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We present our study of the dynamical susceptibility for a system of electrons in a narrow
energy band. The Hamiltonian of the system consists of single-particle energies of electrons
in the absence of interactions, the intra-atomic Coulomb interaction, and interatomic Coulomb
and exchange interactions. An approximate expression for the susceptibility is derived by
using the random-phase approximation. Instability of the paramagnetic state against the ferro-
and the antiferromagnetic states is discussed. Also presented is the study of the dynamical,
susceptibility for a system of electrons with strong intra-atomic interactions where the valid-
ity of the random-phase approximation is dubious. In this case, in addition to the conditions
for the paramagnetic instability against the ferro- and the antiferromagnetic states, we have
also discussed the spin-wave excitations.

I. INTRODUCTION

The dynamical susceptibility y(g, &u) of a metal is
a quantity of considerable interest because it can
be used to discuss a variety of problems': It de-
termines the cross section for inelastic scattering
of neutrons; its poles give the frequencies of the
spin waves; and the condition y. '(q, 0) = 0 gives the
criterion for the stability of magnetic phases. The
properties of X(q, &) for magnetic materials have

so far been discussed only in terms of the most
elementary models: The Heisenberg localized spin
system has been discussed by Marshall, by Elliott, 3

and by de Gennes4; the itinerant-electron model
based on the Hubbard Hamiltonian' has been dis-
cussed within the random-phase approximation
(RPA) by Izuyama et al. and by Doniach. ~ The
validity of RPA is suspect in the strongly correlated
systems. Recently Sakurai' and Hubbard and Jain
have gone beyond the RPA to treat the strongly cor-
related systems.

The Hubbard Hamiltonian takes into account only
the intra-atomic interaction. The effect of inclu-
sion of interatomic interactions on the Hubbard
Hamiltonian has been discussed by many authors. ~o-»
Englert and Antonoff' have considered the full
many-body Hamiltonian in a Bloch representation
and have obtained X(tl, &u) within the RPA. We
thought it worthwhile to investigate the dynamical
susceptibility for a Hamiltonian which takes into
account both intra- as well as interatomic interac-
tions.

In this paper, we obtain the dynamical suscepti-
bility for a model Hamiltonian which includes intra-
atomic Coulomb interaction as well as interatomic
Coulomb and exchange interactions between elec-
trons in a narrow energy band. The stability con-
ditions of magnetic states and the spin-wave dis-
persion relations are derived. We restrict our

analysis to cases where number of electrons per
atom n, & 1, since the cases n, &1 couM equivalent-
ly be treated in terms of holes in the band.

In Sec. II we write the Hamiltonian of the system
in the Wannier representation and give a brief sur-
vey of the Green's-function technique. In Sec. III,
we obtain the dynamical susceptibility using the
random-phase approximation. Instability of para-
magnetic state against ferro- and antiferx'omagnetic
states is discussed. In Sec. IV, we derive an ex-
pression for the dynamical susceptibility for Strong-
ly correlated systems and discuss the stability of
magnetic states and the spin-wave dispersion rela-
tions. In Sec. V, we summarize our conclusions.

II. HAMILTONIAN AND GREEN'8 FUNCTION

We consider a system of electrons in a band which
interact with one another via the Coulomb interac-
tion. The one-band Hamiltonian for the system in
the Wannier representation can be written in the
second-quantized form,

+= Zl &0+(g&yq+2 Z V(yg +@+yy~py~i +(g ) (l)Y
jgo Qhl; eq'

where

e„=fy,"(r) [-v'/2m+ V, (r)] y, (r)d'y,

l'ipse = 4~(r)4P&') I- -i
(

4a(r') et(r")d'~&'v',

where a~~, a„are the creation and annihilation op-
erators for an electron of spin 0 at the lattice site
i P,(r ) is .the Wannier wave function at the lattice
site i, V,(r ) is the periodic potential due to iona,
and —V'/2m is the 1dnetic energy of the electron.
Here and hereafter we use the units where I = 1.
V,», are, in general, four-center integrals which
are extremely difficult to compute. For narrow
energy bands three- and four-center integrals are
very small in comparison to two- and one-center

3901



3902 R. KISHO/@E AND S, . K. JGSHI

integrals. Therefore, we simplify. (1) by retaining
only one- and two-center integrals. Of all thy two-.
center integrals we keep only faro of t'hem n@rpely,
the interatomic Coulomb interaction V(//( and the
interatomic exchange interactjon V(/;J. Then the
Hamiltonian (1) can be, represented i' the form

H= Q e,./a, ,a/, +(I/2)Z n„n(
Qfy off

+2 ~ V /)l ~ 8/ +e ~ eT(/0( Q/ ~ ((( ~ ((/, (2)
cg;e(y' fg &ca '.

wher, e

I= V';«, V;~ = V];;;, &g = Vgg, n~=pj

Here we have assumed that V«= J, ,;= O. 7hroughout
this treatment we shall restricf ourselv|. s to nearest-
neighbor interatomic interactions, which is rea-
sonable in narrow energy bands. 'The pary, meters
I, t/', J, and E should be taken as phenorgegologjcael
quantities. In relating their, values to. Prpperties of
real solids, one should realize that these param-. .
eters contain contributions due to indirect inter@c-
tions involving other bands; for exa(mple, the Is)ter-. .
action between "magnetic" e)ection(s jn a m()tal js
screened by conduction electrons in q, higher ppp-
duction band.

