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We present our study of the dynamical susceptibility for a system of electrons in a narrow
energy band. The Hamiltonian of the system consists of single-particle energies of electrons
in the absence of interactions, the intra-atomic Coulomb interaction, and interatomic Coulomb
and exchange interactions. An approximate expression for the susceptibility is derived by
using the random-phase approximation. Instability of the paramagnetic state against the ferro-
and the antiferromagnetic states is discussed. Also presented is the study of the dynamical
susceptibility for a system of electrons with strong intra-atomic interactions where the valid-
ity of the random-phase approximation is dubious. In this case, in addition to the conditions
for the paramagnetic instability against the ferro- and the antiferromagnetic states, we have

also discussed the spin-wave excitations.

I. INTRODUCTION

The dynamical susceptibility x(c'f, w) of a metal is
a quantity of considerable interest because it can
be used to discuss a variety of problems!: It de-
termines the cross section for inelastic scattering
of neutrons; its poles give the frequencies of the
spin waves; and the condition x"(a, 0)=0 gives the
criterion for the stability of magnetic phases. The
properties of x(('f, w) for magnetic materials have
so far been discussed only in terms of the most
elementary models: The Heisenberg localized spin
system has been discussed by Marshall, 2by Elliott, ®
and by de Gennes?; the itinerant-electron model
based on the Hubbard Hamiltonian® has been dis-
cussed within the random-phase approximation
(RPA) by Izuyama et al.® and by Doniach.” The
validity of RPA is suspect in the strongly correlated
systems. Recently Sakurai® and Hubbard and Jain®
have gone beyond the RPA to treat the strongly cor-
related systems.

The Hubbard Hamiltonian takes into account only
the intra-atomic interaction. The effect of inclu-
sion of interatomic interactions on the Hubbard
Hamiltonian has been discussed by many authors, 10~12
Englert and Antonoff'* have considered the full
many-body Hamiltonian in a Bloch representation
and have obtained X(q, w) within the RPA. We
thought it worthwhile to investigate the dynamical
susceptibility for a Hamiltonian which takes into
account both intra- as well as interatomic interac-
tions.

In this paper, we obtain the dynamical suscepti-
bility for a model Hamiltonian which includes intra-
atomic Coulomb interaction as well as interatomic
Coulomb and exchange interactions between elec-
trons in a narrow energy band. The stability con-
ditions of magnetic states and the spin-wave dis-
persion relations are derived. We restrict our

jeo

analysis to cases where number of electrons per
atom #n4<1, since the cases 7n,>1 could equivalent-
ly be treated in terms of holes in the band.

In Sec. II we write the Hamiltonian of the system
in the Wannier representation and give a brief sur-
vey of the Green’s-function technique. In Sec. III,
we obtain the dynamical susceptibility using the
random-phase approximation. Instability of para-
magnetic state against ferro- and antiferromagnetic
states is discussed. In Sec. IV, we derive an ex-
pression for the dynamical susceptibility for strong-
ly correlated systems and discuss the stability of
magnetic states and the spin-wave dispersion rela-
tions. In Sec. V, we summarize our conclusions,

II. HAMILTONIAN AND GREEN’S FUNCTION

We consider a system of electrons in a band which
interact with one another via the Coulomb interac-
tion. The one-band Hamiltonian for the system in
the Wannier representation can be written in the
second-quantized form,

t
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where a%;, a;, are the creation and annihilation op-
erators for an electron of spin ¢ at the lattice site
i. ¢,r) is the Wannier wave function at the lattice
site i, V,(T) is the periodic potential due to ions,
and ~Vv?%/2m is the kinetic energy of the electron.
Here and hereafter we use the units where 7=1.
Vym are, in general, four-center integrals which
are extremely difficult to compute. For narrow
energy bands three- and four-center integrals are
very small in comparison to two- and one-center
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integrals. Therefore, we simplify (1) by retaining
only one- and two-center integrals. Of all the two-
center integrals we keep only two of them namely,
the interatomic Coulomb interaction Vijj; and the
interatomic exchange interaction V. Then the
Hamiltonian (1) can be represented in the form

H=2 ¢;al a,,+(/2) 2 nyn; 4
ijo io

T
+2 E V”n,,njq +3 Z J”a,oaja. a,,:a” , (2)

ij;o0’ ij,oo'
where
_ _ _ _ ot
I=Viu V=V, Jij"ViJid, Nig=CigAig -

Here we have assumed that V;;=dJ 1i=0. Throughout
this treatment we shall restrict ourselves tonearest-
neighbor interatomic interactions, which is rea-
sonable in narrow energy bands. The parameters
1, V, J, and € should be taken as phenomenological
quantities. In relating their values to properties of
real solids, one should realize that these param-
eters contain contributions due to indirect interac-
tions involving other bands; for example, the inter-
action between “magnetic” electrons in a metal is
screened by conduction electrons in g higher con-
duction band. '

The dynamical suscept1b111ty of the system can
be expressed in terms of double-time retarded
Green’s function.® A conventional definition of re-
tarded Green’s function is'*

(A@®); B))=-i6(t)([A(),B],) , @)

where 6(#) is the Heaviside unit step function, the
angular brackets ( ) denote a grand canonical en-
semble average, namely,

<0> = Tre-B(H-uNe) O/Tre-ﬂ(ﬂfuNg) ,

where p is the chemical potent1a1 Ne is the total
electron number operator, 8= l/kB T, kp is the
Boltzmann constant, and T is the absolute tempera-
ture.

