted symbolical-
ly by a cross (&&). Heavy bars indicate the bonds subject
to the transformation & —K The correlation function
involving two p variables is path independent. We pass
from the path ~ in {b) to the path I" in (d) simply by
changing the sign of the spins inside the region outlined
in (c). The partition function is invariant under such a
change, whereby the path independence follows.

z {~} g eo{r,v{

le~~) =+1 (2. 1)
The right-hand side of (2. 3) is physically an ex-
ponential of minus the cost in free energy for in-
troducing a magnetic dislocation between r, and r2
along the path I'.

The result is independent of the path 1". To see
this path independence, consider the effect upon
Z (ff } of changing the sign of a group of the dummy
summation variables o&, ~ in Eq. (2. 1). Let us flip
the signs of all the 0's at the positions circled in
Fig. 1(c). Since the K's appear in the form acro,
the effect of changing the sign of these summation
variables is to flip the sign of all coupling con-
stants connecting the region outlined with the re-
mainder of the lattice. Under this transform

G (ff, {J}= g o, , [&.9+5,&) og.&, a+&„(i,&+~a)og, ~g}
j,A

Here we have a lattice in which j increases in the
x direction, A increases in the y direction, and we

have allowed all the coupling constants to be un-

equal. A basic cell in this lattice is depicted in

Fig. 1(a).
Eventually, we shall wish to set all the coupling

constants equal to one another. However, before
doing this, we introduce a magnetic dislocation
into the lattice by letting"

E -E (2. 2)

for all the coupling constants along the path indi-
cated in Fig. 1(b). Then, imagine that all the cou-
pling constants indicated by light bars, are equal
and positive, whereas those with heavy bars are
equal to minus the others. Since there is an ener-
getic advantage for spins connected by light bars
to be equal and spins connected by heavy bars to be
opposite, this reversal of coupling constants tends
to introduce a Bloch wall into the spin system. If
(K } is the set of coupling constants before the re-
versal and (K}the set after, we define a correla-
tion function

(I{,,I{,) (&, F } = Z (@/Z {& } ~ (2. 3)

where E' no longer has minus signs on the path I'
but now has them on the path I" shown in Fig. 1(d).
Since the change of a summation variable does not
change the result of the sum,

z(z } -=z(z'}

Consequently, the correlation function defined in
Eq. (2. 3) has equal values for all possible paths
connecting the points rj and r2.

In a similar way, we can define correlations of
any even number of p,„'s, as depicted, for example,
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FIG. 2. The correla-
tion function of several p's
is defined by a straight-
forward generalization of
the case of two @variables.
The paths shown are arbi-
trary, because of the path
independence.

where OJ is the spin at the beginning of the jth step
and o&„ is the spin at the end of it. Since o~~=1,

and since all spins, save the first and last, appear
twice,

&fy) ffy)

As a result, the spin-spin correlation function is

(g„,o„,& {K)=(-i)"Z(K')/Z(K) .

in Fig. 2. These correlation functions are defined
with the aid of paths through the lattice. But the
result is path independent.

In just the same way as O„describes the order
in the lattice, p.„describes the disorder„At in-
finite temperatures, all K's vanish so that Z{K }
=ZIK}. Hence, in the completely disordered sys-
tem, ( prpr') =l., for all r, r'.

Introducing (y. &~ as

& p, &'= lim &p, p„&

we have

&u&'=l, (2. 4a)

lim ln(p, „p,„.&- —Ir —r'If, T~ I'c . (2. 4b)
Ir-r'I» ~

Therefore when there is long-range order, for
T& T„ the long-range disorder vanishes. If p,„
is directly analogous to o„,'2 we might expect that
(p, & decreases and goes to zero as T is reduced
from infinity to T,. To see this property, we must
calculate correlations of the p, „. The easiest way
of doing this calculation is to employ the Kramers-
%annier transformation to relate p. correlations
to 0 correlations.

For T& T„a long spin dislocation costs a "surface"
free energy equal to the "surface" tension t times
the length of the path. " Hence, for T& T, ,

The results for the two kinds of correlations
can be written in an even more symmetrical fashion
in terms of a symmetric partition function Y(K)
defined by

Y(K) =Z(K) 2 ~3II [cosh2K„(j + —,', k)

x cosh 2K, (j,k + 2)] '~' (2. 7)

The introduction of p, „was motivated by the ex-
istance of an exact symmetry relating the T & T,
and the T& T, regions in the two-dimensional Ising
model. To describe this symmetry, define a func-
tion of Eby

sc*(sc)= —,arcsinh, )
1 1

sinh 2K
(2. 9a)

where X is the number of spins in the lattice.
Since cosh 2K is invariant under E —K and changes
sign under K-K+-, wi, the results (2. 2) and (2. 6)
may be expressed as

(p,„p,„& (K) = Y(K) /Y(K) (2. aa)

(o„,a„& {K) = Y(K')/Y{K) (2. eb)

Here, as before, K has an opposite sign to E along
I' and is identical to K elsewhere; K' is K+ —,'mi

along Z' and equals E everywhere else.

C. Kramers-Wannier {K-W)Transform

B. Path Formulation of Spin Correlations

To make this relation, one must introduce a path
formulation for spin correlations. Consider a path
I' on the lattice as shown in Fig. 3(a). Take a new

set of coupling constants {K } such that

off the pathK

K+i —,
'

7t on the path (2. 6)

Notice that if K lies on the path, the structure e ",
which appears in Z {K},transforms according to

eE E E

Therefore, in an n-step path,

Z {K'}= Q eo'r' ' = g e"r' g (f g,. o„,)
(ty) ffy) j-"1

(b)

FIG. 3 Spins are denoted by a dot {~ ); p's by a cross
{~), Under the K-W transform the path I' in {a) becomes
the path ~' shown in {b). After setting all the coupling
constants equal, we find

& „0.„,)p {e, I) = (u„*u„*&p {-,N.).
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or

sinh 2K*(K)=
1

sinh 2K
(2. 9b)

Let us define a new set of coupling constants
{K*{K}}by

K„*(j+2, k) =K* [K, (j +l, k+ 2)]

K„*(j,k+-,') =K+ [K„(j+-.', 0+1)]
(2. 10)

The K-W transform corresponds to K-K* (K) in

Y{K}and in correlation functions. Notice that at
low temperatures the original coupling constants
K are large but the new ones K* are small. Con-
versely, at high temperatures where the K's are
small, the K*'s are large. Hence, the transforma-
tion (2. 9) and (2. 10) interchanges high and low

temperatures.
The statement of the basic symmetry between

high and low temperatures is very simple: For
all possible {K},

Under the transform which interchanges x and y,
u-u ' and e- e. The result of the K-W transform
is that, except for a trivial multiplicative term,
the partition function is an even function of e.
Hence, the singular term in the energy - SinZ/Se
is odd in e, while the singular term in the specific
heat is even in z.

Now apply the K-W transform to the spin-spin
correlation function shown in Fig. 3(a). Let K*
be the transform of the set of coupling constants
K, and K'* be the transform of the set K' on the
path I'. The transformed path is shown in Fig.
3(b). From Eqs. (2. 8b) and (2. 11)we find

Y {K'} Y {K'*}
Y {K} Y {K*} (2. 14)

But, the transformation operations act differently
upon K and K*. According to Eq. (2. 10},

K K+ym

implies

Y {K*{K}}-=Y{K} (2. 11) K* (K) —K* (K), (2. 15a)

This result is proved in Appendix A.
To see one consequence of the symmetry (2. 11),

consider the homogeneous case in which all the
K„'s are equal to each other and all the K„'s are
the same also, but K„ is not necessarily equal to
K,. Then, Y{K}can be written as a function of
sinh2K„and sinh2K~:

Y {K}= Y (sinh 2K„sinh 2K, )

Then, the symmetry (2. 11) implies that for large
systems

1 1
Y (sinh 2K„, sinh 2K,) = Y

sinh 2K„' sinh 2K„

whereas

K —K

implies

K* (K)-K* (K)+2 mi (2. 15b)

Y {K'*}/Y{K+}= &u„*u,*&{K*} (2. 16)

where

Hence, we evaluate the ratio on the right-hand side
of Eq. (2. 14) by employing either one of the paths
shown in Figs. 3(a) or 3(b). On the path I", K'*
is —K*. Theref ore,

or &F=(A, &F)=(A-2, &g-2) (2. 17)

Y (a, b ) = Y (5 ', a ') When we set all the coupling constants equal, we
then find from (2. 14) and (2. 16) that

Moreover, since there is no distinction between
the x andy directions, Y(a, b)= Y(b, a). As a re-
sult of these symmetries, 1' can be considered to
be a function of e and ~ (u+u '}, where u is the
asymmetry parameter

&o,p„) (&, n) = &u„*u„*& (- e, u}

When r, and r& are far separated, we find

&o, & (~, ~}=+&p„&(- ~, M)

(2. 18}

(2. 19)

u = a/5 = sinh 2K„/sinh 2K„ (2. 12)

such that u —u ' measures the asymmetry between
the x and y directions, and c is

—e =T (a+5 —a ' —5 '}
= ~ [sinh 2K„+sinh 2K„- (sinh 2K„) ' —(sinh 2K,) ']

so that as the temperature is reduced from , the
&p, „& decreases and approaches zero as (T- T,}'~

in the neighborhood of the critical point.
The K-W transformation can be reduced to a set

of simple rules. All correlation functions are in-
variant under the simultaneous replacement:
e- —e, u-u, o-p, p-o, and r = (j, k)-x*=(j—&,

(2. 13)

Near T„e is proportional to (T —T,)/T„so that
& measures the deviation from T,.