The dynamical susceptibility of the systeln pan
be expressed in terms of double-time retarded
Green's function. A conventional definition of re-
tarded Green's function is'

«A(f); B) ) = -fe(f)([A(f), B].),
where 8(t). is the Heaviside unit stpp function, the
angular brackets ( ) denote a grand canonical en-
semble average, namely,

( O) Tre 8(H I He) Q/Tre- 8 (H - eHe )
9

where p, is the chemical potential, Ãe, is the total
electron number operator, p= 1/ks 7, kH is the-
Boltzmann constant, and T is the absolute tempera-
ture,
We have

A(f) e(H( A H
(Ht-

and [A, B]„=AB+qBA, )1 =+1 (whichever is more.
convenient). The Green's function (3) satisfies t])e
equation of motion'

(d« AiB»M= —&[A7 B]e)+«[AP B]-~B&&M ~i (4)

where the Fourier transform ((A; B))„is defined
by

&(A B)) =— «A(f);B}&e'"'dt .
2m

Thy dynamical susce)ptibility g.,(q, +) corre
sponding to a process with spin flip is given by

)(,(j,, (H) = - 2v (gpH&)'« s'(q);)(' (-q)»-

()) = - I),
where g is the Lande's splitting factor, p, ~ i9 the
Bohr magneton, N is the number qf atoms, and
spin-density operator 9)" (f ) is defined as

g'e'(q) = —Z'n„'((I), n'„-' (q) =atI~~), a"„,

&he Blotch operators g„, and a~, & are defined by

g —g-)/8$:
H

(t'R.,ke = . .]8 ~Q]fy 9

~-.)/EL e(k'R(
Q~ ---,) 8' g(fy. ~

gl. APEAK-$5TgA-ATOMIC-INTERACTION THEORY

/or )he s~e of comparison with the results of
the atgqng=intr@-atomic-interaction theory devel-
oped jn 8eq, Pf, it is desirable to investigate the
rgpults ()btained by applying the random-phase ap-
proximation which is justified only when the intra-
atqmic jeer, actionr is small as compared to the
bandwidth o(E«o.'). " To evaluate the dynamical
N)usceptibility )(„,(q, (()), we follow a procedure
similar to that of Izuyama et al, for the Hubbard
model. We first evaluate the retarded Green's
function

«'(4);s'-(- q)». = (I/P) Z;(( '(q);"-(-q))&. .
(9)

'/his retarded green's function may be obtained by
its equation of motion. For each term of the sum
on the rjghtt(-hand side of (9) we have

(( {{)(=„'(q)„n-'(- j))&„=—([)(*„(q),s'-(- q)] )

+&&[sl'(q), 0]; '-(-q))&. . (10)

For the. Hamiltonian (Q) the commutator [ng(q), H]
ppnsi8ts o& many term8 and a rigorous treatment
)s) pr()tubitively difficult, Accordingly, we retain
only those terms that can be transformed into a
form like g~s, s(b n),"-,'(q) and ignore the rest of them. 6

'@his approximation corresponds to the RPA. Fur-
ther, the chain of successive Qreen's functions is
cut off by the approximation

«~.-.~~.~f'(q);~' (- q)) ),
= &a„",ag, ) &(n), '(q); n' (-q)))„. (11)

In this approximation the equation of motion (10)
is reduced to the form

z((n„='(q); n,' (-q)))„=—([n„='(q), n' (-q)] &+ (), —te, ((
—(I+So) Z o &)("(0)&+ —2 (&j-,~ )I

—&I~ I,e)(((~f, ((I, )
(y g I

fy
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—p5 ('(;..((s „q(,,&t+ Z ('&, ;(~( ~(&) ((e'(i&; I'(-t&&&&.

+ —(I+J-)(&a-' a-.g-&ai- a-- )) Z «n„-'(a);n'(-q)&).

+ —.Z V&-, „.(&a„„a„-..) —&a„-'.,; a;.~ &)&&n„=:((I);n' (-(I)&). , (12)
yt

where &z, V'z, and Jg g,re defied Qy

~g

s»k'(a»-ag&
k

V
1 Q V s»(('(»»»-Ry&

s»&( (K» R» & (15)

Hereafter we shall assume that e»» = (1/Ã)g(, a(, = 0,
i.e. , we measure the energy from the middle of
the band gg. The quqntities Vg, gt; vary from
- 'Vo, - Zo to Vo, Jo inside a Brillouin zone. Hence,
one may expect the terms vrhicg cgptain V's and
8's under the summation sign to be quite smaQ in

comparison to othe@ terms. We neglect these
terms and hope that such an approximation will not
affect qualitatively ths nature of tt&e solutions, be-
cause these solutions involve a ji»lear corqbi»latio»)
of the Green's functions (&np(g); n' (- (I)))„for all
k. '3 By incorporating this approx'. matiop in Eq.
(12), we get

[~ -e„-+e„-,~+ (I+So) Z, o &n~(0))] &(n„='((I); n' (- (I)&)„

= (I/2»() ( [nj'( j), n' (- (I)] )

&(&(n '((I}; n' (-q) ) )

Dividing both sides of this equation by

((& —sf+a"„,", + (I+So) Z, a&n"(0)&,

and summing up over all wave vectors k we obtain
the Green's function &(n '((I); n' (- (I)) )„and hence
the dynamical susceptibility

where

I, (- „) p. &aS.a a'.; & &-ai.a;.&-
" —(0 —e(., +a„;q+ (I+Jo) g, o (n"(0))

An expression for the dynamics). susceptibility
similar to that of (16) has also been obtained by
Englert and Antonoff. '3 In the absence of inter-
atomic interactions, E(I. (16) reduces to that ob-

tained by Izuyama et al. 6 The averages &a»f„af,)
appearing in E(I. (IV) can be obtained from the

knowledge of the one-particle Green's function
(&a(.,„aI',&)„(&I= —1) . In the Appendix we have

shown that

(a"„,a&.„)=f (s&,+I (n ' '(0)) + Von(& —Z, &n"(0))) .
(18)

Here, no=/, &n"(0)& denotes the number of elec-
trons per atom and f((d) = (e~(" "'+1) ' is the Fermi
dis trlbutlon func tlon.