We have
A(t) =o't A g tHt |
and [ A, B],=AB+nBA, n=+1 (whichever is more
convenient). The Green s function (3) satisfies the
equation of motion'*
1
w((A;B)),=5=([4, Bl,) +(([4, H].;B)),, 4

where the Fourier transform ({(A; B)), is defined
by )

((A;B>>w=2_17r__/_“mj’<<A(t);B>)e“"’dt. (5)
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The dynamical susceptibility x_,(q, w) corre-

sponding to a process with spin flip is given by®

)= =21 (guaN2{{( ™ (Q) ;" (=) -y
(77 == 1) ) (6)

where g is the Lande’s splitting factor, uj is the
Bohr magneton, N is the number of atoms, and
spin-density operator #°* () is defined as

Xai‘(a’ @

- 1 \ -
nw'(q)=ﬁ§ n’EG (Q)’ nm’ (q) a(k-hq)a Aige (7)

The Bloch operators a,, and a},. are defined by

. _az- -k R
A =N"V2Y gmieR; g
t oo pr-1/2 KR, ot
a’ia"N Z)i e May, .

HI. WEAK-INTRA-ATOMIC-INTERACTION THEORY

For the sake of comparison with the results of
the strong-intra-atomic-interaction theory devel-
oped in Sec, IV, it is desirable to investigate the
results obtained by applying the random-phase ap-
proximation which is justified only when the intra-
atomic interaction I is small as compared to the
bandwidth a(l<< @),!® To evaluate the dynamical
gusceptibility x_,(§, w), we follow a procedure
similar to that of Izuyama et al.® for the Hubbard
model. We first evaluate the retarded Green’s
function

(@) n*= (-

(8)

D u= /N Lz lng (@; (=D,

(9)
This retarded Green’s function may be obtained by
its equation of motion, For each term of the sum
on the right-hand side of (9) we have

(g (Q); v (=GN, = <[n;(q) nt (=)

+ [ﬂi*(ﬁ), Hl; n= (=), . (10)

For the Hamiltonian (2) the commutator [#§(§),H].
consists of many terms and a rigorous treatment

is prohibitively difficult. Accordingly, we retain
only those terms that can be transformed into a
form like @}, ag 73’ (Q) and ignore the rest of them.®
This approximation corresponds to the RPA. Fur-
ther, the chain of successive Green’s functions is
cut off by the approximation

(@i @z, nE (@D n (= D)) e

= (ad, @z ) O (@); (= DNy -+ (11)

In this approximation the equation of motion (10)
is reduced to the form

([nz*(q), n*~(= q)]>+( “€k+a—(I+Jo)ZU<n°°(0 >+— E(Jk'--—Jx'-mNE'G“;'c)
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V &

where €, Vi, and J; are defined by

cumd D etdi, @9
VU= l% Z{) V;e‘i"ﬁi'ﬁf’ , (14)
Ty= 3 D I e EED (15)

Hereafter we shall assume that €;;= (1/N)5; €;=0,
i.e., we measure the energy from the middle of
the band €;. The quantities Vg, J; vary from

- Vo, —dJoto Vy, Jyingide a Brillouin zone, Hence,
one may expect the terms which contain V’s and
J’s under the summation sign to be quite small in
comparison to other terms. We neglect these
terms and hope that such an approximation will not
affect qualitatively the nature of the solutions, be-
cause these solutions involve a linear combpination
of the Green’s functions {(n"(g); n**(-§))), for all
k.1 By incorporating this approximation in Eq.
(12), we get

[ — €5+ €g,q+ T+ ) 20 0®(0)) (3" (@); n* (=)
= (1/2m)( [ng*(Q), n*"(-D].)
+([+J) (@l a; ) - <am-ak+q-))
X (@ 2" (=D
Dividing both sides of this equation by
w—€pt+eq g+ I +dy) 23,0 n%(0)),

and summing up over all wave vectors k we obtain
the Green’s function ((z™(q); #n*"(-§))), and hence
the dynamical susceptibility

o2y,2 -
£°Up F-+(q’ w) (16)

x-+('(i, w)= 1+ [(I+Ja)/N] I‘-,.(a, w)’

where

1 1
(8.3 - 053 -) — (05 . 05 ,)
w = €g+eg g+ (T+Jdg) §,0(0*(0)) *
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An expression for the dynamical susceptibility
similar to that of (16) has also been obtained by
Englert and Antonoff.* In the absence of inter-
atomic interactions, Eq. (16) reduces to that ob-

I‘-+(31, w)= EE —

f

tained by Izuyama ef al.® The averages (af,az,)
appearing in Eq. (17) can be obtained from the
knowledge of the one-particle Green’s function
(age; af )y, (m==1). In the Appendix we have
shown that

(@lyaze) =f ez +I (0°(0)) + Vgno = Jo(n™(0)) .
(18)

Here, ny=Y,(n°(0)) denotes the number of elec-
trons per atom and f(w) = (€#“~*’ +1)™! is the Fermi
distribution function.

