
SURFACE EFFECTS IN MAGNETIC CRYSTALS 3895

from a microscopic theory of the semi-infinite
ferx'omagnet, for the case 6 =0.

Notice that if the surface is stiffened sufficiently
so that 1+4A & 0, then the denominator of Eg. (34)
becomes singular at a temperature T~" & T~. The
molecular-field theory thus predicts that if the ex-
change in the surface is stronger than in the bulk,
magnetic ordering in the surface region will occur

in the temperature range Tc & T & 7.'c". For the
reasons discussed in Sec. III such a true phase
transition localized in the near vicinity of the sur-
face will most likely not occur in a real crystal, al-
though it is possible for the correlation length ap-
propriate to the static correlation function
(S,(1)S,(1')) to become long compared to a lattice
constant in this situation.
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The exact solution of the modified potassium dihydrogen phosphate model of a ferroelectric,
previously considered in a direct field only, is now extended to include a staggered field. The
thermodynamic properties are found to remain unchanged with the addition of a staggered field;
namely, the specific heat vanishes below the transition temperature T~ and diverges as
(T- T~} above T,. Phasediagrams similar to those of an antiferroelectric in a direct field
are obtained. Behavior of the polarizations in both direct and staggered fields is also discussed.

I. INTRODUCTION

Considerable progress has been made in recent
years in solving a number of two-dimensional fer-
roelectric models. ' However, afewrelatedproblems
still remain unsolved. One of the outstanding un-
solved problems is the consideration of a, staggered
electric field. The staggered field is one which
reverses direction from site to site thus playing the
role of a direct field for an antiferroelectric. The
staggered field is important to consider because it
is the staggered polarization, for example, which
is analogous to the spontaneous magnetization in a
-ferromagnet. 2 Unfortunately, the method of solu-
tion, namely the use of the Bethe ansa tz, which
proves to be useful in solving the previous ferro-
electric models, is no longer applicable when a
staggered. field is present. A new approach is ob-
viously needed to attack this problem.

We wish to report in this paper that there exists
one model which is soluble by the existing method
even when a staggered field is present. This is

the modified potassium dihydrogen phosphate (KDP)
model of a ferroelectric considered by the present
author. " The modified KDP model is a special
case of the general ferroelectric model and is unique
in that its solution can be obtained independently by
the method of Pfaffians. There is considerable
interest in studying the behavior of a ferro-type
model with a staggered field. In the magnetic lan-
guage, e.g. , this is equivalent to considering an
antiferro-type model in a direct field. While the
modified KDP model lacks the inversion symmetry
with respect to the horizontal and vertical fields,
it is quite symmetric as far as the staggered field
is considered. Therefore the behavior of the mod-
ified KDP model with respect to the staggered field
is typical of that of a ferroelectric model. This
motivates our study since the Slater KDP model
with a staggered field has not been solved. It turns
out that the solubility of a ferroelectric model by
the Pfaffian method is unaffected by the introduction
of external, direct and staggered fields. Thus from
the observation by the present author that the par-
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F&G. 1. Five allowed arrow configurations of the modified
KDP model.

tition function of the antiferroelectric I model can
be evaluated by the Pfaffian method at a fixed tem-
perature 2TO, where To is the transition tempera. -
ture in zero field, Baxter' has extended the consid-
eration of the I' model at 2TO to include a. staggered
field. ' In this paper we consider once again the
modified KDP model and extend its solution to in-
clude a staggered field. The difference with
Baxter's analysis is that we are able to obtain the
solution at all temperatures.

II. SOLUTION

The model is described by placing arrows on the
bonds of a square lattice of N vertices. Only the
five types of arrow configurations shown in Fig. l
are allowed. For each vertex of type $, an energy

,e, is associated with the Boltzmann factor &u($)

= e ~'&. The problem is to evaluate the partition
function

c 1=1

where the summation is taken over all allowed con-
figurations c on the lattice and $, refers to the con-
figuration of the ith vertex.

With both direct field (h, v) and staggered field s,
the vertex energies are taken to be, for E ~ 0,

e, = h+ v, e, = e —(h —v), e, = e+ (h —v),

e, = &+ s, e, = &- s for sublattice A,

e, =&-s, e, =&+s for sublattice B.
We observe that the roles of the vertices of types
(5) and (6) are interchanged on sublattices A and
B (see Fig. I).