Under the K-W transform, e —c and u u.

D. Correlation Functions Involving both p's and o's

The definition of correlation functions involving
both p, 's and o's is very straightforward. Consider
the product of two p's and two &'s shown in Fig.
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FIG. 4. In the cases involving both 0's and p's only
the &bsolute value of the correlation function is path in-
dependent, because a p, path crossing a 0 variable pro-
duces an over-all change of sign. In the text it is proved
that the correlations calculated with the paths shown, in
(b), (c), and (f) are the same, and have opposite sign to
the ones in (d) and (e). The crossing 8 shown in (c)
illustrates a case where there is a basic indetegminacy
of sign produced by the noncommutativity of the opera-
tions defining 0 and p paths.

4(a). To define the correlation function, employ
the paths shown in Fig. 4(b) and write

E+~ mi on

on

so that

(2. 20a)

K K+-E ni

E —K

(2. 2la)

(2. 2lb)

do not commute. If (2. 2la) comes b~fore (2. 2lb),
then

e xfyfy e ~Klyff io.o.f (2. 22a)

(g„p„o„.o, ) = FPC}/F(K} (2. 20b)

There is only one further difficulty. Notice that
the paths shown in Fig. 4(b) do not intersect. This
is important because the operations

For this reason, we always imagine that all opera-
tions (2. 2la) are performed before all operations
(2. 2lb). This assumption defines the meaning of
intersecting paths like those shown in Fig. 4(c).

Nonetheless, the resulting correlation functions
are not quite path independent. No possible defor-
mations of 0 paths can cause minus signs. There-
fore, it is quite irrelevant whether we draw these
paths, as 1n Fig. 4(b), or leave them out. However,
the results are not quite independent of the LLI. path.
The proof of p, -path independence fails if the cor-
relation function includes a 0„. Consider that one
of the circled points in Fig. l(c) contained a & vari-
able. Then as the path was changed from ~ to ~',
the change in sign of the spin variable would pro-
duce an over-all sign change in the correlation func-
tion.

This result can be reduced to a rule: As a p,

path is deformed through a spin variable, the cor-
relation function changes sign. There is no other
path dependence. According to this rule, the cor-
relation function defined by Fig. 4(d) or 4(e) is
opposite ln sign to the correlation function ln Flg.
4(b) or 4(c) whereas the correlation function in
Fig. 4(f) is the same as Fig. 4(b) or 4(c).

III. OTHER BASIC VARIABLES

A. General Considerations

So far, we have discussed in detail two important
fluctuation variables, the local order variable 0'„

and the disorder variable p.„. We call any function
of these variables an operator. There are two im-
portant kinds of operators: extensive and intensive.
An intensive oPeratox x(t)depends o'nly upon spin
and disorder variables within a, few lattice con-
stants of the point r; an extensive ojemtor X is
the sum over the entire lattice of an intensive
operator:

X L„x(r)-.
Typical extensive operators are the Hamiltonian
X and the total magnetization; their intensive part-
ners are the energy density and the local magneti-
zation 0~.

Fluctuations in extensive operators are closely
connected with thermodynamic derivatives. To
see this, consider the effect of adding to the Ham-
iltonian at the critical point a set of terms of the
form x X~, where x are parameters and the X„
are operators. In symbols,

—X/kT- —X/kT+Q x X

An added term of the form

x X~= (6T/T, )X/kT,
whereas if the order is reversed,

ex e " (-i«') (2. 22b)
would effectively change the temperature from the
critical va1ue T', to T= T,+51', whereas a term
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(Y) Q e-H/AT8

e (e }~w1

8/kr
fez]=&1

=(Y (X- (X))) (3.2)

If the fluctuations in X are large enough so that
the right-hand side of Eq. (3. 2) might be more
strongly divergent at the critical point than (Y),
then we say that the operator X is thermodynami-
cally significant. Since derivatives with respect
to temperature and magnetic field increase the
rate of divergence of various physical quantities,
the Hamiltonian and total magnetization are, in
these terms, thermodynamically significant.

The scaling concept permits a more precise
definition of the size of fluctuations in various op-
erators' and hence a more precise statement of
the concept of thermodynamic significance. Ac-
cording to scaling, when the length scale changes
according to

r- r/L

basic intensive operators scale according to

x, (r)- L "~x, (r/I, )

whereas the extensive operators obey

X = f dr x (y)-L '4 "n'X

(3. 3a)

(3. Sb)

(3. Sc)

Here d is the dimensionality of the system and the
factor L "comes from the transformation of dr.
In particular, if x, (r) scales as v, and x4 (r) scales
as vz, then their correlation function at the critical
point must have an r dependence of the form

x X =(l/, H/kT, ) M

would represent the addition of a magnetic field H.
Then the derivative of any physical quantity (Y)
with respect to one of the parameters would have
the form

sible,

d —v &0

This last statement is then the condition for ther-
modynamic significance.

By definition, thermodynamically significant
operators produce infinities at T = T,. Physical
arguments are then available to discuss these in-
finities. For this reason, we shall confine our at-
tention almost completely to thermodynamically

significant operators.

B. Order and Disorder Variables

The variables p. „and o„are each thermodynami-

cally significant. Since at the critical point p, and

0 each have the same autocorrelation function,
their scaling indexes are identical. Their scaling
index, which we shall call v&~&, is

(3. 6)

But the &'s and p, 's also give other thermody-
namically significant operators, since these and

the other operators of interest have the property
that their correlation functions for large spacial
separations are slowly varying in space. Hence,
if I is any vector which goes from one lattice site
to another nearby site, we know that a correlation
function

([o(r+1)—o (r)]x (r'))

is approximately equal to a dot product of the form
1.V when ) r —r I »&. The coefficient V is identi-
fied with a new correlation function of the form
(x (r) x (r )). It is natural to give to x (r) the name

Vo(r). From the identification of the gradient
operation it follows at once that &x (r) has the

scaling index 1+v . In particular the variables
&p „and &O„have v = 1+ 8 and are also thermody-
namically significant.

(x (r)x4(r')) = -, „,,„A.,4 (3.4) C. Energy Density

in order that the invariance property under the
transformation (3. 3a) and (3. 3b) may hold. [In
this equation A, may depend upon the angular ori-
entation of (r —r') if x and x4 are spinor, vector,
or tensor variables. ]

The general rule that arises from this form of

scaling is that operators which scale as low powers
of L can have large fluctuations whereas higher
powers of I indicate smaller fluctuations. In par-
ticular, negative powers of L on the right-hand
side of (3. Sb) or (3. Sc) indicate the possibility for
infinite fluctuations in question whereas positive
powers denote bounded fluctuations. Since both
O„and p, „are bounded, no intensive operator has
infinite fluctuations, hence v &0. On the other
hand, if infinite fluctuations in X~ are to be pos-

The intensive variable conjugate to h- (T —T,)/
T, is an energy density. We choose as our defini-
tion of energy density

g (j +T, k+&) = [o»&x/,»- tanh 2K„(j +~, k)]

x tanh 2K„(j+~,k)

+ [&/„&/ ~, —tanhM, (j, k+7)]

x tanh ZrC, (j, k+-,') . (S. 'I)

This particular form is taken to produce a sim-
ple transformation law for ~ under the K-W trans-
form. Since

9
(o/lr /+1, k) f+] s ~ 1 k)

ln + [+]
~+a(2+2~ &
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it follows from Eq. (3. 7) that

(&(j+r, k+2)&(K}

~

~tanh 2K„(j+~,k), ,
)8E„(j+g,jg

+ tanh2K, ('j, k+2) . , Inl" (K)BK„j,k+2

Application of the transform then indicates that

(~(~)& (K}=- (h(&*)& fK*}

so that under the K-W transformation

b (~)- —g (~*)

From the known energy- energy correlation
function and Eq. (3. 4) it follows that & scales as
I/~ and also that the gradient of 8 is also thermo-
dynamically significant.

so that

(t (j —,k ))(K}

tanh 2K„(j+2,k) BK„(j+2, k

—tanh2K, (j, k+2)- . , ln Y(Kj' aK„j,k+-2'

(3. 11)

Notice that t1 is even under the K-W transform and
odd under the transform which replaces x by y.
Note that the expression for t1 is the same as the
expression for 8 except for a sign change which
produces the opposite parity under the K-W trans-
form.

The effect of the extensive operator

D. Stress Tensor »=~ 4(j+2, k+2) (3. 12)
From the definition of &(r), the integral over all

space of the energy density is an operator which
has, as its main effect, a derivative with respect
to temperature, or more properly a derivative
with respect to 8 at fixed u. But, we also need an
intensive variable whose extensive partner varies
u, the asymmetry parameter.