The denominator of the susceptibility (16) gives
the dispersion relations of spin waves and the con-
ditions for the stability of magnetic phases. Spin-
wave excitations have been discussed by Englert
and Antonoff'3 and Izuyama et al. 6 Recently, Penn'~

has discussed the stability of magnetic phase for
the Hubbard model in the self-consistent field ap-
proximation. Here, we shall discuss the effect of
ipferatomic interactions on the instability of the

paramagnetic state against the ferro- and the anti-
ferromagnetic states. The paramagnetic state is
unstable against the ferro- and antiferromagnetic
states when, respectively, the susceptibilities
X(0, 0) =)t,(0, 0) and y(Q, 0) = g, (Q, 0) in the para-
magnetic state diverge. Here, Q is half of the
smallest reciprocal-lattice vector. From Eqs.
(16)-(18), the susceptibilities y(0, 0) and y(Q, 0) are
given as

-g p»» 1(0, 0)
1+[(I+Z,)/X]1(0, 0) '

I'(0, 0) =- PQ„-f(e-„+ (I+ 2V, -Z,)-,'n,}
x[1-f(e„-+(I+ 2V, - Z,)-,'n,}j (21)

F(@ 0) g~ f(- o'e&, + (I+ 2V(& —Zo)n(&/2}
( )

~Q

In deriving E(ls. (20) and (22), we have made use
of the fact that &„;&=-&„-and Jg= —Jo, if e,&

and

efgg al e QOQzel 0 only when s and g are nearest-neigh-
bor lattice sites. The chemical potential p, in the
paramagnetic state is determined by
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~ = —Q f(e~+ (I+ 2Vo —Jo) —,no)
n 1 j. (23)

P =0.2
1.2

A. Instability of Paramagnetic State against
Ferromagnetic State

1. Zero Bands@i dth
0.8

For zero bandwidth &„-=0for all k, and hence
Eq. (23) reduces to 0.4

f((I+ 2 Vo —Jo) o no) = —,
'

no .

By substituting the value of the Fermi function
from Eq. (24) in Eq. (21), we get

I'(0, 0) = ——,
'

[PN(2 —no)no],

(24)

0.0
0,0

l

0.4 0.8 1.2

which on substituting in Eq. (19) gives the Curie-
Weiss law

X(0, 0) = C/(T —T,), (26)
where

C=Ng ps(2 —no)n /4ok~

is the Curie-Weiss constant and

T, = (I+ Jo)(2-no)no/4us

2. Finite J3andsoidth

At absolute zero of temperature, the Fermi
distribution function f(e) can be replaced by 8(p, —e).
By making use of the identity d8(o}/de —= 6(e) in

Eq. (19), the dynamical susceptibility y(0, 0) can
be obtained as

Ng lZ P(P ( +2Vo o}2 o)

1 —(I+ Jo)p(((( (I+ 2 Vo Jo}o "o)

where p((d) = (1/N) $I 6((d —e,") is the density of states
for the band oI. The denominator of Eq. (26) gives
the Stoner criterion' for the instability of the pa-
ramagnetic state

is the critical temperature at which the instability
of the paramagnetic state occurs. It should be
noted that both C and T, depend on the number of
electrons per atom n(). For no=1 and in the ab-
sence of interatomic interactions, T, reduces to a
value obtained by Morris and Cornwell. " In the
absence of intra-atomic interaction I, for one elec-
tron per atom, the value of T, is given by JP, =4/z,
where J (J=Jo/a) is the nearest-neighbor exchange
interaction and z is the number of nearest neigh-
bors. For sc, bcc, and fcc lattices, the values of

Jp, are 0.66, 0. 6, and 0. 33, respectively. These
values can be compared with the values 0. 5972,
0. 3963, and 0. 2492 obtained by high-temperature
power-series expansion of the susceptibility for
the spin- —,

' Heisenberg model. ' The values of
JP, obtained here are just double those obtained by
the molecular-field theory of the Heisenberg model.

FIG. 1. Plot of the critical temperature {y=4k&T~/I)
as a function of bandwidth {x=0'/I) for various ratios
p = Jo/I.

At finite temperatures, we restrict ourselves
to n, = 1, because in this case Eqs. (19), (21), and

(23) are considerably simplified. In fact, Eq, (23)
is satisfied for p, = —,

' (I+ 2Vo - Jo) and therefore Eq.
(19) reduces to

X(0, 0) = —g p.a N p(E) d
ds

d

c
1+ (r+z, ) p(~) ~ da) . (28)

df(e)

p(e) = 1/n if ——,
' n & e & —,

'
((

= 0 otherwise

For this density of states, Eq. (28) reduces to

(ga p.a N/c() tanh(-,' Pn)
1 —[(I+Jo)/oj tanh(-,' Po.}

The denominator of the right-hand side of Eq.
(30) gives the critical temperature

((.'/4k'
tanh '[o.'/(I+ Jo)]

'

(29)

(30)

(31)

In Fig. 1 we have shown the variation of 4kaT, /I
as a function of n/I for various values of Jo/I.