The denominator of the susceptibility (16) gives
the dispersion relations of spin waves and the con-
ditions for the stability of magnetic phases. Spin-
wave excitations have been discussed by Englert
and Antonoff'® and Izuyama et al.® Recently, Penn'®
has discussed the stability of magnetic phase for
the Hubbard model in the self-consistent field ap-
proximation. Here, we shall discuss the effect of
interatomic interactions on the instability of the
paramagnetic state against the ferro- and the anti-
ferromagnetic states. The paramagnetic state is
unstable against the ferro- and antiferromagnetic
states when, respectively, the suscept1b1l1t1es

X(0, 0) = x.,(0, 0) and x(Q, 0)= X..(Q, 0) in the para-
magnetic state diverge. Here, Q is half of the
smallest reciprocal-lattice vector. From Egs.
(16)-(18), the susceptibilities x(0, 0) and x(Q, 0) are
given as

-g%u (0, 0)

2 o
- _ -g K F(Q) 0)
x@, 0)= 1+[(J-JB;))/N]I"(Q, 0’ )
where

I'0,0)= - B2z fleg+ I+ 2V, = Jg) 370)

x[1 = fleg+ U+ 2V, = Jp) 51,)] (21)
and

I"(Q, )—*ZJ S(= o€g+ I+ 2V, = Jo)ny/2)

2€z

. (22)

In deriving Eqs (20) and (22), we have made use

of the fact that €;,5=— €z and Jz=—J, if €;; and

J;; are nonzero only when ¢ and j are nearest-neigh-
bor lattice sites. The chemical potential u in the
paramagnetic state is determined by
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1
zzo-:}—v"z‘)f(el'(+ (I+ ZVO"Jo)'é'no) . (23)
k
A. Instability of Paramagnetic State against

Ferromagnetic State

1. Zevo Bandwidth

For zero bandwidth €z=0 for all k, and hence
Eq. (23) reduces to

AU+2V, = dp) %”o) = %”o . (24)

By substituting the value of the Fermi function
from Eq. (24) in Eq. (21), we get

r(0,0)=- $[BN@2=ng)ng] ,

which on substituting in Eq. (19) gives the Curie-
Weiss law

x0,0=c/(T-1,), (25)

where
C=Ng2p.2 (2 = no)ng/Aky

is the Curie-Weiss constant and
T,= I+ do)(2 = ng)ng/4ky

is the critical temperature at which the instability
of the paramagnetic state occurs. It should be
noted that both C and T, depend on the number of
electrons per atom n;. For #;=1 and in the ab-
sence of interatomic interactions, T, reduces to a
value obtained by Morris and Cornwell.'” In the
absence of intra-atomic interaction I, for one elec~
tron per atom, the value of T, is given by J8,=4/z,
where J (J=dJy/z2) is the nearest-neighbor exchange
interaction and z is the number of nearest neigh~
bors. For sc, bce, and fcc lattices, the values of
JB, are 0.66, 0.5, and 0. 33, respectively. These
values can be compared with the values 0. 5972,

0. 3963, and 0. 2492 obtained by high-temperature
power-series expansion of the susceptibility for
the spin- Heisenberg model. '® The values of

JB, obtained here are just double those obtained by

the molecular-field theory of the Heisenberg model.

2. Finite Bandwidth

At absolute zero of temperature, the Fermi

distribution function f(¢) can be replaced by 6(u— €).

By making use of the identity d6(e)/de =6(¢) in
Eq. (19), the dynamical susceptibility x(0, 0) can
be obtained as

Ngzl)-g p(p‘— (I+2V0_J0)%n0) (26)
1- I+ dp)p(p = T+ 2Vy=Jo)3mg)

X(09 0) =

where p(w)= (1/N)3; 6(w - €;) is the density of states
for the band €;. The denominator of Eq. (26) gives
the Stoner criterion® for the instability of the pa-
ramagnetic state

1= (I+dg)pp = T+2Vy—dg)3me) <0 . (27)
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FIG. 1. Plot of the critical temperature (y=4%gT,/I)
as a function of bandwidth (x=a/I) for various ratios
p=dy/I.

At finite temperatures, we restrict ourselves
to ny=1, because in this case Egs. (19), (21), and
(23) are considerably simplified. Infact, Eq. (23)
is satisfied for u=3 (I +2V,~J;) and therefore Eq.
(19) reduces to

x(0,0)= —gzuipr(e) ddfT(e)dE/

(1+(I+J0)fp(€)ddfT(€)d€> . (28)

To evaluate Eq. (28), one has to choose a particular
form of the density of states p(e). For simplicity,
we choose a square density of states defined by
ple)=1/a if ~ta<e<iq
=0 otherwise . (29)

For this density of states, Eq. (28) reduces to

(g2 N/a) tanh (5 Ba)
1-[(+Jdy)/a]tanh(§ Ba)

x(0,0)= (30)

The denominator of the right-hand side of Eq.
(30) gives the critical temperature

a/4k

T =—2>L"8
¢~ tanh[a/(T+dy)] *

(31)
In Fig. 1 we have shown the variation of 4k, T /I
as a function of a/I for various values of J,/I.

B. Instability of Paramagnetic State against
Antiferromagnetic State

1. Zevo Bandwidth

It can readily be shown from Eqs. (22) and (24)
on expanding the Fermi distribution function at
€z=0 by Taylor’s series that for zero bandwidth,

T'@Q,0)=- iNpro(2-n)
which, when substituted in Eq. (20), gives us
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X@,0=Cc/(T-Ty), (32)

where Ty = (I - Jy)ny(2 - ny) /4ky is the Néel temper-
ature, For one electron per atom Ty reduces to

a value obtained by Morris and Cronwell” in the
absence of interatomic interactions. If we compare
the Néel temperature Ty with the Curie tempera-
ture T, obtained in Sec. IITA 2, we see that for
positive J,, T,> Ty, and for negative J,, T, < Ty.
This result can only be obtained by the combined
effect of intra-atomic and interatomic exchange in-
teraction., Either of these two interactions alone
cannot give such type of behavior. This behavior
of the model suggests that perhaps the combined
effect of intra- as well as interatomic interactions
may be fruitful to explain the magnetic phase dia-
grams of the rare-earth elements, 2