Near the critical point, all correlation functions
depend upon a distance variable with a kind of el-
liptical symmetry':

is given by Eq. (3. 9). In particular, whenever the
distance between &1 and &2 is large,

8 8 8 8iT'i~„',,)=(-ii —, ~ &i,q is —,. ~ &s,~-i'„",)
~ ~—2 (jg -j2)' 22 8

2 + 2 (k, —k2) u S+2 (&x„o'„)
Q 12

61 =x /Q +Q (3 9) where

in the limit of S much larger than a lattice con-
stant. Therefore, a derivative with respect to u
is equivalent to straining the system according to

8 8 8
8 —= —X —+P-

8u- 8X (3. 9)

There is an extensive operator which quite precise-
ly performs the differentiation operation indicated
in Eq. (2. 29). Its intensive partner is

@12 (jl j2) /s + (kl k2)

is the distance variable which appears in the cor-
relation functions.

According to Eq. (3. 9), the effect of T, is that
of a second-rank tensor. Since the two-dimension-
al Ising model has, near its critical point, an

underlying rotational symmetry, the other compo-
nent of this second-rank tensor

4 (j+r, k+ ')-
= 2 tanh 2K„(j + —,', k) [o»&&+,, 2

—tanh 2K„(j +—,', k)]

-~ tanh 2K,(j, k +&) [cr» v& ~, —tanh 2K, (j, k + ~z )]

(3. 10)

T2~ — X —+ g— (3. 13)

must also exist together with an associated density
t2 (j, k).

A plausible but so far unchecked expression for
(t2) is

(t, (j ~—„k)) = ——, tanh 2K„(j +—,, k ) tanh 2K, (j + 1, k +—,)
1 1 ~ 1

8K„j+z,k 8K j+1,k'+ —,

—tanh 2K„(j+—„k)tanh 2K, (j + 1 k- —,'), , ln Y pC}sK„j+2,k sK„j+I, k —
2

(3. 14)
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This identification agrees with Eq. (3. 13), in

the sense that t& is even under the interchange of
x and y. The main characteristic of Eq. (3. 14) is
the presence of the correlations (&&p&„~„)and

&&~co~.i.a-i &.

In the present work we will not need to use Eq.
(3. 14) but rather the symmetry properties of t2,
which are independent of its explicit form. Both

t& and t2 must be even under the K-W transforma-
tion. The intensive variables t, and t3 form a sec-
ond-order traceless tensor:

(3. 15)

The scaling properties of t&& are very simple.
According to Eqs. (3. 9) and (3. 13), T& and Tz are
invariant under length transf orms. Theref ore,

d —v, =0

so that the index for t&& is v, = 2. Since t~& is itself
at the very edge of thermodynamic significance,
~t~& is not significant.

E. Spinor Variables

The remaining fundamental fluctuating variables
needed in the discussion of the two-dimensional
Ising model are the variables employed by Onsager,
by Kaufman, and later by many other authors.
The original Onsager variables are composed of a
product of a spin and an adjacent disorder variable
as in Fig. 5(a). We call these spinor variables be-
cause near T, correlation functions formed from
products of these variables have the rotational
properties associated with spinor correlations.

According to the reduction hypothesis, any prod-
uct of nearby local variables can be expressed
as a linear combination of fundamental variables.
Consequently, we might expect the product of a p,

and a nearby & to be a linear combination of two
fundamental spinor components. The relative
placement of the p, and 0 will determine the coef-
ficients in the expansion. When K„=K„we choose
to interpret a product of 0 and p, to be analogous
to the spinor which has angular momentum directed
along the line pointing from & to p. . Hence, the
products shown in Figs. 5(a) are proportional to
spinors pointing in directions differing by +45'
from the y direction. If a and a represent, re-
spectively, spinors with angular momentum in the
+ y and -y directions, then the two Onsager vari-
ables are related to a, and a by

b, =a, cos~m+a sin~@

5 =i (a, sin~ @+a cos~ m)

The two spinor components a, and a, which we
take to be fundamental, are defined by correla-
tions with orientations as shown in Fig. 5(b).

To check that a, and a have some of the rota-
tional properties of spinors, we study the correla-
tion function composed of one a, or a, a p, , and
a & as shown in Fig. 6(a). Now rotate the orienta-
tion of the a, and the a clockwise through 180'.
If we never let the paths cross in the course of the
rotation, the result of the rotation is shown in Fig.
6(b). To bring the paths back to the form shown in

Fig. 6(a), we must let the p paths on the left-hand
figure cross through the &, thereby picking up a
minus sign. We find then that a 180' rotation pro-
duces a, —a and a a, . Two 180' rotations
would then have the effect a, —a, and a —a .
These are precisely the correct transformation
properties for spinors. The spinor variables have
a correlation function which was called g in Ref. 9.
Hecht has evaluated the asymptotic form of this
correlation at T T, and finds an inverse first-
power dependence upon the separation distance
[see Hecht" Eq. (4. 50)]. Then from Eq. (3.4) it
follows that the spinor variables scale as r '
Therefore, their gradients are thermodynamically

significant.

bj
rep~sen )ed

by+

BL

bj
r epresented

by

-X

(c)

FIG. 5. In the case &„=&~ the spinors b, and 5 admit
a graphic representation indicated in (a). As before, a
cross (x) represents a p variable, a dot (4) a 0 variable.
The spinors a, and a are shown in (b). This figure needs
to be interpreted as the limiting case of (c) when the y
distance between the 0 and p goes to infinity. Alterna-
tively, they can be interpreted as the limiting case in
which the interaction along the y axis is vanishingly small.
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) IL

(&) =0 for all 1"40 . (4. 4)

a, It is important to understand why the I' defined in
these terms determines the vanishing or nonvanish-
ing of the correlation.

('s) 1

(b))

(s))l

(b))l

B. "Quantum Number" l

It is easy to understand why correlations vanish
for half-integral values of I', for if I" is half-inte-
gral, then the correlation function is necessarily
a product of an odd number of terms. Therefoxe
it must contain either an odd number of p, 's' or an
odd number of o's. But every critical-point cor-
relation function must be even under the spin-flip
operation

(4. 5)
FIG. 6. We draw a spinor variable, paths, and a 0 and

p. The lattice has been omitted and the paths are drawn
as curves. The operations indicated sustain the interpre-
tation of ~, and a as having spinor character. (i) Rotating
a, by 180' clockwise, we go from (a) I to (b) I. To go from
(b)I to (a)G the' p path needs to cross the "tail of the
aI'low, lo e. , the (7 contained in + ~ Hence Q+~ —8 und

the clockwise rotation. (ii) Rotating & by 180' clock-
wise in (a)II we end up in (b)II, which is identical to (a)I.
Therefore «+ under this rotation. By repeating this
process twice we find that a 360' rotation produces
a+ —a+, a„—a, the well known rotation property of
8plno Fs ~

IV. CORRELATIONS ALONG A LINE

A. Basic Result

In Appendix B, the Onsager theory is employed
to evaluate a T = T, correlation function composed
of p, 's and 0's being on a single line and separated
by many lattice constants. The type of correlation
function is shown in Fig. 7. Notice that the p's lie
slightly to the right of the y axis, and their paths
all lie to the right of the 0's. ' To write this re-
sult, we define

and by the K-% symmetry also even under the p,

flip

p~ —p, ~ fol all 'Y . (4. 6)

But all correlation functions with odd E are odd
under the simultaneous application of (4. 5) and
(4. 6). Since they must be both odd and even, they
are zero.

The vanishing of the correlations mhen I' is an
odd integer i.s also easy to understand. In this
case, the product contains an odd number of both
0's and il's, so that either the symmetry (4. 5) or
the symmetry (4. 6) is sufficient to ensure a van-
ishing average.

But, the case in which I' is an even integer is
much harder. Why do the correlation functions
shown in Figs. 7(d) and 7(e) behave so differently' ?

They contain the same operators, just ordered
differently upon the line. The first of these has
I'=0, and is certainly nonvanishing; the second
has T' = 2 and vanishes. Why'P

A partial understanding of this behavior can be
obtained if we remember that when x~ and xa axe
close together and y&&y2, then

(4. 1)

and consider an average of a product of operators
D„,(r, )

(r„) p,„2-a, ,

P,~) 0'~ 0„

(4. Va)

(4. Vb)

arranged on the y axis so that y; &y&, &. This aver-
age is evaluated in Appendix B for the special
case T = T,. The key part of this result is the
statement that there is a number I' describing the
product in (4. 2). This "quantum number" is de-
fined recursively as

(4. 3)

and T'-=I'„. Our basic result can be stated as

If we mere morking in three-dimensional space,
we would agree that a product of operators of the
form (4. Va) adds —,

' unit of 8, whereas the combina-
tion (4.Vb) adds ——,

' unit of J„where Z, is the angu-
lar momentum in the y direction. Then the corre-
lation function in Fig. 7(e) would have J'„= 1 whereas
tile col'relailoll fullctloll ill Fig. 7(d) wollld 11Rve ajar

= 0. Therefore, in three-dimensional space, the cor-
1'elatloll fllllc'tlon Fig. V(d) wollld be 11011VRlllsllillg

and the one in Fig. 7(e) would vanish.
This angular momentum argument gives the right

answex for all even values of ¹ To find J„, we
pair adjacent operators in the product. Vfe ascribe
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(b) the fact that nonvanishing operators with differ-
ent I"s behave differently near the critical point;
(c) only operator products with total 1 equal to zero
have nonvanishing averages at T = T,.

