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Surface Effects in Magnetic Crystals near the Ordering Temperature*

D. L. Mills~t
Department of Theoretical I'hysics, Oxford University, Oxford, England

(Received 7 December 1970)

A form of the Landau-Ginsberg equations applicable to semi-infinite magnetic crystals is de-
rived from the molecular-field theory. We consider both the Heisenberg antiferromagnet and
the Heisenberg ferromagnet. We find simple analytic expressions that describe the tempera-
ture dependence of the order parameter in the surface region near the ordering temperature.
In both cases we find that the order parameter in the surface vanishes linearly with temperature
as the ordering temperature is approached from below. This result is in good agreement with
the temperature variation of the sublattice magnetization in the surface of antiferromagnetic
NiO inferred from the low-energy-electron-diffraction (LEED) data of I'almberg and co-workers,
for the entire range of temperatures studied (0.8Z'&& Z'& Tz). Wefindthat one cannot use the exist-
ing LEED data to determine the value of the exchange constants in the surface layer without a
measurement of the absolute value of the sublattice magnetization or measurements over a
wider range of temperatures. This conclusion differs from that reached in an earlier study
based on a numerical solution of the molecular-field equations. We also examine the behavior
of the static spin correlation function (S,Q)S,(1')) in the paramagnetic state, when the
sites 1 and/or 1' lie near the surface. We find that there shouldbe no magnetic critical
scattering of low-energy electrons from the surface, as the ordering temperature is approached
from above. The correlation length for spins in or near the surface remains the order of a
lattice constant, even at the ordering temperature for both the ferromagnet and the antiferro-
magnet.

I. INTRODUCTION

The effect of a surface on the excitation spec-
trum and the thermodynamic properties of the
Heisenberg ferromagnet and Heisenberg antiferro-
magnet has been discussed in a number of recent
papers. These investigations have been concerned
with the low-temperature regime, where spin-
wave theory is applicable. In the presence of the
surface, one finds a new branch of the excitation
spectrum associated with surface spin waves under
a variety of conditions. These are waves which

propagate parallel to the surface, but the spin mo-
tion associated with the mode is localized near
the surface. The mean spin deviation is found to
be larger near the surface than in the bulk, and
the specific heat of the crystal is enhanced by a
term proportional to the surface area. (If pinning
fields are present in the surface, then the mean
spin deviation near the surface and the specific
heat are depressed. ) Contributions to the change
in specific heat and in the mean spin deviation near
the surface come about because of the presence of
the surface waves and because the eigenfunctions
and frequency distribution of the bulk modes are
altered by the presence of the surface.

The purpose of this paper is to discuss the effect
of the surface on the properties of the Heisenberg
antiferromagnet and ferromagnet, when the ma-
terial is close to the ordering temperature. We
begin with the molecular-field theory applied to
the semi-infinite crystal placed in a static spatial-

ly varying magnetic field. From these equations
we derive a form of the Landau-Ginsberg equation
supplemented by a boundary condition at the sur-
face. This equation is used to study the dependence
of the magnetization on temperature and distance
from the surface for temperatures below the or-
dering temperature. We also present a discussion
of certain features of the response of the semi-
infinite material to an external magnetic field.
From this analysis, one can extract the form of
the static spin correlation function (S, (1)S, (1 ))
when 1 and/or 1' are near the surface. We present
a detailed discussion of the form of the theory for
a model of a semi-infinite Heisenberg antiferro-
magnet, with two sublattices in the surface layer.
We also give the equations that apply to the semi-
infinite ferromagnet, and we indicate how the re-
sults for the antiferromagnet may be applied to
this case by making the appropriate modifications
in the formulas.

For the antiferrom'agnetic geometry mentioned
above, we find that as the Neel temperature T„ is
approached from below, the sublattice magnetiza-
tion in the surface layer vanishes as T„—T. This
is in good accord with the behavior of the sublat-
tice magnetization inferred from low-energy-elec-
tron-diffraction (LEED) data on the antiferromag-
net NiO, as we shall see. The magnetization in
the surface of a ferromagnet is also predicted to
vanish linearly with the temperature as the Curie
temperature is approached from below. These
temperature dependences, which are appropriate
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FIG. 1. Temperature
dependence of the LEED
intensity associated with

Bragg scattering from the
antiferromagnet order pre-
sent in the surface of N'iO.