2. Finite Bandwidth

We shall discuss the finite bandwidth case sep-
arately both at absolute zero of temperature and at
finite temperatures. At absolute zero of tempera-
ture, by replacing the Fermi distribution function
by a 6 function, the denominator of Eq. (20) gives
the condition for the paramagnetic instability as

1-12% f 4 2E)
2 c

X5 00(=0€+ p— (I+2Vy~do)3m)<0 .
[

For a square density of states defined by (29), it
reduces to

I_d, 1

2 o’ IIn(1 = n,) | 33)

The sign of equality in (33) gives the boundary line
between para- and antiferromagnatic states. In
Fig. 2 we have plotted I/a vs n, for various values
of J,/a. In the region above the dashed curves,
antiferromagnetic states are more stable than the
paramagnetic states, while in the region below the
dashed curves, the paramagnetic states are more
stable than the antiferromagnetic states. We have
also shown by solid lines the boundary between the
para- and ferromagnetic states [from (27) for square
density of states the boundary line between para-
and ferromagnetic states is given by I/a=1-J,/a].
The region above the solid lines corresponds to the
stability of ferromagnetic states against the para-
magnetic state, and in the region below the solid
lines the reverse holds true. For half-filled band
(ny=1), the paramagnetic state is always unstable
against ferro- or antiferromagnetic states when
1<Jy/a<0; for 0<dJy/a<1 the paramagnetic state
is more stable than both ferro- and antiferromag-
netic states when I/a<1 - J,/a. Thus, the predic-
tion of Penn'® that for half-filled band the paramag-
netic state is not possible, no longer holds good

IN FERROMAGNETISM.

III. 3905

when we take interatomic interactions into account.
At finite temperatures, for the reasons given in

Sec. IITA 2, we restrict ourselves to the case

ny=1. From (20) the instability of the paramagnetic

state against the antiferromagnetic state is given

by

I-J, 5 tanh Be;

k<0. 4
2N i €3 0 (34)

1
In the absence of interatomic interactions, this
inequality has recently been obtained by Langer
et al.®! with the help of a one-particle Green’s func-
tion by assuming a two-sublattice model for the
antiferromagnetic system. For sc lattice they have
plotted the transition temperature as a function of
I (Jy=0). From this curve, it is clear that if we
replace I by (I-J,), then for each value of I the
transition temperature decreases for positive J
and increases for negative Jj.

IV. STRONG-INTRA-ATOMIC-INTERACTION THEORY

In this section we develop a theory when the intra-
atomic interaction I is very large in absolute mag-
nitude as compared to the interatomic couplings
€;;, Vi, and J;;. In Hamiltonian (2), I represents
the energy required to bring two electrons into the
same atomic state. Consequently, for sufficiently
large I(> | €1, V1, 1J;;]) such doubly occupied
atomic states cannot occur in the low-lying states
of the entire system except in virtual transitions.

It is well known that such transitions lead to re-
normalizations of the interactions in the system.
The transitions to doubly occupied atomic states,
which occur only in virtual processes, may be ac-
counted for by renormalizing the parameters €,
Vis and J;;. Because of the exclusion of doubly
occupied states, the intra-atomic interactions
serve to reduce the phase space available to the
electronic system. In order to formulate this ef-
fect, we first represent the states that are avail-
able to the system as vectors in a Hilbert space
Sy. Correspondingly, the observables are repre-
sented by a set of operators @, on S,. We then take
account of the fact that the intra-atomic interactions
exclude state vectors from a well-defined set in
Sp, which means that they confine the states to a
subspace S of S;,. Consequently, the observables
are now represented by operators @ on S. These
are related to the corresponding primitive opera-
tors @, by the formula

Q = PQOP ’ (35)
where P is the projection operator for S. The alge-
bra of the set {Q} is quite different from that of
{Qo}. This difference represents the changes in
the properties of the system due to correlations
introduced by intra-atomic interactions. In other
words, the effect of these interactions are built into
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3
our formalism through the new algebra of the opera- Jy=-31J), (39)
tors on the reduced Hilbert space S. v

Let bz, bi,, and v, be the operators in the sub- %=206"% (40)
space S corresponding to the operators ag,, aL,, and - -0 . OG-0
7%, in the jgpace So ,It can be shown that the opera- S=25 5’ ~io Ve - (41)

tors bg,, bm and v(;) satisfy the algebraic
relations'?

f
[biu; bgr g e ]+ =
[biua bgr g ]+

040,
[biw V(% ’2) ]- :N

- -‘0"0. 0 -0
[5Ek' -V bl gt + O gt V(B

b(i-i')vz 60171 .