C. Higher-Order Operators

The other key result for our analysis is the actual
value of the average (4. 2)

(a)

~ ~

0 if I'40
g D„(r,) =

II [f(i,q)]"'"""~if r=o . (4. 9)
1(f &gcN

I

I

I

III
I
I

I

Here

&) = (-1)
(4. 10)

III

4l

FIG. 7. Different cases of correlation functions along
a line. The p paths lie slightly to the right of the 0 paths.
The 7 values for the different cases shown are 7=7~='Y~
=0, 'Y, =-$, 7~=2. The correlation functions of the opera-
tors in (c) and (e) vanish. Note that (e) has the same
operators as in (b) and (d) but in a different arrangement.

J„=+-,' to all products of the type (4. 7a), 7„=—-',

to all products of the type (4. 7b), and J„=0 to prod-
ucts p g p g

and 0 fo g
Then the total J„ is the

same as —,'T'. The average is nonvanishing if and
only if J„is zero.

Since we are not working in three dimensions,
this angular momentum analogy is far from perfect.
Nonetheless, it is clear that the quantum number
I", which describes the relative ordering of v's and
It' s, describes an absolutely essential quality of
the operators on a line and that this quality bears
some relation to angular momentum.

From Eq. (4. 3) we can work out a composition
rule: Given two operators X (r, ) and Xs(r, ) with
quantum numbers n and P, such that all spine and
p's in the X lie below, i. e. , have smaller y co-
ordinate, all spins and p, 's in X~, then the product
of these two is another operator with well-defined
I',

X.(r,)X,(r, ) =X„, y= n+( 1)"p . - (4. 9)

Consequently, the I' values add if the first operator
has integral y, and subtract if the first has half-
integer y.

The I' quantum number will play an essential role
in our further discussions. Its important properties
are: (a) the composition rules (4. 3) and (4. 8);

f(i, j) = (o(r,)a(r, )) ' =
l
r, —r,

l
c,

where c is a known constant. The results (4. 9) and

(4. 10) hold at T= T, whenever ~r, -r& } is much

greater than a lattice constant and all the ~& lie on
a single straight line. (We neglect the fact that the
p, 's are not exactly on the same line than the o's
because this is unimportant here. But see Sec.
IVD. )

The result (4. 9) describes correlations of oper-
ators D„with y value equal to + —,'. The reduction
idea permits us to use (4. 9) to define and deter-
mine the properties of a much larger set of oper-
ators: the set D„(r) with y being any positive or
negative integer or half-integer. The basic idea
is that the higher-order operator is formed from
a set of o's and p, 's closely spaced upon the line.
For convenience we allow the o's and p, 's to alter-
nate and the spacing between the neighboring oper-
ators to be the small distance a, as in Fig. 8. We
then define, for positive y,

The same definition holds for negative y, except
that each o is replaced by a p, , and vice versa,

x„(R)= ~(r,) xc(rs) xIt(r, ) ' '
(21 yl terms) .

(4. 11b)
For completeness, we also define

x,(R) =1. (4. 11c)

From the reduction idea, we might expect that
as a-0, the X„(R)becomes a function of a times
an operator independent of a. In symbols

X„(R)= g(rt) x It(rs) x e(rs) x p, (r4) (2y terms)

(4. 11a)
with

y&+, =y&+ a, x& = 0,
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FIG. 8. Operators with
) 7I & ~ are constructed with
the use of the two types of
fundamental entities, 0's
and P's spaced along the line.
In this figure, &=4.

&,(R) -A„(s)D,(R), (4. 12)

where A„ is a set of coefficients dependent upon g
and y, and D„(R) is an operator.

Equation (4. 9) can then be extended to include
correlations among the higher-order- D,. Let ~„
r„.. . , ~» be spaced as in Eq. (4. 1la) and let

j~, -~„„,(»a for 2(y~ &&&X.

(
0 if X" 40

X„(R) Q D„„(r„) =
"""'+' ABC f I'=0

We require also that for i & 2 I y) the operators alter-
nate as in Fig. 8. Then from Eq. (4. 9) the result-
ing correlation function takes the form

sible to identify the A in Eq. (4. 13) with the quantity
A„(a) defined by Eq. (4. 12). Therefore, when Eq.
(4. 12) is substituted in Eq. (4.13), the A's cancel
out and we find that

0 for 1"40
D, (~) II D,„(;) =

aC for I'=0 (4 15)

Furthermore, a term by term comparison of Eq.
(4. 15) with Eq. (4. 9) indicates that these equations
have precisely the same structure, except that the
first y has been extended to have possible values
+ j., + ~, + 2, . . . , also. Therefore, successive ap-
plications of the same logic enable us to extend
our arguments and prove that Eq. (4. 9) and the
associated Eq. (4. 3) hold for operators Dy~ with
all possible values of y„.

The only case not discussed so far is y~= Q. But
if we define

then this case is covered also.

D. Symmetry Properties

(4. 16)

The operators D„have particularly simple sym-
metry properties under the symmetry transforma-
tions of the Ising model. For example, under

y --y, the X, go into themselves for y half-integral
and into X „for y integral (see Fig. 9). Hence,
the D„'s obey

II [y(f, ~)]'",
&&&&g&2ly t

which implies

D, (~)-D, (-~), ~'=-(-I)'"~. (4. 17a)

~= rr n [f(', k)]"""",
g&l&2)yl 2Iyl&a&Ã

,(4. 13)

c= II [y(~, )]"
2 tel &a&fft&A'

Notice that C does not depend upon a. As a, 0
all the x, in 8 approach one another and p ls a
product of 2Iy( identical terms, pence,

fI [ p2
K

4l

p%y

The transformation x —x is a bit more subtle.
At first sight, it would appear that since all oper-
ators are defined by the placement of operators on
,the y axis the transfox mation x-- x cannot possibly
make any difference, i, e. , under x--x,
D, -D„. But this statement neglects the fact that
the D„are defined with the p,„appearing infinites-

(4. 14)

The correction term becomes negligible as a-0.
In Eq. (4. 14) the P is equal to the p value of the

operator with the smallest y coordinate in X~ as
defined in Eq. (4.9). So, in this case it is p= —1.

Finally, the A defined by Eq. (4. 13) is a number
which depends only upon y and a but not upon the
values of r~ and y~ for 0 &2 jyt. Hence, it is pos-

t -3y

il

II p
K

41
K

FIG. 9. Upon the transformation y -y the operators
X„, with p being a half-integral, go into themselves (a),
and the ones with & integral into X „(b).
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times. The evaluation of A„(r) requires only a
careful enumeration of the possible cases.

For y= 0 or ——,
' there are no o's to be considered,

and A is 1. More generally, for integral n if

FIG. 10. Doe to the
fact that the p's are not
exactly on the y axis, the
transformation x —x is
not the identity. The res-
toration of the operators
to their "canonical" ar-
rangement can introduce
a minus sign in X~, re-
lated with the number of 0.

variables crossed by the
p paths in this process.

x
I

x or
y=4n- —,',II

x
I

x'

Il

then
A„=1 . (4. 20a)

Consider for instance the case y= 3-,'. This cor-
responds to an operator with four 0's and three p, 's
ordered as in Eq. (4. 1la). There are two possible
forms of drawing the p, paths, depending on the
relative location of D„on the line [see Figs. 11(a)
and 11(b)]. The first p, in D„(i.e. , the one with
smallest y coordinate) is either connected to another
p, variable "below" it, with the second and third
interconnected by a path, or the first one is con-
nected to the second, in which case the last need to
be connected to another p. not belonging to D» with
bigger y. In both cases, there are two p, paths,
each of which is bound to cut through a o variable.
As each cut gives a minus sign, the net result is
A„(r) = 1, as given in Eq. (4. 20a).

On the other hand, o„and D, -o&, p.&~ each flip
n if there is a p, path going below the position of
se operators and remain unchanged if there is
such path. Therefore, if

X

imally to the right, say, of the y axis. Hence,
under x-- x the p. paths are displaced to the left
of the y axis (see Fig. 10). Extra minus signs can
appear as the paths are returned to their "canonical"
position, just to the right of the y axis. Hence,
we conclude that

implies

(4. 1Vb)D„(r)-D„(r)J „(r),

y=4n+ —,
'

y= 4n+ 1,
then

(4. 20b)

—1 if there is a p, path going below r
A.(r) =

1 otherwise
(4. 18)D„(r) -D „(r)A„(r) .

where A„(r) is + 1, depending upon whether or not stg
the path displacement gives a net change of sign.