The data are taken from
Ref. 2. We also plot the
square root of the LEED
intensity as a function of

450 500 550 temperature.

to the regime T„—T«T„, are unaffected by the
softening of exchange constants in the surface
layer. If the exchange constants in the surface
layer are reduced, then the magnitude of the order
parameter at a given temperature is lowered, but
the temperature dependence remains unaffected.

DeWames and Wolfram'have also presented calcu-
lations of the temperature dependence of the sublattice
magnetization in the surface layer of an antiferromag-
net. It is difficult to compare our analytic approach
with their work, since they present their results
only in graphical form. Furthermore, no informa-
tion is supplied about the assumptions or techniques
employed in performing the molecular-field calcu-
lations. One expects the LEED intensity ILK»
associated with the antiferromagnetic Bragg scat-
tering to be proportional to the square of the sub-
lattice magnetization (S,) ],„„in the surface layer
when T & T„. DeWames and Wolfram present a,

series of curves that give the temperature depen-
dence of (8,) ),„„,throughout the complete temper-
ature range 0& T & T„for various values of the ex-
change constant in the surface layer. It is argued
by these authors that the qualitative shape of
(8,) l„,f as a function of temperature inferred from
the LEED data, can only be obtained if the exchange
constant in the surface layer is much smaller than
that appropriate to the bulk crystal. We reproduce
the temperature dependence of ILK» observed ex-
perimentally in NiQ in Fig. 1 of the present payer.

It is important to note that the data extends only
over a narrow temperature near T~. The Neel
temperature of NiO is 525 K, and the data extend
over the range 410-525 'K. If one examines the
theoretical results presented by DeWames and

Wolfram, one sees that in all cases considered
they find (8,)~],„„to vanish linearly as T-TN .
In particular, for the case where the exchange in
the surface is half that of the bulk, their plot of
(S,) l,„„appears to vary approximately in a linear
fashion with T over the entire range of tempera-
tures covered by the data. Qn the other hand, as
one can see from Fig. 1, the data strongly suggest
that I„E», and hence (8,) (,„„,has a slope that
vanishes as T- T„. Furthermore, the plot of
I«ED against temperature exhibits pronounced

curvature throughout the region examined experi-
mentally. Thus we feel that the theoretical re-
sults given by DeWames and Wolfram produce be-
havior of (S,)'I,„„near the Noel temperature that
appears to differ significantly from the data.

As mentioned above, we find that (S,) j,„„should
vanish as T„-T as T„ is approached from below.
The temperature dependence exhibited by (8,) (,„„
near T~ should be independent of the amount by
which the surface exchange is softened, although
the magnitude of (8,) l,„„atany temperature de-
creases with decreasing exchange in the surface
layer. Our theory predicts that the square root
of the LEEB intensity, ILEED, should thus vanish
linearly with T, as T„ is approached from below.
In Fig. 1 we have also plotted the experimental
values of ILE» against temperature. To within
graphical accuracy, we find ILEED is indeed pro-
portional to T„—T throughout the temperature
range studied experimentally. Since the experi-
mental data is confined to the range of tempera-
tures 0. ST~ & T& T„close to the Neel temperature,
it appears as if only the limiting behavior of
(8,) I,„„for small T„—T is observed. In view of
our earlier remarks, this means that one cannot
obtain information from the existing LEED data
about the exchange constants in the surface layer,
unless an absolute measurement of (8,) ),„„is
available, or the data is extended to a wider range
of temperatures. We feel that the parabolic shape
of the graph of IL«D against temperature observed
in the experiment on NiG is to be expected quite
generally, and is not a consequence of a special
numerical value assumed by the exchange constants
in the surface layer.

In Sec. 0 of the paper, we derive the form of the
Landau-Ginsberg equations and the boundary con-
dition on the order parameter appropriate to the
semi-infinite antiferromagnet, with a surface
layer that contains two sublattices, In Sec. III,
we apply the equations to the discussion of the tem-
perature dependence of the sublattice magnetiza-
tion in the surface layer of such a crystal, and to
its variation with distance from the surface. We
also calculate the static spin correlation function
(8, (1)8, (1')), and study its behavior when 1 adn/ ro
I are near the surface. We find that there shouldbe
no critical scattering of low-energy electrons from
the surface as the ordering temperature is ap-
proached from above since the static correlation
length between spins in or near the surface remains
the order of a lattice constant, even at the Neel
temperature. In Sec. IV, we exhibit the form of
the Landau-Ginsberg equations for the semi-infinite
ferromagnet. We indicate that the results of Sec.
III may also be applied to the ferromagnet, and
the response of the semi-infinite ferromagnet to
a uniform applied field is discussed for the case
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where the temperature is near the Curie tempera-
ture.