B. Instability of Paramagnetic State against
Antiferromagnetic State

1, Zero Ijandzoidth

It can readily be shown from Eqs. (22) and (24)
on expanding the Fermi distribution function at
e„"=0 by Taylor's series that for zero bandwidth,

r (Q, 0}= ——,'NPn, (2 -n,),

To evaluate Eq. (28), one has to choose a particular
form of the density of states p(e). For simplicity,
we choose a square density of states defined by

1 —(I+ Jo)p(p —(I+ 2Vo Jo) ,' no) & 0—. — (27) which, when substituted in Eq. (20), gives us
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X(Q, 0) = &I(T —T ),
where Tz= (I- Jo)no(2 —no)/4kB is the Noel temper-
ature. For one electron per atom T~ reduces to
a value obtained by Morris and Cronwell" in the
absence of interatomic interactions. If we compare
the Neel temperature T~ with the Curie tempera-
ture T, obtained in Sec. IIIA2, we see that for
positive Jo, Tc~ T„, and for negative ~o, T, & T„.
This result can only be obtained by the combined
effect of intra-atomic and interatomic exchange in-
teraction. Either of these two interactions alone
cannot give such type of behavior. This behavior
of the model suggests that perhaps the combined
effect of intra- as weIl as interatomic interactions
may be fruitful to explain the magnetic phase dia-
grams of the rare-earth elements. '

2. Eini te BandzvidtA;

We shall discuss the finite bandwidth case sep-
arately both at absolute zero of temperature and at
finite temperatures. At absolute zero of tempera-
ture, by replacing the Fermi distribution function
by a 8 function, the denominator of Eq. (20) gives
the condition for the paramagnetic instability as

x 2 o8( —of+ p, (I+2Vo Jo)~o "o) &

For a square density of states defined by (29), it
reduces to

r z 1)~+
n n I ln(1 —no) I

(33)

The sign of equality in (33) gives the boundary line
between para- and antiferromagnatic states. In
Fig. 2 we have plotted I/n vs no for various values
of Jo/n. In the region above the dashed curves,
antiferromagnetic states are more stable than the
paramagnetic states, while in the region below the
dashed curves, the paramagnetic states are more
stable than the antiferromagnetic states. We have
also shown by solid lines the boundary between the
para- and ferromagnetic states [from (27) for square
density of states the boundary line between para-
and ferromagnetic states is given by I/&= 1 —Zo/n].
The region above the solid lines corresponds to the
stability of ferromagnetic states against the para-
magnetic state, and in the region below the solid
lines the reverse holds true. For half-filled band
(no= 1), the paramagnetic state is always unstable
against ferro- or antiferromagnetic states when
1&J'o/o. & 0; for 0& Jo/@& 1 the Paramagnetic state
is more stable than both ferro- and antiferromag-
netic states when I/n &1 —Jo/n Thus, the p.redic-
tion of Penn' that for half-filled band the paramag-
netic state is not possible, no longer holds good

when we take interatomic interactions into account.
At finite temperatures, for the reasons given in

Sec. IIIA2, we restrict ourselves to the case
no= 1. From (20) the instability of the paramagnetic
state against the antiferromagnetic state is given
by

I Zo ~ tanho Pe„
r ~r

(34)

In the absence of interatomic interactions, this
inequality has recently been obtained by Langer
et al. ' with the help of a one-particle Green's func-
tion by assuming a two-sublattice model for the
antiferromagnetic system. For sc lattice they have
plotted the transition temperature as a function of
I (Jo = 0). From this curve, it is clear that if we
replace I by (I- Z~), then for each value of I the
transition temperature decreases for positive Jo
and increases for negative Jo.

IV. STRONG-INTRA-ATOMIC-INTERACTION THEORY

In this section we develop a theory when the intra-
atomic interaction J is very large in absolute mag-
nitude a,s compared to the interatomic couplings

V,&, and J,&. In Hamiltonian (2), I represents
the energy required to bring two electrons into the
same atomic state. Consequently, for sufficiently
large I(» I o

~& I 1 I V J I, I J ~& I ) such doubly occupied
atomic states cannot occur in the low-lying states
of the entire system except in virtual transitions.
It is well known that such transitions lead to re-
normalizations of the interactions in the system.
The transitions to doubly occupied atomic states,
which occur only in virtual processes, may be ac-
counted for by renormalizing the parameters E,&,

V,.&, and J,.&. Because of the exclusion of doubly
occupied states, the intra-atomic interactions
serve to reduce the phase space available to the
electronic system. In order to formulate this ef-
fect, we first represent the states that are avail-
able to the system as vectors in a Hilbert space
So. Correspondingly, the observables are repre-
sented by a set of operators Qo on So. We then take
account of the fact that the intra. -atomic interactions
exclude state vectors from a well-defined set in
So, which means that they confine the states to a
subspace S of So. Consequently, the observables
a,re now represented by operators Q on S. These
are related to the corresponding primitive opera-
tors Qo by the formula

Q =&Qo& (35)
where P is the projection operator for S. The alge-
bra of the set {Q]is quite different from that of
(Qo}. This difference represents the changes in
the properties of the system due to correlations
introduced by intra-atomic interactions. In other
words, the effect of these interactions are built into
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r
{y ~(y

~sty~ ~fr.'e'J+ L~E' PH' -k)3 ~fyg'+ ~ty-e' ~(t'-&)

[bk„bk... ],= [bk„bk g ],= 0, (36)

t
1 2

btei p(t ' ) ]- p b(k- k ' )ek bee)

In terms of the operators in the subspace S the
Hamiltonian (2) can he written

H= Zek b-„ebk, +NZKk vk v -k+NZJk8k ~ 8 „, (3V)

where
Z-„= —,

' [V(k) —J(k)], (33)

our formalism through the new algebra of the opera-
tors on the reduced Hilbert space S.