A similar problem complicates the discussion of no
the K-W transformation. If path complications are
neglected, the K-W transform simply replaces all
p,„by 0„, and vice versa. Therefore, in the absence
of these complications the transform of D„ is D „.
But as the o's and p, 's are interchanged, the p, 's
end up to the left of the y axis. The displacement
of the p, 's to their canonical position once again
gives minus signs, so that K-W transform implies

Since the "parity" factors A„(r) are the same in
(4. 1Vb) and (4. 18), both transformations together
give a result which does not contain these factors.
We call this combined transformation CI' and note
that

This factor A, (r) appears in all A„ in which y de-
scribes an operator with odd numbers of 0's in it.
Thus, if

CP= (K-W transform) x (x —x)

implies

D,(r)-D „(r) . (4. 19)

or
y=4n-1

Equation (4. 19) evades the question of the parity
of the operators D„under x-- x. But the value of
A„(r) is important to our physical identification of
the operators D„ in terms of the already mentioned
a„o, p. , E, and t, &. Therefore, we must write
down the values of A„(r). By definition A„(r) =+1,
depending upon whether the translation of the p,

paths across the y axis requires the p, paths to cut
through the o's in D„an even or odd number of

II

I5

Il

If
I

I

(a)

I

I

I

If
Il

Id

II

FIG. 11. The figure illus-
trates the discussion about
the determination of the parity

%'ith &=32 there are
two possible forms of draw-
ing the p paths, dependingupon
the relative placement of X3~2
along the line. In both cases
the pax'ity is ~3g2 =+1~
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then

y= 4n —2,3

A„(r) = A-.(r),
and lf

y= 4n+ 2

or

y=4n+-, ,
3

then

A„(r)=-1.

(4. 20c)

(4. 20d)

so that our symmetry principles naturally lend to
E11. (4. 24).

As a check, let us apply the CP transform. Under
this transform t» changes sign because it is even
under K-%' but odd by x-- x. On the other hand,

8h/8x is odd under both parts of the transform and,

hence, even in total. As a result, under CP

Dp = vtj p+ K ~ —5t j 2+ Kex ~x

This result checks with E11. (4. 19).
As a further check, notice that E11. (4. 9) imp»es

We can summarize our results by saying that
the total parity A, (r) is a product of a kind of "in-
trinsic parity" A„' and an "orbital parity" A„(r}
such that

A„(3)=Ay'„(3) . (4. 21)

1 for y=4n- —,',
A~=

(

(
—1 for y= 4n —2,

4n, 4n+ —,', 4n+1

4n- ~, 4n-1, 4n+ ~

(4. 22}

E. Physical Identifications

We have already agreed that DO=1, D«~= o,
D

& ~&
= p, , D& = a„and D

&
= a . In this section we

try to give plausible physical arguments for the
identifications'

The orbital parity is just the parity of an individual

o raised to the power of the number of o's in D„,
while the intrinsic parity is

(D2(r1)D~(&2})= [f(&1—&2)] ~ &1 —&2 ~

But V'8 and tp are each known to scale as r 3. Hence
the correlation of two such operators should be
expected to scale as ~ '.

Next, consider D,»~. We know that D, &~ changes
sign when p, changes sign but not when 0 changes
sign since X3/2= &r(r, ) p(r2)o(r3). Hence, D3/2 may

be expected to be proportional to p, or gradients
thereof, whereas D&~ p should be proportional to
o and gradients of o. According to E11. (4. 20),
D,3/2 behaves the same way as (8/8x)Q»2 under
x--x. Hence, it is natural to guess

8
D.3]a= &.—D.«aex

Then CP invariance implies X, = —A. , so that Eq.
(4. 23) follows. To check this result, notice that

D,s&~ are each even under y -—y, as required by
Eq. (4. 16). Note also that

(O„O„)™
~
r, —r2

~

-'/'

D3/2=+ I 8i1/8x, D 3/2= —x 8o'/8x, (4. 22)
implies via E11. (4. 23) that

D, =+et, +e —.gg
(4. 24)

ex
First let us consider D,2, These operators must

be even under each of the separate operations

&D 3/2(~1)DA/2(~2)) 1~1 ~a
I

-'"
~

But E11. (4. 9) implies

(D-3 /2 (+1)DA /2 (+2)) l f(~1 +2)l

Hence, if D,s is to be identified in terms of our

previously defined basic operators, it must be pro-
portional to g, f„, and/or spacial derivatives of

8 and f, /. According to E11. (4. 20d}, these D's must

be odd under x-- x. A proportionality to b, 8h/8y

or t«, is ruled out since each of these operators is
even under x- —x. The simplest possible odd

operators are t,2 and 8$/8x. We then try a linear
combination

Dpp = v~t»+ ZU~ ex

where v, and I, are coefficients to be determined.
Under y- —y, D2-D2 from Eq. (4. 16). Under
this operation, 88/8x is even and t,3 is odd. As a
result

so that the correlation function has its expected
value. This check further confirms our hypothesis

(4. aS}.

V. REDUCTION FORMULAS

In this section we make use of the symmetry
properties of the A's to suggest a set of reduction
formulas for products of two nearly D„on the line
x= 0. The results thereby obtained are then

checked against the known results for multiple cor-
relations of D~.

A. Hypothesis

To write down the reduction formulas we con-
sider products of the form

5~ = k 5) K~ = K ~
D.(r,)D, (r,) =P, (6. 1)



DETERMINATION OF AN OPERATOR ALGEBRA. . . 3931

with r, and rz lying on the y axis and y, &yz. Since
the product (5. 1) has "quantum number"

y= ~+ (- 1)"P, (5.2)

it is reasonable to guess that

S = A„,(r)D„(R),
where A, z is a number, r= I r, - rz (, and R is a
coordinate on the y axis in the neighborhood of r,
and r&. If we use the reference point

R= —,'(r, + r,),

(5.3)

(5 4)

we can assume that R differs from R by only a
small amount and rewrite the hypothesis (5. 3) as

» ya(ri)Di ga(ra) = o,,o.,
=A, (a, (a(r)+ B,~a, (a(r)8(R)

+ Ci ga. i (a(r) t»(R) ~

Hence D()(R) = 1, b(R), and t»(P. ) all have y = 0.
Therefore, when the y defined by Eq. (5. 2) van-
ishes, we replace Eq. (5. 5) by

D (r,)Da(ra) =A,a(r)+ B a(r)8(R)+ C, a(R)t»(R)

(5.6)

when y= &+(-1) P=O.

B. Symmetry Properties

The coefficients in Eqs. (5. 5) and (5.6) are
limited by the symmetry properties listed in Sec.
1V D. For example, the CI' transformation which
takes

r, r„r~ rz, R R
(5.7)

D„D„, 8(R) --8(R), ting(R) t»(R)

is an exact symmetry of the Ising model. The ap-
plication of this symmetry to Eq. (5. 6) indicates
that

D (r,)D (r,) =A, (r) —B,(r)8(R)+ C,(r)t„(R)

(5. 6)

for y=n+(-1) Pa=0. But Eq. (5.6) indicates di-
rectly that the right-hand side of (5.8) is

D (r,)Da(ra) = A a(r)D„(R)+ B„a(r) D„—(R)

(5. 5)

for y= n+ ( —1) 'pwO.
Equation (5. 5) is a reasonable consequence of the

hypothesis that D„(R) is the only fluctuating opera-
tor with quantum number equal to y. This hypothe-
sis appears reasonable for @40. However, it is
possible to identify several operators with y= 0.
Explicit calculations show that for r, and r~ close
together on the y axis,

, a(r)+B a(r)8(R)+ C (r)t„(R) .
Therefore, C is even under the change in sign of
both subscripts and I3 is odd under such an inter-
change. The general conclusion drawn from this
symmetry and Eqs. (5. 5) and (5. 6) is

A ~=A~ ~9

& O, ~=-&e,g9

ata + Otag 9

C ~ ~
—-C~g.

(5.9)

A precisely similar logic may be applied to the
transformation y -- y, which takes

r1 —r1 lp —rp R —R '

~-~'=-(-1)"~, P-P'=-(-1) P,

y y'=-(--1)'"y .
After this transformation, Eq. (5. 5) reads

D, , (- r,)D.,(- r, ) = A„,(r)D„,(-Z)

8
+ B. ,(r) , D—„,( Z) .-(5. 10)

By this logic we find

A gg (M
a —240) g

with

Bat Ot
t — Bat g

o. '=-(-1)"a, P'=-(-1)"p
The application of this logic to Eq. (5. 6) indicates
that (5. 6) satisfies this symmetry identically.

C. Check of Reduction Formulas

From Eq. (4. 9),

(
N+1

IID„.(r) = II [f( r -r, )]"("&'('&.
1&5 & JgN+1

(5.12)

Now allow rN and rN„ to approach each other.
Write y„=ri, y)((„=P; y =o. + (- 1) 'P. Equation
(5. 12) has a right-hand side which is a product of
three terms:

A=y(~ „- „.,~)"'-"",

II [y((r,. -r„l).y(~r, -r„„()"-""l"""".
1(i&„N-1

(5. iS)

1$$ &jg (N-1)

When y+ 0, U may be simplified to

A direct application of Eq. (5. 5) indicates that the

right-hand side of (5. 10) is also

9
A, (r) (-D)+B))p (~)(- „y D„,( P. ) . -
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u= II [f(~,-R)] «1+o
i ~&2&N-i jr)-rgl

(5. 14)

with

E
x= II D„(~;),

)=i

(5. 20a)

R= [nr„+(-1)"pr„., ]/r,
rg f rg

(5. 15)
(Xf (R)) ( ) Q Y)r)p(p)

d; ).i lr] —Rl lr~-Rl (5. 20b)

When this simplification is made, the right-hand
side of (5. 12) is precisely of the form

S-i
Ax nD, ,(r, )B„(R))

i~i

Consequently, we find that for y00,

D, (r, )D2(r2) =A D„(R ), (5. 15)

[f(&)](i2(-1)

as asserted in Eq. (5. 3). In this way, we verify
the basic correctness of our reduction hypothesis.
To calculate A and B, note

n - (-1)"p
It —R+

2[ ( 1)2(Mp]- (r1 —1'2),

so that a comparison of Eqs. (5. 13) and (5. 5) in-
dicates that A=A~ z is

where qB = (-1)"1~1, and I'„, is the I' value for the
D operator being just below the position of 8(R),
i.e. , qB is equal to the P defined in (4. 9) if the cor-
responding operator has r = a —,'. Equations (5.20)
describe the correlations of X with 8(R) and t»(R)
for the special case in which all points in question
r, as well as R lie well separated upon the y axis.