In terms of the operators in the subspace S the
Hamiltonian (2) can be written

H=2)¢ b, b;u+N?K;v;v_;+NZ:Ii§;- Si, 67
ko '3

where

3=5[VER) -J®)], (38)

= (g, bh 10 1,20, (36)

- - T
[Vf+(Q); H]-: —;Eel'q [5i+§,i1 - V(Ead- ﬁa- 11)] bl’qo bi-o
1

‘42‘]1: °-o(-ky) bk+ﬁ+x1- b;-u—42 j*v (=

ky

The dynamical susceptibility x.,(q, w) is given by
X (G )= = (gus N @); v " (DN . (42)

To evaluate x. +('c’1, w) we proceed in a manner simi-
lar to that adopted in Sec. III. We write the equa-
tion of motion for the Green’s function

(< (q vt (- q>)wa [Vko (q bii+a)obic']7

0 OO (@59 D)V =5 (B @, v (- D)

+( (@, HL; v (), . (43)
For the Hamiltonian (37), we have

v 00 1 ) - 1,00 T 1 -
_.'EE €k1 V@ +3-%9 bfl -obf-o - 2;2 Kkl vl ("' kl) b{*a‘fl abk -0
1 101

t
1) bk'-c-&ri'lu bf -0

1 G -0 1 -o(T >
+ €kbk+3,b;_u —%}6;1 bivgo biy-o V- 1y +.§/ &, bi.igo biyo V ’(k, - k).
1 1

t - ~ > - + >
+220 Ky bigobingy oV MK d 2 Tt Drgo btaty o™ @) = 2 2 T, Bragobe, v ()
ky 1

The right-hand side of the above equation contains
many terms so that a rigorous treatment is diffi-

cult, We retain only a few terms by making an
ansatz for the spin-density operator,

i (E)=v"°'(0)5; 0+ 17" (Q) 0t,q » (44)

and replacing the operators b,wbk,u. whlch are

multiplied by " *°(q) or »§ (q), by BiDta) Ot Oog+

This approximation is very similar to the random-
phase approximation in the weak-intra-atomic-
interaction theory. In this approximation, the
equation of motion (43) becomes

(O (@ v DN e =5 (5@, D)

+ A5 (OFHQ; v (=D
"?]‘Vh 2 (v (@5 v (@), ,  (45)
ky

where
Agz=(1 = (u(0))) - €3,5(1 = (»™(0)))
+4J 20, (v°(0)y ,  (46)
B = (€gaq+ 453 (Bhaq - breg.) — (65 + 4T ) (B b -
(47)
The first term on the right-hand side of Eq. (45) is

k1
|
given by
- - - ->
([v3*(Q), v*" (=)
4.0 T T
m
it
Y
l\‘\\ \\
‘\I\ \
3.0F \“\ \ \ E
\
W\
\\\ \
Y
i \\ \\ \\V\‘\%_
H [N
g\e’\ o
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FIG. 2. Phase boundaries between different magnetic
states in the weak-interaction theory. Dashed curves
denote the phase boundaries between the para~ and anti-
ferromagnetic states. Solid lines represent the boundary
between the para- and ferromagnetic states.
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=<b{+ﬁ-bi+ﬁ-> - (bLbh) - Z; [(bE1+ VH(E _El)bfi-)
k

1
—(Bpaqr (K —K) bgpaq )]

The correlation function inside the square brackets
corresponds to the creation of two holes and two
electrons of the same spin simultaneously. We as-
sume that there is a very small probability of oc-
currence of such processes and we neglect these
terms. The equation of motion (45) takes the form

(w — A5 (@ v (= D
= (bhag-biag.) — (Bi.bz.))/ 21
+(Bn/N)ZJ<< HQ); =AM, . (48)

When we divide both sides of the above equation
by (w — Aj7) and sum of over k, we get the Green’s
function ( v™*(Q); »*"(-q))), and hence the dynam-
ical susceptibility

E <bi+a bk-fﬂ ) <bk+bj+>/

- _ 2
x-+(q) w)—gzua w+A

(“N ?;{14—) . (49)

The averages (b:—o b;,) can be obtained from the
knowledge of the one-particle Green’s function
{bgy 3 bE, ) o (M=+1). Recently, Richmond and
Sewell'® have obtained this Green’s function within
the approximations which we have used to derive
the dynamical susceptibility x_,(d, ). They ob-
tained

«bfa; b!k:u»w: Ziﬂ- (1 _(V~o‘~a(0»)/

(w — €1 = (o (0)) - 2K oo - 20D o<v°°(o») ,
(50)

where v,=3,(¥°(0)) is the number of electrons per
atom., From the poles of the Green’s function (50),
the single-particle energies are given by

wi=€g(l = (v"’"(O))) +2K v+ 2d 4027 0 (v°°(0)) .
(51)

In Eq. (51) the factor (1 -~{v~-?-°(0))) represents a
“band narrowing” due to restrictions imposed on
the electronic motion by the exclusion of doubly oc-
cupied atomic states, while the terms 2K,v, and
2J403,0(”(0)) represent additional contributions
to the energy of the electron due to interatomic
Coulomb and exchange interactions. When we sub-
stitute the value of the Green’s function ((bg, ; ,w))w
in Eq. (A3) we get the average as

(B, b5y ) = (1 =(w="-(0) )£ (€aL = (w == (O))) + 2Kquq
+2J0025,0(°0))) . (52)
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From Eq. (35) we have (@) =(Q,), where on the
left-hand side the ensemble average is taken over
the states in space S, while on the right-hand side
the average is over the states in subspace S. To
compare the results of this section to the results
of weak-interaction theory, hereafter we shall re-
place the ensemble average of the operators in sub-
space S by the ensemble average of the operators
in space S,.

In the limit of zero bandwidth, the dynamical
susceptibility (49) reduces to

X..(d, w)=g®ud 2, o™ (0))/
[(Jo=J3) 200 #°(0)) —w] . (53)

This is an expression which one obtains for a Hei-
senberg model under the random-phase approxi-
mation. 2 Tt should be noted that the dynamical
susceptibility (16) obtained in the weak-intra-atomic-
interaction theory also reduces to (53) in the limit
of zero bandwidth. Thus, in the zero-bandwidth
limit both weak- and strong-interaction theories
are equivalent.