Let b-„„b-„'„ad &'&, b th operators in the sub-
space 8 corresponding to the operators ag„a~;, and
n&»„'&' in the space So. It can be shown that the opera-

ec'tors b-„„b„-'„and v&» satisfy the algebraic
relations'

r e-e ~ fy -{yl
~e(v(k) &

f+ v(k)

(40)

(4l)

~ (( Z'(q); p' (-q)». = —,& [vt'(q) p' (-q)] &

+&([pk'(q), fI]; v' (-q)))„.
For the Hamiltonian (3V), we have

(43)

Tile dynamical susceptihllity )( ~(q, (I)) 1S give)1 hy

X, (q, )=-(g)(( &)'« '(q); ' (-q)» . (43)

To evaluate h, (q, ~) we proceed in a manner simi-
lar to that adopted in Sec. III. We write the equa-
tion of motion for the Green's function

' (q); ' (- q))), [ " (q) = b'- . .b;. ],

[pk (q)i 0]- +~k) [bt+g, j) p(k+{I-k))]bt)ebk-e ~ k) V(k+'t-k)) bk) -ebf-e k1 ( 1) &fat)e

—4Z Jk, v' '(-k))bk, g, k) ebf, -4 2 JI;,v" (-k, )bk,{{k,, bf e
Ry

tbk+lebk e ~t) bk+'te bkl- e p{t1 k) + ~k) bk+'te bk)e p 1k1
%1

+ 2 Kg, b"„,debt, k, „,v' ' (k1)+4 Q Jk blk, t„bk, -k, pe-e(k)) —2 Q Jk, bf, g, b(f k, v" (k, )
~a

I

The right-hand side of the above equation contains
many terms so that a rigorous treatment is diffi-
cult. We retain only a few terms by making an
ansatz for the spin-density operator,

p"'(k) = p"'(0)6- +v"'(q) 0k (44)

and replacing the operators 5~,5,., which are
multiplied hy v' '(q) or v-'„'(q), by & b-„,b-„.) 6kk. 5„.
This approximation is very similar to the random-
phase approximation in the weak-intra-atomic-
interaction theory. In this approximation, the
equation of motion (43) becomes

(d« pf, '(q)' v' (-q)» =2 & I pk'(q), p" (-q)l &

+&kl) «~k'(q); P' (- q)»

+ Z « vk', (q); v' (q)))„, (45)

where
&q&=~-„(i-&p (0)&) -~;.~(i -& p"(o)&)

+41,Z. & v-(0)&,

H~,'=(ek, ,+4J;)&b't, , b-„,, &- (~k+4J, )&bk, bk, ) .
(47)

The first term on the right-hand side of Eq. (45) is

given by

([vj'(q), v' (-q)] )

4.0 ill l I I

l

i
1

30- li l

J0I/&~ 0.0

Jo/K 0.5

I

0.8 1.0
0 0 Jo/&~'l. 0

0.0 0.4

FIG. 2. Phase boundaries between different magnetic
states in the weak-interaction theory. Dashed curves
denote the phase boundaries between the para- and mti-
ferromagnetic states. Solid lines represent the boundary
between the para- and ferromagnetic states.
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=&b„,g bg, g ) —&t,„,b„,& —Q [&b„. , v"(k-k))b„",&

ky

—&bo, o p (k~ —k)bo, o &] .

The correlation function inside the square brackets
corresponds to the creation of two holes and two

electrons of the same spin simultaneously. We as-
sume that there is a very small probability of oc-
currence of such processes and we neglect these
terms. The equation of motion (45) takes the form

((o —Ajg)«~j, '(q); p' (- q)»
= (&5jvg-5jvg. & &5jv5ov&)/2v

(~;;/~)& && p„.-'(q); r' (- q)&). («)
When we divide both sides of the above equation

by ((o -Aj&) and sum of over k, we get the Green's
function (( v '(q); p' (- q))) „and hence the dynam-
ical susceptibility

N "o o)+A)",g

The averages &b~o, t)„",& can be obtained from the

knowledge of the one-particle Green's function

&(b~; fr„",)) (ri=+1). Recently, Richmond and
Sewell' have obtained this Green's function within
the approximations which we have used to derive
the dynamical susceptibility y .(q, (o). They ob-
tained

From Eq. (35) we have (Q) = (Q, ), where on the
left-hand side the ensemble average is taken over
the states in space So while on the right-hand side
the average is over the states in subspace S. To
compare the results of this section to the results
of weak-interaction theory, hereafter we shall re-
place the ensemble average of the operators in sub-
space S by the ensemble average of the operators
in space So.

In the limit of zero bandwidth, the dynamical
susceptibility (49) reduces to

X .( q, (d) =Z'u, o &.(r &n-(0) &/

[(Jo-J;)~. & "(0)&- ]

This is an expression which one obtains for a Hei-
senberg model under the random-phase approxi-
mation. It should be noted that the dynemical
susceptibility (16) obtained in the weak-intra-atomic-
interaction theory also reduces to (53) in the limit
of zero bandwidth Thus, in the zero -bandwidth

limit both weak- and strong-interaction theories
are equivalent.