It is convenient to consider, for fixed e and s,
various regions in the (h, v) plane such that a given
type of vertex is favored within a region. With a
little algebra one finds the following regions:

region I: (h& —,'e, v& 2e, h+&ve —~sj):

ea favored or u~ &u3 u4 (u3u4t); (Sa)

region II: (h & —,
' e h v

e, favored or u, &u„u4, (u3u4t)'; (3b)

region ill: (v & —,'e, v —h &
~

s [):
e, favored or u4&uz, ~, (u,u4t)'; (3c)

These regions are shown in Fig. 2. Figure 2 re-
duces, of course, to Fig. 6 of Ref. 4 by taking
s=0.

A number of methods .exist for evaluating the
partition function Z in the present problem. We
choose here, as in Ref. 4, the method of dj.mews
which seems to be the most direct to us. '/he first
step is to construct a terminal dimer lattice I ~ by
expanding each vertex of the ferroej. eetric lattice
into a "city" in such a way that there is a one-to-
one correspondence bebveen the close-packed dimes
configurations on I ~ and the arrow configure. tions
on the ferroelectric lattice. Furthermore, if tQe
dimer activities are chosen to correctly generate
the corresponding Boltzmann factors, the partition
function Z is then identically the dimer generating
function on I; the latter is equal to a Pfaffian
which can be evaluated by standard means. 7 It was
shown in Ref. 4 that the dimer lattice can be prop-
erly set up provided the vertex weights satisfy the
rela, tion

e3+ e4 = e5+ e6

at each vertex. The crucial point here is that the
introduction of the staggered field does not violate
this condition [see Eq. (2}]. Consequently we may
proceed exactly as in Ref. 4 and eventually arrive
at the hexagonal dimes lattj. ce shown in Fig. 3.
However, because the roles of e, and e, are inter-
cha, nged from site to site on the ferroelectric lat-
tice, the resulting dimer lattice have activities uz
and u, along two of the principal axes, and u, /u4 and

2

FIG. 2. Four regions described by (3a)—(3d). Heavy
curves denote the phase boundaries at a nonzero tempera-
ture. Cross-hatched areas denote regions of completely
ordered state.
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u~~/u4 alternately along the third axis. The partition
function Z is now equal to the closed-packed dimer
generating function of this lattice.

To evaluate this dimer generating function, we
observe that a unit cell of the dimer lattice consists
of four lattice points as those enclosed by the dotted
lines in Fig. 3. It is then straightforward to follow

the standard procedure of Ref. 7 and obtain, in the
thermodynamic limit,

—PE=- lim —InZ= —,'(8ma) '
d&~ dplnD, (6)

N~ ~ + -ff

where

fy 2f—u4 e —u, /'u4

u, e" —u4 e —u, q'u4
&y 2/

u4 e-'"+ u', /u4 —u2e -$8

u, e-"+u', /u,

and I' is the free energy per vertex. The factor —,
'

on the right-hand side of (6) comes from the fact
that the hexagonal lattice contains twice as many
lattice points as the ferroelectric lattice. Finally,
on introducing (4) and (5) into (6), we obtain

—pE=(1/8m') J de J dylnl f(y) —uae"I, (&)

where

f(p) = (u4 e '+ u4t) (u4 e"+ u4t ') (8)

Equation (I) reduces to Eq. (5) of Ref. 4 by putting
the staggered fields s= 0 (or t= 1), as it should be.

The 8 integration in (7) can be carried out by
using the identity

f; «»I e+ &e"I =2~»m~{
1
el,

I
&I ) (9)

Now ! f(~) I
—

I f(p) I
—f(0); we are then led to the

following considerations:
(a) ua —f(0): It can be readily seen that uz~&f(0)

implies the inequalities (3a). Hence we are in re-
gion I and

—pE= (I/4m) J dp In(u~z) = —pe2, region I. (10a)

(b) ua —
l f(w) I: We have in this case

PE=(1—/4v) f'»lf(~)l dy (11)

Further performing the p integration, we find the
following cases:

= (13), (14)

More explicitly, the transition temperature T, is
given by

Km= X~+ Y~+ 2XYcosh(2Ps), region I

K~=X~+ Y —2XYcosh(2Ps), regions II, III

K2 = —X~ —Y2+ 2XY cosh(2Ps), region IV

where K = e44 X ea44 Y -=eaov

(15a)

(15b)

(15c)

III. PHASE DIAGRAMS

Before we proceed to evaluate the thermodynamic
quantities from the expression (14) of the free en-

4, 0 —4 —v, which satisfies [see (19d) below]

(12)

%e then find

pE=(1/«) J, l.
l f(y)l dp+(I/2m)(m C) In—(uz) .

(13)

I.et T, be the temperature defined by u2= f(0) in
region I and u24= f(m) in regions II, III, and IV. The
above results can be summarized as follows:

—pE= (10a), (10b), (10c), or (10d), T —T,

F= —Pes, region II .
(ii) u, —u, t:

—PE= —Pe4, region III .