We stress that all of the results derived in this
paper assume the validity of the molecular-field
theory. The description of the material we obtain
is thus a very approximate one, and may break
down when T is very close to the ordering temper-
ature. The agreement between the temperature
dependence of the magnetization in the surface
layer of NiO inferred from the LEED data and the
present theory suggests that the description of the
surface properties of magnetic materials obtained
from the molecular-field theory provides a good
qualitative picture of the behavior of the surface
region.

II. LANDAUNINSBERG EQUATIONS AND BOUNDARY
CONDITIONS AT THE SURFACE

As stated in the preceding section, we shall
present a derivation of the form of the Landau-
Ginsberg equations and the boundary condition to
be applied to the order parameter at the surface
for a specific model of an antiferromagnetic crys-
tal. Consider an antiferromagnet constructed from
two interpenetrating fcc sublattices. The crystal
structure is thus taken to be the NaCl structure,
and we label the sublattice with spins directed up-
ward in the z direction as the A. sublattiee, with
the sublattice that contains spins directed down-

ward labeled the B sublattice. Each A spin in the
bulk of the crystal interacts with its six nearest
neighbors on the B sublattice via an isotropic Hei-
senberg exchange interaction J. The sign conven-
tion is such that J is positive when the interaction
has antiferromagnetic character. Next, we pre-
sume that the crystal has a (110) surface The sur. -
face layer thus consists of a face-centered square
lattice of A spins, and a similar lattice of 8 spins.
The spins in the surface layer are coupled by an
exchange interaction J, =J- ~ that differs from
the value appropriate to the bulk. Notice that we
choose a sign convention such that when M is
positive, the exchange in the surface layer is less
than that of the bulk.

Suppose a magnetic field of strength H„(1) is ap-
plied along the z direction to the site 1 of sublattice
A. We consider the general case where the (static)
applied field may vary from site to site. One may
compute the expectation value (S,"(I)) of the z com-
ponent of the spin from the molecular-field theory
by means of the following relation:

&s,"(i)) =ss, (-";"s' -
h s Z is,'((, tt)) l

3 3
(1)

We assume for the moment that the site 1 lies
well within the crystal. In Eq. (1), g)(,s is the
Lande g factor multiplied by the Bohr magneton,

Finally, in Eq. (1) the sum over 5 ranges over the
six B sites that form the nearest neighbors of the
A spin.

We introduce the reduced temperature

7 =T/T»

where the Noel temperature T„=2ZS (S+1) for the
present model. We also measure the magnetic
field in units of k~T„by introducing the dimension-
less quantity

h, (i) = (~) ./h. T.)If.(1) .
The order parameters for the A and B sublattices
are defined by the relations

i)„,, (i) =(S'„,, (i))/S .
Equation (1) may then be written

s„(i)=s, "' —
s s t Z s, (i+s)) . (3a)

We shall confine our attention to the case where
the disturbance induced by h„(l) varies slowly in

space, on the scale of the lattice constant. This
will be the ease for temperatures near the Neel
temperature T„. Thus we regard i)s (I) as a con-
tinuous function of l.and write

Z; il, (i+ a):—6q, (i)+a,'V'n, (i), (3b)

where ao is the distance between the A spin at 1 and
one of the nearest neighbors on the B sublattiee.
Equation (3a) then becomes

&h„(i) 3 3a(',
n (I)=B.

~

—" --,
( 1) n (I)-

(
'

)
V'n (I)

(4)
We now suppose the amplitude of the external

magnetic field and the disturbance q„,s (I) induced
by it are small in amplitude. Upon expanding the
Brillouin function in Eq. (4) in the power series
[Eq. (2b)] valid for small arguments, and retaining
only the terms first order in h~ (1) and V its, one
finds a Landau-Ginsberg equation of the form

L. 2 2 1
eaDV i)s(x)+ —rjs(x)+i)„(x) —Pi)s(x) = h~(x),(S+ 1)

7' 37.
(5a)

where p= & [S(S+1)+2]/(S+1) is a dimensionless
constant with a value near unity.