For a system with a small number of electrons
(no<<1) and |J3] >3 a, Eq. (49) takes the form

- (ak ak ) (a ag > /
Xes W)=— tq-"k+q - k+ k+
(q, w)=-g? “B—;’ - W = €3 +€¢5,3+do 00 0(n”(0))

<a§*a-a'*Q-> (ag+a +>
(32 SEE T ) O

and (52) becomes

(dhy ag,) = fleg+2Vong = (™ (0))) . (55)

Equations (54) and (55) are the same as Egs. (16)
and (18) provided I +J; is replaced by J;. This
similarity between strong- and weak-intra-atomic-
interaction theories is very similar to that pointed
out by Kanamori.® He has shown that for a system
of electrons interacting by strong intra-atomic in-
teraction, the random-phase approximation is good
provided the density of electrons is small and the
bare intra-atomic interaction is replaced by some
effective intra-atomic interaction.

From Egs. (49) and (52) the static paramagnetic
susceptibilities x(00) and x(Q, 0) needed to discuss
the instability of the paramagnetic states against the
ferro- and the antiferromagnetic states, respec-
tively, are given by

x(00) = g2u2p(1 _gno@ r;(oo)/

(1 —ng+ BA ~ing)® 5 (e —JD)I‘;(OO)> , (56)
n

where
T3(00) = f(ez (1 —3ng) + 2K gng)
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X[1=f(eg (1 —%mg) +2Kony) ], (57)
and

K@, 0-¢%us 2-noIr(@, 0/

(1-7104-(-2—_-@92‘{0‘]:‘(5: 0)) s (58)

4N
where
T(Q, 0)=2 of (~oez (1 ~3np) + 2K np)/€; . (59)
ko
The chemical potential u is determined by
1
z—éﬂazﬁ%f(a;(l ~Lng) +2Kqny) . (60)

A. Instability of Paramagnetic State against
Ferromagnetic States

At the absolute zero of temperature, the denom-
inator of the dynamical susceptibility [Eq. (56)]
gives the criterion for the instability of the para-
magnetic state:

1 —n0+[IJ- "2K07L0"'J0(1 _%no)]p('&im> <0 .

1-3n,
(61)

In the absence of interatomic interactions, the
inequality (61) has been derived recently by Sakurai®
and Hubbard and Jain® in the limit of strong-intra-
atomic interaction. Sakurai has analyzed the in-
stability leading to the ferromagnetic state, and
has reached the following conclusions:

(i) The paramagnetic state is unstable for a sys-
tem with a small number of electrons if the density
of states at the bottom of the band is large enough
(for a nearly filled electron band, the high density
of states at the top of the band is required for the
instability).

(ii) When the narrowed band is more than half-
filled (u>0), the paramagnetic state is always more
stable than the ferromagnetic state.

In the presence of interatomic interactions both
the conclusions of Sakurai are modified.

(i) When the number of electrons per atom is
small (ny<<1) the inequality (61) reduces to

1+(u—2Kgng—do plp —2Kgng)s 0 . (62)

For a small number of ¢lectrons per atom, the
Fermi level lies below the middle of the band wg,
(i.e., w(2Kyn,)); therefore inequality (62) can be
satisfied for the high density of states at the bottom
of band if Jo > 0 — 2K g% On the other hand, if J,
<p —2Kyn,, the inequality is never satisfied what-
ever may be the value of density of states.

(ii) For 7y=% the band is haif-filled, because in
that case Eq. (60) is satisfied for u=2Kyn,. For
a more than half-filled band (i.e., #,>% or 4
- 2K yn,y >0), the paramagnetic state cannot be un-
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stable if u — 2Kyng >J(1 —3ny), but if p - 2K n,
<dJy(1 =5n,) the paramagnetic state may become
unstable for large values of density of states.

To be more specific, we shall discuss the in-
equality (61) for square density of states. In this
case, Eq. (60) gives the chemical potential

b=2Kong+z a(3ng ~1), (63)
hence the inequality (61) becomes
Jy/@>0.5 . (64)

At finite temperatures for zero bandwidth, Eq.
(56) with the help of Eq. (60) gives the Curie-Weiss
law given by Eq. (25) with C =Ng2u2n,/2kg and
T.= dyny/2kz. When we compare the values of C
and T, with the values obtained in the weak-intra-
atomic-interactions theory for I=0, we see that
both the Curie constant C and the Curie temperature
T, are enhanced in the strong-intra-atomic-inter-
action theory. Recently, a similar conclusion has
been reached by Mattuck® who has shown that, in
the Hubbard model, correlation effects enhance the
critical temperature.

To study the instability of the paramagnetic state
for a finite bandwidth, we restrict our analysis to
the half-filled narrowed band (y=% and u = 2Kyn,).
From Eq. (56) the instability of the paramagnetic
state is given by

48 28¢f -
1+—— 25 (6 =2 kP +1)%< 0 . (85)
3N
For square density of states it gives the transition
temperature

Zq
T,=% a/4 kp tanh™! (;3——) .

s Jo (66)

This result is the same as the result (29) obtained
in the weak-interaction theory provided one replaces
a by 2 @ and (I+J,) by 5 J,in Eq. (29).

B. Instability of Paramagnetic State against
Antiferromagnetic State

At the absolute zero of temperature from Eq.
(58), the condition for the instability of the para-
magnetic state is given by

1=y +3(2=nghd o2 oj déﬂé—i)

X0(u - 2Kgng+0€(l =3 ng)< 0 .
For the square density of states it gives

an.