(10b)

(10c)

(i) u, ~u4t:

It is seen that the inequality (3b) now holds. We
have the result

~~U~

2)

u', iu,
)

L
U+

)

Ug) Ua/Ug U a U$/Uy

)~
2

Ug Ug/Vy ) Ug

J
Uy

)

I

4

)

j(
(iii) u, /t —u, —u4t:

—pE= —p[-,'(e, + e4) —
I sl], region IV . (10d)

(c) i f(w) I
—u', —f(0): Since I f(y) I decreases

monotonically in p in 0 —p —
w, there exists a unique

pIG, 3, Hexagonal dimer lattice. A unit cell which
contains four lattice points is enclosed by the dotted
lines.
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I"IG. 4. Phase diagram in a staggered field for case (a),
6= v & 2& (schematic plot).

ergy, it is of interest to investigate the dependence
of T, on the staggered field s. The dependence can
be seen either from Eq. (15) or from Fig. 2. In
Fig. 2 the heavy curves show the phase boundaries
(15) at a given temperature T. These curves move
out as T increases and converges toward the region
boundaries as T decreases to zero. In fact, Eq.
(15) defines precisely T, = 0 on all region bound-
arises. The transition temperature vanishes on
these boundaries because two or more types of
vertices have the same lowest energy so that the
ground state is highly degenerate. As j s j in-
creases, region IV grows bigger and eventually
covers the entire (h, v} plane as Is I - ~. We have
the following situations to consider:

(a) h= v & —,'e: These are the points on the bound-
ary between regions II and III when s = 0. There-
fore for s=0we have T, =Q. For s0, these points
emerge as the interior points of region Dt'. It is
then easy to see from (15c) that T, increases with-
out limit with ls! . The phase diagram in this case
is shown in Fig. 4 where the phase boundary is
given by Eq. (15c). The boundary behaves as I s I

=(2P) ' e ~'~" " near the origin, and as sinhl Ps I

= —,
' for large I s I . The cross-hatched area, with

label A is locked in a completely ordered antiferro-
electric state [cf. Eq. (23a)].

(b) h=-,'e, v&-,'e (or h&-,'e, e=-,'e): These are
the points on the boundary of region I when s=0.
Therefore T, = 0 at s = 0. As I s l increases, region
IV appears and grows toward the point (8, v) under
consideration. It is then easy to see that T, re-
mains zero for Is[ —2~ —v. For jsl & —,'E —v, the
point (h, v) emerges in region IV for which the
ground state is antiferroelectric and T, begins to
increase. The phase diagram is therefore as shown
in Fig. 5. The phase boundary behaves as 1 s i

= ~e —v+ —,'ATln2 for small T.
(c) Points not on the region boundaries when s= 0:

For s = 0, these are interior points of region I, II,
or IO and the system undergoes a ferroelectric-

type transition at some nonzero transition tempera-
ture Tp As )sl increases from zero, region IV
grows in size and its boundaries sweep past a.ll
points in the (h, v) plane in succession. Consequent-

ly, the transition temperature first decreases and

reaches T, =O at lsl =sp&0 when the boundary of
region IV just reaches the point (h, n) under consid-
eration. Further increase of )s I would put this
point in region IV and T, begins to rise because an
antiferroelectric-type transition is now possible.
It is easy to see from (15) that the phase boundary
of the antiferroelectric region A behaves for small
7 as I s I

= so+ O(P ' e ~ ) for some 6 & 0. The phase
boundary of the ferroelectric region F behaves as
Is I = s, —O(P 'e ~ ) for small 7 and vanishes as
Is I =(To —T)'~2 near the transition temperature To

for s=0. These situations are shown in Fig. 6.
The phase diagrams, Figs. 4-6, are very similar

to those of the antiferroelectric E model in a direct
field. '

IV. THERMODYNAMICS

We now evaluate the relevant thermodynamic
quantities by differentiating PE. The derivative is
ea.sily computed for T& T,. If we assume

dQ)

dz c)Q) p z 1p2y 3

for derivative with respect to any variable ~, then

region I

region II

FIG. 5. Phase diagram in a staggered field for case (b),
h=y, v&2& (schematic plot).
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= C4q region III

= —,'(c, + c, +c), region lV .
For T & T„we note that the coefficient of dC/de in
(d/de)(-PE) is precisely zerobecause of (12). The
remaining integral can be evaluated to yield the
result

d
d, ( p-P) = —,(v- ~)+ ~2, (&i+ &3)+ ~2, (yi+ y3}

Cp

+ —(o', —o.,), T & T, . (18)
c

FIG. 7. A geometrica1
interpretation of the varia-
bles defined in {19a).