If we consider a spin on the B sublattice in the
bulk of the material, and we suppose the B sub-
lattice is perturbed by a magnetic field hs (x ) ap-

ka and T are Boltzmann's constant and the absolute
temperature, 8 is the spin of the magnetic ions,
and B,(x) is the Brillouin function

S, (x) = ( t ~ —) coth(S ~ -', )x ——coth(-', x), (Sh)

B, (x) = —,
' (S+ 1)(x——,', [S(S+1)+ z]x'+ ~ ~ }. (2b)
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plied externally, we find a second equation linking
'/i„(x) and r)s (x) to the external field:

of the sublattice magnetization of the semi-infinite
antiferromagnet near the ordering temperature.

—,
'

aopV'q„(x)+ —t)„(x)+ps (x)- Pr/„'(x)

-- hs (x) . (5b)

In order to apply Eqs. (5) to the semi-infinite
medium, one needs a boundary condition on the
functions p&, gB at the crystal surface. We pre-
sume the surface lies in the x-y plane, and that
the crystal occupies the half space x &0. Consider
the molecular field seen by a spin in the surface
layer on the A sublattice. If J'(6) is the stength
of the exchange coupling between this spin and its
neighbor on the 8 sublattice removed by the dis-
tance 6, one has

Z ns (i+6)J(6)
6

BgB 2 2 ao B ~B
2 2

5RB —44gB+ap + 1 6 ao~)) "B+ 2Bz z Bz ~ p'

where we define the parameter 6= bZ/J; and

V„= 8 /Bx2+ 8 /Byp Upo.n comparing this result
with Eq. (Sb), one sees that the Landau-Ginsberg
equations may be applied throughout the crystal,
including the surface layer, providing the bound-

ary condition

2 2

(1+4') 7is +ap 6 Vp Qs+ 2:ap
2 2 ao B~B BUB

6 Bz , o Bz , o

is imposed upon the solution. Since Eqs. (5) are
valid only when the order parameter varies slowly
over lengths the order of the lattice constant, the
terms on the left-hand side of the equation propor-
tional to V„qs and 8 7)s/Bs will be ignored. The
boundary condition then becomes

(1+4') 7)s I =o =ao BgB
Bz

If one considers the molecular field experienced
by a 8 spin in the surface, one finds the second
condition

III. APPLICATIONS OF THE THEORY

A. Spatial and Temperature Dependence of Magnetization
below Neel Temperature

Suppose that the temperature T & T// (7 & 1) and

also that no external magnetic fields are applied
to the system. Then h„(x)=ho(x)=0. Equations
(5) and the boundary condition exhibited in Eqs.
(6) admit a solution with

'/) „(x)= —gs(x) -=r/(x) .

This solution of the equations describes the anti-
ferromagnetic order present in the semi-infinite
crystal below T„. The function t)(x) satisfies the

homogeneous nonlinear equation

—', a', V2 q(x) + (I/r —1)q (x)- p/)
2 (x) = 0,

supplemented by the boundary condition, at z = 0,

(9)

Far from the surface, g(z) will be independent of
z and equal to the value g„deduced from Eq. (9)
with g independent of z:

(1 &)1/2/pl/2 (lo)

It is well known that the molecular-field theory
predicts that in the bulk crystal the order parame-
ter vanishes as (T„—T)' 2 as 2' approaches T„
from below.

We now write

n(2) = r/.f(s)

and measure distance in terms of the correlation
length $ =ap/[6(l —7')]' 2 by writing z = $y. Equa-
tions (6) and (9) then become

ap Bg

1+4~ Bz
'

We find, for T near T„, 7.=1. Also, in the absence
of an external field, 7)(x) will depend only on s.
Thus, Eq. (/) becomes

(1+4~) /Ixls=o =ao
Bz g p

(6b) 82f

, 2-+f(y) -f'(y)=0,
In the remaining sections of the paper, we ap-

ply Eqs. (5), supplemented by the boundary con-
ditions in Eqs. (6), to describe the behavior of
the semi-infinite antiferromagnet. Recall that
these equations are derived upon assuming that
the order parameters qz, gB are small compared
to unity and vary slowly in space over distances
the order of a lattice constant. Of course, the
principal assumption we have employed is that
molecular-field theory provides an accurate de-
scription of the temperature and spatial variation

where at y = 0,
ap 8

(1+4',)& By
'

It is not possible to obtain an exact solution of
Eq. (11)with the boundary condition f (y) 1 as
y - and also the boundary condition at y = 0 ex-
pressed by Eq. (12). However, an approximate
solution valid near the critical temperature can
be obtained. Near the critical temperature,
$»ap. Then, since one expects Bf/By to be the
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order of unity, one has

f(o) = a0 Sf 00
(1+4h) $ 8y

—= order of —« i.