For a system with a small number of electrons
(no«1) and 1J",1»o (r, Eq. (49) takes the form

(q g) — 2 op &al7+o-ao+o-& &al7+ajv&
-(o -&.+&'.,+ JoZ. a&n-(0)&

—(d -eg+e„„"+Jog,o&n"(0)&

and (52) becomes

&(5„-.; b';. »„= —(1 -& -' (0))) &a~a„;&=f(oo+2Vono —J()&n"(0))) . (55)

(v -v;O-(v "(0)))—RKvvv-2Z, vZ v(v-(0)))
~y

(50)

where vo=g, (v"(0)& is the number of electrons per
atom, From the poles of the Green's function (50),
the single -part&cle energies are given by

~;,=o„"(1-&v ' '(0))) +2K()v()+2Jo(rg (r(v"(0)) .
a

(51)

fn Eq. (51) the factor (1 —(v ' '(0))) represents a
"band narrowing" due to restrictions imposed on
the electronic motion by the exclusion of doubly oc-
cupied atomic states, while the terms 2K, v, and
2 Joe g, o &p.'o(0) ) represent additional contributions
to the energy of the electron due to interatomic
Coulomb and exchange interactions. When we sub-
stitute the value of the Green's function «b;, ; b„;»„
in Eq. (AS) we get the average as

&f)„-, f),",&
= (1 - (v ' '(0) &)f (e, (1 - &v

'-' (0))) + 2Ko vo

+ 2Jo(rZi, (r &v"(0)&) . (52)

Equations (54) and (55) are the same as Eqs. (16)
and (18) provided I+J; is replaced by J;. This
similarity between strong - and weak-intra-atomic-
interaction theories is very similar to that pointed
out by Kanamori. He has shown that for a system
of electrons interacting by strong intra- atomic in-
teraction, the random-phase approximation is good
provided the density of electrons is small and the
bare intra-atomic interaction is replaced by some
effective intra -atomic interaction.

From Eqs. (49) and (52) the static paramagnetic
susceptibilities y(00) and y(Q, 0) needed to discuss
the instability of the paramagnetic states against the
ferro- and the antiferromagnetic states, respec-
tively, are given by

X(OD) =Z'V') (& -'*-vv)'~ V v(O%)

(
1

1 —n + Q(f„"—J )r„-(00), (56)
n

where
r„-(00) =f (E„"(1— n)+ 2K n)—
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X[1 f(~„-(I--',n, )+2K,&,)], (57)

X(Q, o) =Z'Vs [4(2-no)11'(Q, o)

stable if p —2Kono &Jo(1-2np) but if p, —2Kono
+ Jp(1 2 n, ) the paramagnetic state may become
unstable for large values of density of states.

To be more specific, we shall discuss the in-
equality (61) for square density of states. In this
case, Eq. (60) gives the chemical potential

where

I'(Q, 0)=Q of( —ae„-(l--,'n )+2K n )/e„" . (59)

p = 2K, n, +-,' o.'(-,' n, —1),
hence the inequality (61) becomes

J,/o. &0. 5 .

(63)

(64)

The chemical potential p, is determined by

~f (&f, (1 - ~2 no) + 2KO no) ~

np
(so)

I+(V —2Kono Jo'p(V —-2KO&o)- o . (62)

For a small numbe"- of electrons per atom, the
Fermi level lies below the middle of the band ~p,
(i.e. , p (2Kono)); therefore inequality (62) can be
satisfied for the high density' of states at the bottom
of band if Jo & p 2K0Ftp GL' the other hand if Jp
& p. —2Kpnp, the inequality is never satisfied what-
ever may be the value of density of states.

(ii) For no = f the band is haU-filled, because in

that case Eq. (60) is satisfied for p= 2Kon, . For
a more than half-filled band (i. e. , rio &-,' or p
—2K, no &0), the paramagnetic state cannot be un-

A. Instability of Paramagnetic State against
Ferromagnetic States

At the absolute zero of temperature, the denom-
inator of the dynamical susceptibility [Eq. (56)]
gives the criterion for the instability of the para-
magnetic state:

I -no+[ad 2Kono Jo(1 ~noH p ~ -0 .p, —2Eonp
1-2 np

(61)

In the absence of interatomic interactions, the
inequality (61) has been derived recently by Sakuraia
and Hubbard and Jain in the limit of strong-intra-
atomic interaction. Sakurai has analyzed the in-
stability leading to the ferromagnetic state, and
has reached the following conclusions:

(i) The paramagnetic state is unstable for a sys-
tem with a small number of electrons if the density
of states at the bottom of the band is large enough
(for a nearly filled electron band, the high density
of states at the top of the band is required for the
instability) .

(ii) When the narrowed band is more than half-
filled (p & 0), the paramagnetic state is always more
stable than the ferromagnetic state.

In the presence of interatomic interactions both
the conclusions of Sakurai are modified.

(i) When the number of electrons per atom is
small (no «I) the inequality (61) reduces to

At finite temperatures for zero bandwidth, Eq.
(56) with the help of Eq. (60) gives the Curie-Weiss
law given by Eq. (25) with C=Ng psno/2ks and

T, = J,n, /2k~. When we compare the values of C
and T, with the values obtained in the weak-intra-
atomic-interactions theory for I= 0, we see that
both the Curie constant C and the Curie temperature
T, are enhanced in the strong-intra-atomic-inter-
action theory. Recently, a similar conclusion has
been reached by Mattuck who has shown that, in
the Hubbard model, correlation effects enhance the
critical temperature.