Here the angles &„&3, y„y, are defined by 4'= &i= &a=yi=y3=0 region I

Qg + y( = Qp + yp = C3

u4/slurb = u3t/sino),

u4/siny, = u, t '/sino. ', ,

(1Oa}

4 = &, = &, = m, y, = y~ = 0, region II

@=y&=yp, =m &, = &2=0, region III

i=y~= &, =m, 2=y, =0, regionIV .

T= T, (20)

with a geometrical interpretation given in Fig. 7.
The key step which leads from (13) to (18) uses the
identity

dq —„ lnIu, e'"+u, tI = —[c,y, +(C3+c}o.,],
(lob)

which can be derived by straightforward integration
and the introduction of the relation

We see that (d/de)(- PE) is continuous at T,. To
compute the energy per vertex, U, we take e= P,
c& = —e&, c= 2 I s I and obtain

8
U= (pF) = minfe„e3, e3, e —

I
s

I ],
=~(w- C')+ ~2(o' + o')+ ~2, (»+r3)e 8 ~e

tan —, (W+ a) = tan —,(A —a)~a-5 1

(a+ b
(lec)

Isl, (~~-~3), T —Tc (21)

Xg=Q3 .2

At T= T„we find

(lod)

So

for a triangle of two sides a, b opposite to respec-
tive angles A, B. Note that with these notations,
definition (12) of 4 can also be written as

We see that below 7, the system is locked in a com-
pletely ordered state. The specific heat per ver-
tex, C, vanishes identically below T, and diverges
at T,+. By direct differentiation one finds

C~(T-T,} '~' T=T,+ . (22)

These behaviors are the same as those in the ab-
sence of a staggered field. ' The phase transition
is of second order with an infinite specific heat.

To compute the direct polarizations P&, Pv and

the staggered polarization P„we take e = —Ph,

c3 c3 c4 1, C=0 for P„; e=-Pv, c3= c3= —c4= 1,
C=O for P» e=Ps, c3=C3 c4=0, c=2sgn(s) for
P,. Thus we obtain from (17) and (18)

T&Tc: PI =Pv=-&~

Ph = Pv 1& Ps= 0y

Pa=-Pv= —&~ Ps=0'

region I

region II

region III

-so

P„=P„=O, P, =sgn(s), regionIV

T&T,: P„= (1/w)(o. , + c33) —1,
P.= (I/ )(yves+ r3) —1

P.= (I/v)(» —r&) sgn(s) .
(23b)

FIG. 6. Phase diagram in a staggered field for case {c)
{schematic plot) .

The direct polarizations do not vanish in zero di-
rect field. This is because of the lack of the in-
version symmetry of the present model. The stag-
gered polarization P, does vanish at s = 0 and is
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to produce the antiferroelectric state of region IV
at a given T, P„ increases monotonically in v from
-1 to 1. For h&ho, however, the ordered state of
region IV with P„=0 appears when v is within a cer-
tain limited range. Therefore a discontinuity in the
slope appears at P„=O. The other curves in Fig.
8 can be similarly obtained. One must remember,
however, that the region boundaries move as s
changes. (vo has a similar meaning to ho. ) These
isotherms have vertical tangents at the points when
their slopes are discontinuous. From (23b), the
slope is found to diverge as I v —Vl ', [0- hj ' ~,

or Is —s) ' near the discontinuous points v, h, or
s. This behavior is also similar to that of the
regular ferroelectric models. '

FIG. 8. Polarization-versus-field relations (schematic
plots).

linear in s near 8 = 0 with a finite staggered polar-
izability. Therefore the situation is unlike the F
model at 2TO where the staggered polarizability
diverges like lnlsl. e

The dependence of the polarizations on the fields
can be seen from (23) or from Fig. 2. The heavy
curves in Fig. 2 are the phase boundaries at a fixed
temperature T. The polarizations within the cross-
hatched area are those given by (23a). It is then

easy to construct the polarization-versus-field
curves as shown in Fig. &. These curves can be
most simply obtained from Fig. 2. For example,
for h& ho where ho is the minimum horizontal field

V. CONCLUSION

We have studied the behavior of the modified KDP
model in both direct and staggered fields. The
thermodynamic properties are found to be unchanged
by the inclusion of a nonzero staggered fieM. An

antiferroelectric ordered state results, however,
for sufficiently large staggered field. A particularly
interesting case is when

In this case the model has an antiferroelectric
ground state similar to that of the antiferroelec-
tric E model. The critical temperature is found

to be

e "= —,
' (3+ v'5) = 2. 618 034. . .
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