Thus the function f (0) will become very small at

y =0, when T is near T„. We introduce the func-
tion f )(y) that satisfies Eq. (11) with the bound-

ary conditions

The exact solution of Eq. (11)with the boundary
condition of Eq. (12) may then be written

f(y) =f"'(y)+f"'(y),
where, for r near r„, f(1)(y) is small compared
to f )(y). When f "«f(0), f"'may be obtained
from the differential equation

B2 (1)f (I 3f(0)2)f(1) p
By

where
(0) pf (1)(p) 0 f ( ) f (1)(~)

(1+4a)& dy
(14)

In fact, if we are given the function f ' (y) and

only inquire about the value of the order parameter
in the surface layer, then this quantity is given
directly by Eq. (14) upon noting that f (0) =f' '(0)
yf")(0) =-f"'(0). Thus, to obtain this limited
amount of information, one need not solve Eq.
(13). It may be shown that

f(0)(y) =tanh(y/v2 ).

Thus, when T is near T„,

(, ) ao ))2 r„—r 1/0

/4 ()+44)) ()+44) ( )'„

The sublattice magnetization (S,) ],„„in the sur-
face is thus

(s,) ~,„„=sr/(0) = s))„f(")(0),
or

ass r„—r(')~- =WP(1, 4~) r (16)

This is the result referred to in Sec. I. For
temperatures near T„, the sublattice magnetiza-
tion in the surface is proportional to TN —T in the
molecular-field theory. If the exchange constants
in the surface layer are softened (4 &0), then

(S,) ),„„is reduced in value, but the temperature
dependence of (S,) (,„„is unaffected. As remarked
earlier, the LEED intensity is proportional to
(S,) [,„„below r//. From Fig. 1, one sees that
I'„/s0sn, and consequently (S,)0(,„„in NiO, are
proportional to T„—T for 0. 8T„& T& T~. The
parabolic form of I«ED as a function of temperature
is not a consequence of any particular value of the
exchange appropriate to the surface layer as argued
previously, 2 but is rather expected to be a general

feature of the temperature dependence of the LEED
intensity associated with Bragg scattering induced

by antiferromagnetic order in the crystal surface.
As remarked above, so long as only the limiting
behavior exhibited in Eq. (16) is observed, one

cannot obtain numerical values of the surface ex-
change without information about the absolute value
of (S,) (,„„,or data over a wider range of temper-
atures.

If the surface exchange is stiffened (/44& 0), then
one sees that when 4 is larger than & in magnitude,
the right-hand side of Eq. (16) predicts that

(S,) ),„„is negative; indeed, for b = ——,', the sur-
face magnetization is predicted to be infinite by
Eq. (16). One may show that when 4& —4, the
molecular-field theory predicts that the surface
region will order antiferromagnetically at a tem-
perature higher than the bulk Neel temperature
T„. As the temperature is lowered, the surface
region orders at a temperature r»" & r„; then,
at T„, the entire crystal orders, according to the
molecular-field theory. We shall see how this
feature enters the theory in Sec. IV. If h & —&,

the antiferromagnetic order in the region T„"& T
& T„ is confined to within one or two layers of
surface, i. e. , the order parameter decays to zero
with a characteristic length the order of the lattice
parameter a0. (However, if b is very close to
—4 in value, this characteristic length becomes
long compared to a0. This special situation is not

of practical interest. ) Since it is well known that
true antiferromagnetic ordering cannot occur in

two dimensions, it is doubtful that this surface
antiferromagnetism would occur in a real crystal.
The existence of this phase transition is most likely
an artifact of the molecular-field theory which

completely ignores the effect of fluctuations on the
phase transition. However, this result suggests
that if the surface exchange is appreciably larger
than the bulk exchange, then well above T„ there
may be long-range correlations between the spins
in the surface layer, while the bulk correlation
length remains the order of a0. This possibility
cannot be explored with the present theory however.