% -1
o s(n"_l? (1-zng)In 3n -2

(67)

The boundary line, given by the equality sign in
(67), between the para- and the antiferromagnetic
states is shown in Fig. 3. We have also shown the
line Jy/a=0.5 given by (64) which gives the bound-
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FIG. 3. Phase boundaries between different magnetic

states in strong-interaction theory.

ary line between para- and ferromagnetic states.
For 0<Jy/a<0.5, the paramagnetic state is stable
for all values of ny. This can be compared with the
result of the weak-interaction theory (for I=0) where
the paramagnetic state is stable for 0<Jy/a< 1. 0.
At finite temperatures for zero bandwidth, Eq.
(58) gives the Curie-Weiss law given by Eq. (32)
with C=g?u2 N ny/2kp and Ty = —Jgng/2ks. A nega-
tive sign in the expression for the Néel temperature
shows that for antiferromagnetism to exist J, must
be negative. When we compare Ty with the T ob-
tained in weak-interaction theory for I=0, we see
that, like the Curie temperature, the Néel tempera-
ture has also been enhanced because of strong cor-
relations. For finite bandwidth, we restrict our
analysis to the half-filled narrowed band (n,=2).
In this case, instability condition takes the form

4J i 3 T
1-385 t—__Lanh(E{BE ) <o, (68)
k k

where E3=% €;. Equation (68) reduces to Eq. (34)
if one replaces §J, by I -J, in Eq. (68) and E; by
€3. Thus, the results for the half-filled band, both
in weak-interaction theory (ny=1) and strong-inter-
action theory (ny=3) are of the same type.

C. Spin-Wave Excitation

The dispersion relations for the spin waves are
determined by the poles of the dynamical suscepti-
bility, i.e., from

125 B
Ny

This equation has solutions corresponding to indi-

vidual modes, or the Stoner excitations, as well as

the spin-wave modes. Stoner excitations are given
by

-t
ws+A3z=0.

w+A (69)

(70)
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When we substitute the value ofAEf;from Eq. (46)
we get

ws= (€543 = €7) (1 = 2mg) + [T = 3(€5 + €349)] 2260 (*°(0)) .
(71)
For ¢=0, it gives

ws = (Jo = €g) 220 (n™(0)) .

It shows that if Jy< 3a, there is no gap in the spec-
trum of Stoner excitations, and hence, in this re-
gion spin waves with infinite lifetime do not exist.
This is consistent with our previous conclusions for
the stability of the paramagnetic state against the
ferromagnetic state. We have shown that for square
density of states, the ferromagnetic state is un-
stable for Jo/@<0.5. When Jo/a>0.5, a gap in the
spectrum of Stoner excitations occurs at =0, and
for small values of § we get spin waves with infinite
lifetime. Let us assume that J;> /2, and w satis-
fies the condition

JO an<noo(0 > > ‘ (i" —€k+q) (1 _%no)l sy We

Under the above assumptions, for small  we get the
spin-wave dispersions from Eq. (69)

(72)

w=(Jg~Jy) <SS>+12N(11;‘/)2
X 25 ((a£+a;+>+(ai_a~_))(a. Vi)aéi _(1 —ny/2)?
k

2NJo(S5)

x %) (af.az,) = (af, a0 )

k+q-

x (4 Vzep)*+0(g"), (73)
where (S§) =%,0 (#°°(0)). Here we have assumed that
€g=€_;. For a small number of electrons per atom
(ny<<1), Eq. (73) reduces to an expression obtained
within the random-phase approximation®® if one re-
places Jj by (I+J,) in the third term on its right-
hand side.

V. CONCLUSIONS

We have discussed the dynamical susceptibility
for a model Hamiltonian which takes into account
the interatomic Coulomb and exchange interactions
over the Hubbard Hamiltonian. For the weak-in-
tra-atomic interaction we have obtained an expres-
sion for the dynamical susceptibility which is very
similar to that of Englert and Antonoff.® It is found
that in the presence of the interatomic interactions,
the results of the Hubbard model are considerably
modified. For example, for the square density of
states at absolute zero according to the Hubbard
model in a half-filled band (ny,=1), the paramagnetic
state is always unstable against the ferro- and the
antiferromagnetic states. In the presence of the in-
teratomic interactions, we find that it is possible
to have a paramagnetic ground state for Jy/a > 0.
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At finite temperature for the zero bandwidth the
Curie-Weiss law is obtained. It is found that for
positive Jy the Curie temperature obtained from the
Hubbard model increases while the Néel tempera-
ture decreases. For negative J, these conclusions
are reversed.