D, Correlation Functions with Several gs and t's

The next step is to use the same reduction tech-
nique to evaluate correlation functions containing
several $'s or t«'s.

As an illustration, consider (X8(R1)8(R2)) . We
start with Eq. (5. 20a) and let two operators D„,
and D„approach each other. We also require
that

r =r)+(-1)'")rg.)= o

whereas

[( )]-4a2(-1) ~

n- (-1)"PB, 2(Y)=-A, 2(r) [ ( 1)2 ]
r .

(5. 17a)

(5. 1m)

Hence, by using the same argument as in (5. 18),
we obtain

(X8(R,))(X8(R,)) (X) 1
(R, -R,)' '

(5. 21)

When y = 0, this approach does not work since
the denominator of B diverges. Instead, we note
that in this case, as r = r„,i —rN goes to zero,

yPU=1 —n&PB Z
; i lr;-R l

(5. 18)

B 2 (r) = —nlrb A (r2),

C,2(r) = —,
' n2r2dA 2(r),

(5.19a)

(5. 19b)

where b and d are constants. With this identifica-
tion, the correlations of 8(R) and t„(R) with a group
of D„'s may be computed by writing

The first term in U is identified with correlations
of D()(R) = 1, the second term with correlations of
8(R), and the third with correlations of t»(R). We
then find for r = 0, A, 2 is still given by Eq. (5. 1%a),
whereas

Q'

2 B1 B2

+d R R 2 (X8(R2)) (5. 22)
2 1

APPENDIX A

We will prove here Eq. (2. 11),

y(~)= y(~(x6,
where

(2. 11)

The last term in the right-hand side of (5. 21) orig-
inates in the terms with y& and y&„ in the sum in
Eq. (5. 20a).

We notice that setting X= 1 in (5. 21) then gives
(note that at T= T„(8)=0)

1
(8(R,)8(R,)) = —,

2 1

which coincides with previous calculations. '3 This
can be considered as another indication of the con-
sistency and the power of the method. Exactly the
same type of calculation gives

(x8(R,)) (xt«(R, ))
1 1 2
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r{K}=Z(K}P(K)-=Z(K}2~"II [cosh2K(j+-,', /) cosh2K(q, n+ ,')]-"'
and st is the number of spins in the lattice. By using tanh2K~(K) = (cosh2K) in P, we obtain

2 o{/I + /cosh2K„*(j, k--2) cosh2K~(j- —,', k)

/ ), (,sinh2K~(j, k ——,') sinh2K„*(j ——,', k)

=P(K~}2 / II [sinh2K„*(j k ——,')sinh2K„*(j--,', k)]'/3,

because II& ~ covers the whole lattice. Here %* is the number of sites in the dual lattice.
Next, we proceed to write S(K}in terms of K„and K„. Use

8 "= coshK+ o'o' slnhK, coshK= (-,')'/~(cosh2K+ I))/3 t nhK .))){'~{r)

to get
rv {) &s& {/i)(-1/0) + o e-& {/e)(-{/2) a jerry{/-')/2&A) +o o e-&„{/-1/Is)()

)
)e~ ~f =+i y, a

){[sinh2K*„(j, k ——,') sinh2EP( j——,', k)] ~/~} .
The last square bracket in the right-hand side of this expx'ession is not a function of o», and can be taken

out of the summation. It can be seen to cancel the product appearing in E{I. (AI).
Consequently,

I (K}=P(K}Z(K}

II (')(&*'"'~'I"+e v, ~~ ""I")(e"9'&'»+~ ~ ~r)u vs ~ ))Ij+igl & & +0'yy 0'g g~i g'

sty»f&ki

-=2{~ -~)"P(K+}T(K+}

The last line of E{I. (A2) serves as definition of
T/K+}.

But I'$K*}=PfK*}&(K*]hence we must com-
pare 2' '/ T g"] with ZI{K~}, where

g(K4 }— Q g &){+{/+)/2, ))) +/)/(/ ), )(

jeg)),)+1 ),0

%6 nom argue in a manner similar to the case
in mhich all the coupling constant:s are equal. By
expanding the product in T (K*}we notice that it
is possible to classify the resulting terms, con-
sidering the number of products (oo') included in
each one.

So, there will be one term without any (oo'),
i.6. ~ the one mith a,ll the exponentlals mith positive
sign, plus terms with just one pair (oo'), . . . up to
a term with all the pairs (oo') 's, i. e. , with all the
exyonentials mith negative sign.

Since each one of these terms is summed over
all the o» =+ 1, any term mith a o elevated to an
odd pomer mill cancel out.

The ones left actually are not a function of

&/), (&/)", = I). Hence each one of them can be taken
out of the sum. All mill have a common factor

&X* N.&pa(including the factor 2' '/')

2«-~/' g(-')
~

Z I
/, )(, ) a/g--a)

The summation gives 2~.
To calculate the product, remember that it comes

from the transformation of ZfK}, each factor
(-', )'/' being related io one of the coupling constants,
X„or K„. Thus, me have

II (k) =(2)*/3

mith 8 being the number of coupling constants.
But it has been indicatedi9 that the K-% trans-

form is an exact symmetry only in the case that
the lattice can be extended oD a, slIQply connected
8ux'face. Mox'eovex', to be coIQpletely defined, iD
the sense that all the transformed coupling con-
stants x cally represent an interaction, the surface
needs to be spheroidal. In this case, the folloming
relation holds: %+%*=8+2 .

Hence the factox' Which IQultlplles each of the
terms in T{K}is
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(b)

FIG. 12. (a) Simplest of the cells or "closed loops"
contributing to I'(&). (b) Under the K-W transform the
boundmy of the original cell (cross-hatched here) goes
to the arms of the cross centered at (j, 0). In this figure
0 denotes positive spins, ~ negative spins, and heavy
bars indicate the coupling constants that will appear with
a minus sign in the partition function. Configuration
shown illustrates the term-by-term correspondence dis-
cussed in the text, between the lattices (a) and (b). Notice
that the configuration in (b) is degenerate with the one
obtained by flipping over all spins.

2(& -R/2 L (m.+at -2)/22 23

Notice that all the terms obtained will be different
from each other, because all the K*'s are differ-
ent. Moreover, it is easy to see that all of them
correspond to "closed loops" of bonds.

Let us compare these terms with the corre-
sponding terms of Z(K*}:

(i) "'he first term in T(K*},with all exponen-
tials with plus signs, is present in Z(K* }ttstce,
once for the configuration with all spins o» =+1,
and also for the case a» = —l. (This is also the
case for the term with all the exponentials with
minus signs. )

(ii) To get the first term with some negative
exponents in T, we need four products of (oo'),
whose generic form is [see Fig. 12(a)]

(o» os+i, a) (og+t, aog+t a+t) (o'g+t. a+i', a+t) (+g,a+t~»)

This term is

«Ky (g,y-1/2) -K (/+1/2, k) ~-K ( j,k+1/2) -K (y-1/2, k) ~X

all the K's are assumed to be different).
By looking at the derivation of T(K*},we can

see that the K-W transform is uniquely deter-
mined, save for unimportant translations of the
lg,ttice as a whole.

(iii) Consider the slightly more complicated
case shown in Fig. 13(a). In T(K*}it corresponds
to the product

(o» o/+t, a) (+/~&, a of+&, a) (o/+a, a ops, a+1) (og+a, ant oy+t, a+i)

X(0' l+&, a+&oJ+t, a+8) (og+t, a+a y, a+a) (og, agog, a+t) (oy, a+t~»).

The corresponding conditions to be fulfilled in
Z(K* }are

~g 0-1 ~gk +/+1, 4-1 /+1, k +)+1,k +/+1, 4+1 +g, k+1+ga0+2

= O)-1,& 0» = 0')-1, &+1 &g,&+1
= O'), &+1 &g+1,&+1

= +(+1,a 0')+2, a

and a,ll the other products oo' =+1. We illustrate
this configuration in Fig. 13(b). Again, it is doubly
degenerate.

It should be clear by now that any closed loop
in T(K*}can be "translated" to a corresponding
configuration in Z(K*}by inserting "crosses" in
the lower-left corner of each one of the elementary
"squares" of the original graph, and cons&daring
"double bonds" as positive. In all the cases, there
is a double degeneracy. Since the reciprocal is
also true, we get

2(x -N)/2T(Kg} Z(Kg}
which completes the proof of Eq. (2. 11).