To study the instability of the paramagnetic state
for a finite bandwidth, we restrict our analysis to
the half-filled narrowed band (no= —, and p, = 2Kono).
From Eq. (56) the instability of the paramagnetic
state is given by

1+—Z (~„. -J,)(e"'&"+ I)-'~ 0 . (65)

For square density of states it gives the transition
temperature

T, =- —, n 4k~ tanh=- 2 1 3Q
3 0

(66)

B. Instability of Paramagnetic State against
Antiferromagnetic State

At the absolute zero of temperature from Eq.
(58), the condition for the instability of the para-
magnetic state is given by

1 —Bo + g (2 —no)JoE 0' d6 n(~)

&:8(p, —2Kono+0'E(1 -g np) ~ 0 .

For the square density of states it gives

—a «(~, —1) (1 - 2 n, ) In1 no

n 0, Sno —2

The boundary line, given by the equality sign in

(6V), between the para- and the antiferromagnetic
states is shown in Fig. 3. We have also shown the
line Jo/n = 0. 5 given by (64) which gives the bound-

This result is the same as the result (29) obtained
in the weak-interaction theory provided one replaces
n by —,

' o.'and (I+Jo) by —,J'o in Eq. (29).



E LEC TRON CORRE LATION IN FE RROMAGNE TISM. III. . . 3909

4.0

0.5
0.0-

FERROMAGNETISM

When we substitute the value of A,",from Eq. (46)
we get

(u, =((-„.;-e-„)(1- 3np)+ [Jp-3((-„+p:;.()] Z,o(n"(0)) .
(71)

For q=0, it gives
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FIG. 3. Phase boundaries between different magnetic
states in strong-interaction theory.

(d~+ A»» = 0,kq (70)

ary line between para- and ferromagnetic states.
For 0& Jp/o. & 0. 5, the paramagnetic state is stable
for all values of n0. This can be compared with the
result of the weak-interaction theory (for I= 0) where
the paramagnetic state is stable for 0& Jp/a & 1.0.

At finite temperatures for zero bandwidth, Eq.
(58) gives the Curie-Weiss law given by Eq. (32)
with C=g PpN np/2)'3p and TN= —Jpnp/2kp. A nega-
tive sign in the expression for the Neel temperature
shows that for antiferromagnetism to exist J0 must
be negative. When we compare T„with the T~ ob-
tained in weak-interaction theory for I= 0, we see
that, like the Curie temperature, the Neel tempera-
ture has also been enhanced because of strong cor-
relations. For finite bandwidth, we restrict our
analysis to the half-filled narrowed band (n, = —,).
In this case, instability condition takes the form

4J p tanh(3PE„)
(68)3N -„z.

where E.„=-, c~. Equation (68) reduces to Eq. (34)
if one replaces 3 Jp by I -Jp in Eq. (68) and E„- by

Thus, the results for the half-filled band, both
in weak-interaction theory (np= 1) and strong-inter-
action theory (np 3) are of the same type.

C. Spin-Wave Excitation

The dispersion relations for the spin waves are
determined by the poles of the dynamical suscepti-
bility, i. e. , from

w+

(69)

This equation has solutions corresponding to indi-
vidual modes, or the Stoner excitations, as well as
the spin-wave modes. Stoner excitations are given
by

,=(J,— )Z. ( "(o)) . (72)

It shows that if J0& 2n, there is no gap in the spec-
trum of Stoner excitations, and hence, in this re-
gion spin waves with infinite lifetime do not exist.
This is consistent with our previous conclusions for
the stability of the paramagnetic state against the
ferromagnetic state. We have shown that for square
density of states, the ferromagnetic state is un;-

stable for Jp/n & 0. 5. When Jp/o. & 0. 5, a gap in the
spectrum of Stoner excitations occurs at q = 0, and
for small values of q we get spin waves with infinite
lifetime. Let us assume that Jp» o./2, and u& satis-
fies the condition

Jpg, o(n"(0))»
I (&~ —&~ ) (1 —3np)I ~ &.

Under the above assumptions, for small q we get the
spin-wave dispersions from Eq. (69)

1 ~ g 2~=(J,-J,)(s', )+
0

x Z ((a'- a- ) + (af a- ))(q ~-)'p-
2M' (8')

x Q ((a-'.a-„)- (a-' - a- ))

x (q Vfe-„) +O(tI ), (V3)

where (Sq) =g,o (n"(0)). Here we have assumed that
For a small number of electrons per atom

(np «1), Eq. (V3) reduces to an expression obtained
within the random-phase approximation" if one re-
places Jp by (I+Jp) in the third t'erm on its right-
hand side.

V. CONCLUSIONS

We have discussed the dynamical susceptibility
for a model Hamiltonian which takes into account
the interatomic Coulomb and exchange interactions
over the Hubbard Hamiltonian. For the weak-in-
tra-atomic interaction we have obtained an expres-
sion for the dynamical susceptibility which is very
similar to that of Englert and Antonoff. ' It is found
that in the presence of the interatomic interactions,
the results of the Hubbard model are considerably
modified. For example, for the square density of
states at absolute zero according to the Hubbard
model in a half-filled band (np= 1), the paramagnetic
state is always unstable against the ferro- and the
antiferromagnetic states. In the presence of the in-
teratomic interactions, we find that it is possible
to have a paramagnetic ground state for Jgn & 0.
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At finite temperature for the zero bandwidth the
Curie-Weiss law is obtained. It is found that for
positive Jo the Curie temperature obtained from the
Hubbard model increases while the Neel tempera-
ture decreases. For negative Jo these conclusions
are reversed.