In the strong-intra-atomic-interaction theory we
have obtained an expression for the dynamical sus-
ceptibility which reduces to an expression obtained
in the weak-intra-atomic-interaction theory for
I=0, when the density of electrons is small (#ny<1)
and J3 > a/2. Here also the results of the Hubbard
model are modified. For example, at absolute zero
the Hubbard model predicts that for the square den-
sity of states the paramagnetic state is always more
stable than the ferro- and the antiferromagnetic
states. Here we find that for J,/a> 0.5 the ferro-
magnetic state is stable for all values of ny, for
0<dJy/a< 0.5 the paramagnetic state is stable for all
values of ny, and for Jy/a< 0 both the para- and
antiferromagnetic states are stable in the regions
shown in Fig. 3. Whatever may be the density of
states, the Hubbard model predicts that for ny>%;
the paramagnetic state is more stable than the fer-
romagnetic state. Herewefind that the paramagnet-
ic state is unstable against the ferromagnetic states
for higher density of states if (u —2Kgng) < Jo(1 = #0).
For a small number of electrons, the Hubbard
model predicts that the paramagnetic state is un-
stable against the ferromagnetic state if the density
of states at the bottom of the band is large. In the
presence of interatomic interactions, and if J
< (u =2Kqn,), the paramagnetic state is always
stable whatever may be the value of the density of
states. Finite-temperature theory shows that for
the zero-bandwidth case, Curie and Néel tempera-
tures have higher values compared to the weak-in-
tra-atomic-interaction theory for I=0. For the
square density of states and for a half-filled nar-
rowed band (n,=%), the expressions for Curie and
Néel temperatures come out to be very similar to
those obtained in weak~interaction theory for ny=1.
For Jo/a>0.5, spin-wave dispersion relations are
found to be very similar to those obtained in weak-
intra-atomic-interaction theory.

Thus we see that interatomic interactions play an
important role in the magnetic properties of the sys-
tem. Our treatment is approximate and qualita-
tive, but it gives some insight into the effect of in-
teratomic interactions and reveals that in any com-
plete theory of magnetism, interatomic interactions
should not be neglected.
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APPENDIX

The purpose of this Appendix is to evaluate the
average (a{q, ag,) within the Hartree-Fock approxi-
mation. {a}, ag,) can be obtained from the one-par-
ticle Green’s function {{ag,: a}q))w (n=+1). The equa-
tion of motion for this Green’s function is

(w - E'k') «ai'cr; a}u»w
I

1
N ;%(..;2 «ai'l -0 Q5K Ky -0 Oy0s a}o» w

1
S
+

2 V’l «aEZ 01 ai’ﬁfz o af-lzl o aE a>> w

+

2= =2~

4

)
=
N‘
3
2

s o al
Ji'l «alir'g 0y O8-8y 0y Aiysicz05 afo»w . (A1)

+

NS

—_
»
[
Q
-

In the Hartree-Fock approximation, the higher-
order Green’s functions are decoupled as

((ab oy @gy0; O2yo; RN w7, o)) (02,2, Uagyos abodw

- Gflfs 6010 «afg o az'u»w]

In this approximation, the equation of motion (A1)
gives the Green’s function {{ag,; a'itu))w as

1/2m
<<a.k.0'; a}(’))w: w - 5;"1 (n-0.0(0)> - V0n0+J0(n°°(0)>

1 t
- X] kZI: Vf-kl <a;1 -0 akl-u>
If we neglect the last term in the denominator, as

we have done in Sec, III, we get

. B 1/2n .
(ago; abod)w=— €t— 1m0 °(0)) = Vong+don°°(0))

(A2)

With the help of the spectral theorem®
f ® <<Ay B» weie ~ <<A; B» waie dw,

(BA) =i lim

emot eﬂ'(w-u)+1

(A3)
the average (af,ag,) can be expressed as

(ab, ago) =f(eg +I{n™ " (0)) + Vong— Jofn° (0))).
(A4)
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Evidence from exact enumeration series is presented to support the_hypqthgsis that f’the )
functional form of spin-spin correlations for three-dimensional zei‘b-;ﬂéid fsing ferromagnets
in their high-temperature critical region is independent of lattice and spin maghitide:

I. INTRODUCTION

There is strong evidence, both theoretical! and
experimental, ? that the critical properties of a
system undergoing a thermodynamic phase transi-
tion depend crucially on both the spatial dimension=
ality of the system and the symmetry of the order=
ing in the ordered phase.?® In order to develop a
first-principles theory of the critical region, it is
important to know within these restrictions, i.é.,
for fixed dimensionality and symmetry, just how
universal critical behavior is,*

Are critical properties independent of such de-
tails as spin magnitude and lattice type, or are
they not? Results based on exact perturbation
series for magnetic models strongly suggest that
the critical exponents are independent of lattice
type.!® The evidence that the exponents do not de-
pend on spin magnitude is somewhat weaker but
still convincing.®'” The logically next and strohger
hypothesis is that the functional forms of the equa-
tion of state and of the critical correlations are
universal, Recent series evidence suggests that
the equation of state is lattice independent both
above and below 7,.® We present below evidence
that the critical correlations are universal with

respect to lattice type, and we ihvestigate their
depetidence on §pin maghitude.
il. MOMENT-RATIO TEST

It is generally believed that the critical spin-spin
¢orrelation function of the three-dimensional Ising
model ifi zero magnetic field has the spherically
gymmetrical sealing form®

D(F, T) =(S588) - (SEX(S%) = (@/M™"D(kn) , (1)

where 7= ||, the inverse correlation length «(T)
=¢4(1) = kye”, €=1=T,/T, 1 and v are the conven-
tionally defined! critical indices, and T,, k,, and

a aré constants known to depend on both lattice type
and spin magnitide, We assume that (1) holds for
¥ large and « small.!® This paper examines the
universality of the function D(x=k#) for T> T,.

Only for the fcc lattice and 5= § are existing
series data good enough to infer D directly.'® For
othetr situations we probe D by examihing the spher-
ical moments u, =3;,,7"T'(¥, T). As k=0, the cor-
relation length becomes longer than any fixed lat-
tice spacing and one may econvért the divergent part
of the su to an integral. Using (1), one finds!

1, () = d1at* Uk 4 (less-sihgular terms),  (2)