APPENDS( 8

We choose as our starting point Eqs. (2. 20a) and
(2. 20b) extended'~ to include N operators D„(i) on
the y axis, at the points 1= (0, kl), 2=(0, kz), . . . , and
N = (0, )'t„), such that k, —ka — ~ k„. In this form
we have

where M is the product of all the other exponen-
tials with plus signs.

In Z(K* }we obtain the same term if the follow-
ing conditions are fulfilled:

~ =+g, a-1~ye =~» ~g, a+1=+ga+g«1, a =+g-1,a~pa

and all the other products oo' =+ l. In Fig. 12(b)
we show that this is precisely one allowed config-
uration in Z(K* }. Once more there is a factor
of 2, because the configuration with all spins
flipped over is also allowed.

We stress that the fundamental topological prop-
erty here is that the original configuration, a
"square", goes to a "cross," where the arms of
the cross represent the K-W transform of the sides
of the square (this is of great importance, because

jk

FIG. 13. A more complicated closed loop (a) is seen
to be transformed into the pattern shown in (b). Bonds
with double line have positive sign. Again, the configura-
tion (b) is twofold degenerate.
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Here N, is the number of coupling constants on the
o path.

To calculate Z (K' }/Z (K}we use the Onsager
solution in the particular form developed in Refs.
9 and 1, conveniently generalized. Equations from
these papers will be preceded by the numerals I
and II, respectively. Hence, the equation of mo-
tion" for the spinor variables is replaced by [see
Eq. (I 2. 12)]

P(j) bP '(j)-= qb, (B2)

where P(j) is the "transfer matrix" for the case
in which the coupling constants are functions of
position with j indicating the jth column of spins,
and the matrix q generalizes Eq. (I 2. 26) for the
same case

q=qg q3,

~i) ~2/ ~ ~ o j~N ].y ~N

used in Eq. (Bl) for the y coordinate of the opera-
tors, by

~it ~i'~ ~ ' ' p ~n ~ n' 1

To get Z(K }, we simply "follow the instructions"
given in Eq. (2. 20a).

Hence, consider q, . Assume there is a p, vari-
able at k&, and another at k,

All the coupling constants crossed by the p, path
will change sign, E„-—K„; in turn, this implies
that the corresponding K,* transform as given in

Eq. (2. 15b), i. e. ,

K~ -E~+ g~i.

Consequently, the function

-]P (1+r3/2) 2K'& 7'2e)P&(1+F3/2)~, -e (as)
e3 &v3 frr3 K3 3 ( 1)

3K'

-fP /2 -2K'y7'2 efP /2
~2 —e

In Eq. (BS), e "~3 is a translation operator in the

y direction, such that

e ""
I j, k&=I j,k~1&.

We interpret K„and K~ to be matrices, diagonal
in the (j, k) and (7) spaces, i.e. ,

K.I
j»'&=K. (j k)Ij»7&

and similarly for K„*. Here K„(j,k) is a c number,
We also find that Eq. (I 2. 25) transforms simply

to read

-fPy (1+&3/2) ( y 2 5 2K 7'2 IPy(1+&3/2)

with

= (I, —28„)qi, (B7)

(1—2'g ) = 3 3 (1—2'fj }8

In Eq. (B7), 3i„ is a matrix diagonal in (j, k) and

(r} spaces, such that its matrix elements are

This leads us to introduce a projection operator
31„ to take care of this factor (- 1), in complete
analogy with I, Sec. 3:

(B4)
k&+ 3(1+7'3) & k &k&.+ 3(I+ &3) (as)

with e & being a translation operator in the x di-
rection, defined similarly to e 'P& and g given by
Eq. (I 3. 21).33 As we will show below, only the
matrix elements of g with j=j =0 will be needed;
their form is [see Eq. (I 3.21}j

2t dp
2g(0k, 0k')=5, „.-) 2" e' " '[C'(p„)] '33

(»)
We will come back shortly to discuss the function
@(j,).

With only these modifications, the scheme of cal-
culation developed in I, Sec. 2, is now applicable.
with the result that

q, - q,'= q,(1-2q. ),

with g, diagonal and

(B9)

and zero otherwise. Here and later on, the nota-
tion ~, is also used to represent the eigenvalues of
the vector 13 &, i. e. , r3=+1. This double use of
~3 should not produce any confusion.

It is interesting to point out that the same result
can be obtained by the use of the commutation re-
lations of the operator p, with b„as in I.

The case of q, can be handled in an identical
fashion, by making E„-E„+—,'xi on the 0 path.

If there are two spins at k, and k, ., then

InZ(K}= —,
' Q ln[2sinh2K„( j+ —,', k)]

+ 3Tr ln(q —e ")+ const . (B6)

Before writing Z(K }, we pause to change slightly
the- notation for future convenience. We replace the
notation

This result is identical with Eq. (II 2. 4). The ex-
tension to the case of several p. 's and o's is ob-
tained, roughly speaking, by having 3i„(j,k, v) and

g,(j, k, 3) equal to 1 on the p. and o paths, respec-
tively, and zero otherwise. The exact handling of
the "end effects" is as in Eqs. (Bs) and (810).
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The new system, i. e. , the original system in
which K-K as indicated by Eq. (2. 20a), is de-
scribed by the partition function Z(K }, whose form
is, therefore

stants crossed by the p path. The term in N„ is
due to the fact that sinh(- n) = —sinho, . As men-
tioned before, only the j =0 matrix elements of g
(or h) are needed. Equation (813) can also be
written as

lnZ(K }=-,' Z ln[2sinh2K, (j+-,', k)j (X)' = [det-„(h)]', (814)

+ —,'Tr ln(q'- e'"")+ const,

q =q q =(1—2n, )q q (1 —2n, ) (86')

By performing a similarity transformation inside
the trace in Eq. (86 ') it is possible to redefine
q as

q'= q(1- 2q),

without changing Eq. (86 ).
The operator p is given by

(I - 2q) = (I- 2q. )(I - 2q„),

that is,

q = q, (I —q„) + q„(1—q.).

(Bl la)

(811b)

The projection operator q is also represented by a
diagonal matrix.

With one operator D,,(i) at k„and another at
k~ ~, D„,, (i '), the diagonal matrix elements of q are

whereby we eliminate a spurious factor of (- 1). z

This equation can be seen to be the generalization
of Eq. (I 3. 13).

We carry on the calculation of Eq. (814) in the
case T=T„A=~ as in II, i. e. , a critical cor-
relation function for infinitesimal coupling strength
along the direction in which the operators D„, are
placed. Then, in Eq. (I 3. 18) or (I 3. 19) set
8 = 1, i. e. , T = T, , and A = ~; we obtain for 4 (P„),~

C, (P ) f e (ilz&Pq 0 & P

To write down the matrix elements of phd in a
convenient form, let us introduce a composite
variable z, a.ssociated with the vector Io, k, w) by
z=(k, v); also z, =(k, +) and z =(k, -).

The introduction of z is motivated by the fact that
the solution of Eq. (814), written below, calls for
an ordering of the elements of the matrix phd.

The matrix elements of phd are

h(z, z ') =(O, k, ~
~
phd

~
O, k, ~ ) = ——

v O'- Q'- —'T

(qk7~q ~qk~) =q(q, k, ~) = 6, , zC(B, z e(n-}
(815)

ol

ze(q }, z'C(q, }.

In(X) = —,
' lndet(1 —2rlgj) + ', (aivN~ —i'-, )

=-,' lndet-„(h) +-,'ln(- I)'"~ "~,
with

h = [4 (p, )j"~ r, .

(813)

In the last line of Eq. (813), det „cove-rs the region
(7l}, and N„ is the total number of coupling con-

& k & [k,.——,'(1 —&, )-,'(I —2yr)1 ~ (812)

and zero otherwise. Here y, and y, . are + —,
' if

D„=o, and ——, if D„= p. . This expression is valid
for all pairs D„(i)and D„,, (i'), with i = 1, 2, . . . , n.
We will denote the values of k inside the i region
as given in Eq. (812) by (i}. Whenever we want

to specify the value of vwe will write (i,}and

(i }to represent the subregions of (i}with 73 = + 1.
For future reference, we also introduce the nota-
tion N.' and N', for the number of terms in (i,}
and (i }, respectively. Finally, the set of all pos-
sible values of k for which g( j, k, r) 40 will be in-
dicated by (q} or (q,}and (g }.

As a result [see also Eqs. (I 3. 12) and (I 3. 14)j
we have

Otherwise, they vanish. Then, the elements dia-
gonal in r space vanish. We can rewrite h(z, z') as

I e 1
h(z, z ) =lim (816a)

with

a(z) = a(k, ~) =(v/f)(k, '~) +-,'e ~,

b(z) = b(k, v) =- (v/f)k+-,'C ~.
(816b)

det-„h(z, z ') =lim g [a(z) —a(z')] [b(z) —b(z')
C" g'&g

g [a(z)+b(z')] (»7)
gag

and z, z'C(q}.
The rows and columns of h(z, z') are arranged in

order of increasing regions (i}; inside one region,
the elements belonging to the ~=1 subregion pre-

The introduction of the terms in C, which up
until here is just a simple device to make the terms
die.gonal in lv ) vanish, leads immediately to one of
our basic results, Eq. (4. 2), i.e. , I'=0.