In the strong-intra-atomic-interaction theory we
have obtained an expression for the dynamical sus-
ceptibility which reduces to an expression obtained
in the weak-intra-atomic-interaction theory for
I= 0, when the density of electrons is small (np «1)
and J~» o./2. Here also the results of the Hubbard
model are modified. For example, at absolute zero
the Hubbard model predicts that for the square den-
sity of states the paramagnetic state is always more
stable than the ferro- and the antiferromagnetic
states. Here we find that for J,/n& 0. 5 the ferro-
magnetic state is stable for all values of no, for
0& Zo/n & 0. 5 the paramagnetic state is stable for all
values of no, and for J'0/n & 0 both the para- and
antiferromagnetic states are stable in the regions
shown in Fig. 3. Whatever may be the density of
states, the Hubbard model predicts that for no& 3,
the paramagnetic state is more stable than the fer-
romagnetic state. Here we find that the paramagnet-
ic state is unstable against the ferromagnetic states
for higher density of states if (p -2Konp&& tip(l ~&0).
For a small number of electrons, the Hubbard
model predicts that the paramagnetic state is un-
stable against the ferromagnetic, state if the density
of states at the bottom of the band is large. In the
presence of interatomic interactions, and if Jo
& (g -2K,n, ), the paramagnetic state is always
stable whatever may be the value of the density of
states. Finite-temperature theory shows that for
the zero-bandwidth case, Curie and weel tempera-
tures have higher values compared to the weak-in-
tra-atomic-interaction theory for I= 0. For the
square density of states and for a half-filled nar-
rowed band (no= ~ &, the expressions for Curie and
Weel temperatures come out to be very similar to
those obtained in weak-interaction theory for np-—1.
For Zp/u ~ 0. 5, spin-wave dispersion relations are
found to be very similar to those obtained in weak-
intra-atomic-interaction theory.

Thus we see that interatomic interactions play an
important role in the magnetic properties of the sys-
tem. Our treatment is approximate and qualita-
tive, b« it gives some insight into the effect of in-
teratomic interactions and reveals that in any com-
plete theory of magnetism, interatomic interactions
should not be neglected.
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In the Hartree-Fock approximation, the higher-
order Green's functions are decoupled as
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fa' "' "
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If we neglect the last term in the denominator, as
we have done in Sec. III, we get

With the help of the spectral theorem'

(A2)

(AS)

the average &s~g, a„;) can be expressed as

&a~l, a„-,) -f(eg+I(n ' '(0)) + Vono- Jo&n" (0))).
(A4)
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APPENDIX

The purpose of this Appendix is to evaluate the
average &a~; a„;& within the Hartree-Fock approxi-
mation. &a„, af, & can be obtained from the one-par-
ticle Green's function (&a„;; at,&)„(g=+ I). The equa-
tion of motion for this Green's function is
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Evidence from exact enumeration seriei i,s presented to support the hypothesis tha& the
functional form of spin-spin correlations for three-dimensional sero-fie'ld tsi+ fer'r'arndgnets
in their high-temperature critical region is independetit of1httidb Mid spin Hiaghi6iiie;

I. INTRODUCTION

There is strong evidence, both theo''etie81. and
experimental, 3 that the critical propel'ties Of a
system undergoing a thermodynamic phase transi-
tion depend crucially on both the Spatial dimeiei6ii=
ality of the system and the symmetry of the order-
ing in the ordered phase. 3 In or'hei' to deVe1.og h,

first-principles theory of the eeitical region, 0 is
important to know within these x'estx'ictibns, i. 6, ,
for fixed dimensionality and symmeti'y, ju(9t h0%
universal critical behavior is. 4

Are critical properties independent ok Such 'ice.
tails as spin magnitude and lattice type, or' are
they not'P Results based on exa.ct perturbation
series for magnetic models strongly suggest that
the critical exponents are independent of lattice
type. " The evidence that the exponents do not de-
pend on spin magnitude is somewhat weaker but
still convincing. '~ The logically next and Stronger'
hypothesis is that the functional forms of the equa-
tion of state and of the critical correlations are
universal, Recent series evidence suggests that
the eguation of state is lattice independent both
above and below T,.' We present below evidencS
that the critical correlations are universal With.

i'95pent tt) lattice tjjpe, Ah'd (v'e ihvesti'gate their
depeiidstlee oi lpiii rii'aghitutle;

Il; ((tioMENT-IIATlO TEST

.I& is gsneralll( believied that th'e critical spin-spin
d5i'delation functiori 'of the three-dimensional Ising
Nodal i' Eerd mnetic field has the spherically
iyinrnetrical scaling form'

I'(0, f') —= (SOS'-) —(S-„')(S'-)= (a/x)""D(xx), (1)

)vher'8 r= Ir [, the inverse correlation length K(T)
(f')=k8e", e =—1 —T,/T, rj and v are the conven-

tit)nally defined britica1 indices, and T„xand
a ar'i9 Ct)nstants kiiown to depend on both lattice type
and spih maghitude. We assume that (1) holds for
')'1'aidan aiid x small. 's This paper examines the
unIVersality of the function D(x= a~) for T & T,.

Only fox the fcc lattice and 8= —, are existing
iser'ie'i data geo'd enriugli to inf0i' D di'rectly. ' For
other situations ive pi obe D by examihing the spher-
ical moments u„=g;„ar"I'(r, T). As i -0, the cor'-
relation length becomes longer than any fixed lat-
tice spacing and one may convert the 'divergent part
of tht9 iitfii to an iiitegi'ai; U'sihIr; (i), One iinds"

Ir„(f)= 4v(1""U„rt "'""+(less-sihguiar' terms),