The determinant of h(z, z ') is given by'4



DETERMINATION OF AN OPERATOR ALGEBRA. . . 3937

cede the elements of the & = —1 subregion. Finally,
inside one subregion the elements are set in order
of increasing k. This ordering defines the condi-
tion z &z.

Because a posteriori we will take the lim C-~,
the products in Eq. (B17) can be expanded by con-
sidering C much bigger than any 4, 4 . Then, for
instance

a(2) —a(z') = C if 2g {r(.}and z'C{(l ].
To make further progress, let us group the terms

of Eq. (817) into C terms and no-C terms, i.e. ,
terms which do or do not contain the factor C.

So, for instance, the C terms of the numerator
are the ones for which

( 1)L(N( C-[Q» (Nh N )] (»9)
But the exponent of C must vanish if the deter-

minant is different from zero, because we need to
consider the case C

Hence, we require

Q, (N'. -N') =0

and, consequently, have

Consider the C part first:

Q g g( 1) (N(I C-(N(-N() g C-2(N -N I (N( NI-
f &f

f i&f

or
2'&2, z'g{(7,), and 2g{(I ),

2'&z, 2'C{r(], and 2C{r(.).
5((N,'- N*) -=r . (B20)

where N = g&N .
Equation (4. 2) follows, with the identification

Next, inside eachone of these two types of products,
we proceed to group terms with z and z belonging

to the same region {j},or to two different regions,
{i) and {j).

Let us call Sf and S,f the products of C terms
with s and 2 in the region {j]or the regions {iJ
and {jj, respectively. Analogously, let us call
Tf and T, f the similar products for the no-C terms.

The result of this process is that

deh„.h(e, e )=limIIS IIS,
~

IIT II T, ). (HldI
C m ( (&( ( J (&J

All the properties described in Sec. IV B can be
derived with the help of Eq. (B20). We note that
the difference of (N,' N') va-nishes if the operators
at k, and k, are two o's or two p. 's, whereas the
cases (o( p, „)and ((((o„)give (+1) and (-1), re-
spectively. We now sketch the derivation of Eq.
(4.9), the other basic result. Going back to Eq.
(818), with the condition I"= 0,

&X& = [detqk]
I' =g 7' i' g TIi'2 (B21)

where

«'&»«'& «

[~(k-k')] P [ (k-k')J
g, g'g C f+} g, g'g (f-} gQ g+}«'E i.f-}

(B22a)

T(2 =—F((egg = II [II(k k )
a'C(&+} agCf+}

(k —k' — ) ll [ (k —k')
acCg+} a'E Cc-};aeCf-}
a' gU-}

(B22b)

As stated in Ref. 21., we know that our &X& is never

negative. Because of this we need not keep factors
of (- 1) in either Eq. (B22) or (B23).

The expressions for E«. and I'«. ff. look very
impressive. However they are actually very simple
in structure. For F«, we obtain [see Eq. (II 2.10)]

F„„,, =F„..., =v'" r. r„'"(-o,,o...) . (B2M)

The terms I"«.ff. are best handled by a generaliza-
tion of the "contraction" method of D, Eqs.
(II 2. 15)-(II 2. 18).

Then we write

F..., =F..., =&on(o2, ~ & (B23a) (D, (1)D, ,(1 )'''D „(n)D „(n ))

F2,„,.=(I Ir„r, I(o2,o,, ) &o„-,a2, , I), (B23b)

F'.(., =vIrd-r.
I &o2(o.(&&o2( Ioa( &-(B23c)

so that for Ir, —r, .
I

much larger than a lattice
constant,

in terms of F«. and F«.((.. By setting (n —1)'=n,
one obtains the correlation function

(D„,(1) D„,, (1') ~ D„,(n —1) D„,(n'))

But, this last correlation function can also be
written directly. By equating these two expressions,
we get
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Ff(tiiO=F&itFtti jF«F&tJI (B24)

Notice that Eq. (II 2. 18) turns out to be just a
special case of our Eq. (B24).

This form for F«.ii. allow us to write (&) as

(B25a)

At this point we return to the original notation,
i. e. , form

(1), (1'), , (n), (~')

back to

and introduce P&
-—(- 1) "', which is (+ 1) or (- 1)

if i is even or odd, respectively.
The correlation function takes the form

1+f&g&N
(B25b)

Finally, by considering the case, )r, —r& )»lat-
tice const,

if y)=y)

const
if y. =-y, ,

(o o)
(B28)

E(1. (B25b) can be seen to be Et[. (4. 9).
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q(p„) = e (1 —[4 (pe) ) & v t) e" +e' + s (1+[c (p„)] '3 rt) e "s'v&,

(I3.14)

~e~&~-1
p~) =

«+ ~
- {I3.19

2e

g(j, k j', k')= e exp[ —y(pe)[ j-j' I +ipe(k —k')]
g 0

e(1-[4 (p,)l '»2)
X

—,
' (1+[e (p, )j-'3 ~, ) for j &j' . (I S.21)

The present calculation determines the correlation
function (X), save for a multiplicative factor of a power
of {-1). However, we are able to prove that for operators
on a line and I'= 0, (X) is never negative, by borrowing
results already obtained by B. Kaufman and L. Onsager
[Phys. Rev. 76, 1244 (1949)]. In their paper they calcu-
lated the average values (i&m@e) ~ (@m@e&, and (I'me) ~

The first one is nothing but

(cmpm pe+ &ce)

or

+(p,„qo,o. p. ) if e&m.

In both cases, (X)~ 0 for all temperatures [see their
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Eq. (13)]. More complicated correlations can be handled

by taking recourse to the factorization property of aver-
ages of b's, as explained in Hecht (Ref. 16). The other two

averages (Q~Q~) and (&~&~) provideuswithacross ch-eck

of our result that correlation functions with I'& 0 vanish
for infinitesimal coupling strength along the line.

See the discussion in Ref. 1, immediately below Eq.
(II 2.6). Incidentally, this equation is misprinted; it

should read

e(p, )= t-(Ae'~3-1.)/(A-e' )]' '.
Also, the operators 0 of this reference are located on the

y axis, as indicated by their coordinates (0, k) and not
on the x axis as stated in the text.

See, for instance, N. I. Achieser, Theory of approxi-
mation (Ungar, New York, 1956), p. 19.

PHYSICAL RE VIE W 8 VOLUME 3, NUM BE R 11 1 JUNE 1971

Fluctuations and Physical Properties of the Two-Dimensional Crystal L;&t tice

Y. Imry*
Department of Physics and astronomy, tel-aviv University, Ramat-aviv, Israel

L. Gunther*
Department of Physics, Tufts University, ~edford, Massachusetts 02155

and Department of Physics and astronomy, Tel-aviv University, &amat-aviv, Israel
(Received 1 October 1970)

The properties of finite, but large, two-dimensional crystal lattices are discussed in the

light of the lack of long-range order. We confirm, with qualifications, the. important basic re-
sult that the susceptibility diverges below a critical temperature. The details of our previous

paper on Bragg peaks in scattering from the two-dimensional lattice are presented and the be-
havior of the dynamic structure factor S(k, cu) about the peaks is analyzed. The lattice is shown

to produce a Mossbauer peak with a non-Lorentzian line shape but with a Mossbauer strength
of the same order of magnitude as that of the three-dimensional lattice. Finally, it is argued
that finite phonon lifetimes would affect our results quantit tively but not qualitatively.

I. INTRODUCTION

The subject of long-range order in various one-
and two-dimensional (2-d) systems has recently
become a matter of great interest. There exist
2-d systems which possess long-range order, nota-
bly the Ising and probably the anisotropic Heisen-
berg models. On the other hand, we have many
examples of 2-d systems for which long-range order
can be rigorously shown not to exist, ' for example,
the isotropic Heisenberg model, a Bose condensate,
electron pair superconductivity, and a crystallinea
lattice. However, there is an increasing number of
indications ' that these last systems exhibit a va-
riety of properties not too different from those
characterising the three-dimensional (3-d) ordered
analogs.

The reason for the interest in 2-d systems of the
last type is that one would like to understand better
the connection between mathematical long- range
order and physical properties. Furthermore, it
may be hoped that a 2-d geometry may be a good
approximation for very thin layers and films and

for materials with rod structures, when interest
is focused on the motion perpendicular to the axis
of alignment.

The 2-d crystal offers a particularly simple ex-
ample. In the harmonic approximation it admits
of an exact solution, and may serve, as shown by
Jancovici, 6 as m example of a system with no long-
range order that still has an "infinite" susceptibil-
ity. It has also been observed that this nonordered
structure gives rise to Bragg-like peaks in the
x-ray structure factor, reminiscent of those ob-
tained in ordered lattice structures. The reason
for this effect is that the "divergence" in the mean-
square fluctuation in the position of an atom, which
leads to a vanishing order parameter, is caused by
long-wavelength phonons, thus not affecting the
short-range order. Related to this is the fact that
the correlation function falls off slowly, as l/x,
and not exponentially.

The case of x-ray scattering is particularly
simple because what is observed is the integral
over all frequencies of the dynamic structure fac-
tor S$, &), which is related to the equal-time cor-