B. Spin Correlations above the Neel Temperature

In this section we calculate the form of the static
spin correlation function (S,(1')S,(1)) for the semi-
infinite antiferromagnet, within the framework of
the molecular-field theory developed in Sec. II.

The static correlation function will be computed
by employing an argument similar to the one util-
ized by Friedel and de Gennes3 intheir discussion
of the theory of spin-disorder scattering of conduc-
tion electrons in metals, and in a previous discus-
sion of the properties of the semi-infinite ferromag-
net. Imagine that the crystal is in thermal equilib-
rium at some temperature T& T„. Then the spin at
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site 1 is pinned a,long the z direction, so that
(S,(l)) =+S. Then the molecular-field theory is
employed to compute (S,(1'))I, where the sub-
script attached to the right-hand bracket denotes
that the expectation value of S,(l') is computed with
the spin at site pinned in the manner just described.
Then

[6(7.—I)]'~ . Equation (20) is easily solved by noting
that the presence of the surface does not destroy
translational invariance in the two directions paral-
lel to the surface. If x„denotes the component of
x in the plane parallel to the surface, then s(x; l)
is a function only of the combination x,} 1~~ Thus
we write

(S,(i') S,(i)) = S(S,(i')); = S'))(l' l)

where in the last statement we write

(17) s(x'1)= s (e l )e " " a

(2 P q„ i g:

For the antiferromagnet, a slightly more explicit
notation is required. Suppose we choose to pin in
the z direction a spin at the site 1 of the A sublat-
tice. Then we need to compute the pair of correla-
tion functions (S, (1')S,"(1)) and (S, (1')S,"(1)). Also
since we consider the properties of the semi-infin-
ite medium, it is convenient to replace 1 and 1' by
the combinations (lf, lg) (lg l~), where 1~, measures
the position of 1 in the plane parallel to the surface,
and /, measures the distance of the site 1 from the
surface. The correlation functions (S„' s (1')Ps (l))
are easily obtained from those of Eq. (17) by sym-
metry considerations.

If a spin on sublattice A is pinned in the + z direc-
tion, then from the point of view of molecular-field
theory, the system responds as if a magnetic field
of strength gp, BH~=+JS is applied at the site 1 of
the spin. In the continuum limit, such a field may
be represented by inserting into Eqs. (5) the driving
fields

h„(x)=[a/2(S+1)]6(x-l), h (x)=0 .

One easily obtains an equation for so„(e, l,) along
with the associated boundary condition. The solu-
tion is simply expressed in terms of the two quanti-
ties

I( „)=I-
I+4m+a, y

We find

sg„(e, l, )

(1 I'e 2"'~) e "" "', e& l, (22a)
~a

{ -(z) I e 2)'( e--)'(g-( ) 0&e&1 (22b)

To compute the static correlation functions defined
in Eq. (17), one needs the order parameters
p»(x, 1) and not simply s(x;1). However, )i„(x;1)
and ))s (x; 1) are related by the homogeneous Eq.
(18b). Thus from s(x;1) and Eq. (18b), one may de-
termine both ))„(x;1) and ))() (x, 1). We write

2

gA 8 (x& I) =
2 2 e lA, B (Qll& e& ig)

.d„ (~„-1„)

Since the order arises only from the presence of
the driving field when T & 7„, the terms in )) (x)
may be neglected in Eqs. (5). Thus the functions

))„s(x;l) satisfy

and we find

)i„(Q„;ei, ) =+ (~/2) s(i„(e, l,),
q, (Q„;sl, ) = —(1 —~/2) sq„(e, l, ) .

(23a)

(23b)

+~a('& v'))„(x; l)+ (I/7)))„(x; i)+))s(x; l) =0 .

Recall the boundary conditions at z =0:

(18b)

(I+4m) )„)(xs;1)=ao "'s (x; I) .

Introduce the "staggered magnetization"

s ( x; I) = ))„(x; 1) —))s (x; 1) .
Then s(x;1) satisfies (for r near unity)

—v's(x; i) + (1/&') s(x; 1) = a,6(x —I),
where, at a=0,

gS(1+46)s = ao—

(20)

We have introduced the correlation length $ = ao/

+a() V')), (x; l) + (1/~)))s (x; l)+ ))„(x;l)

=(@'6~)6(x-i), (18a)

The results exhibited in Eqs. (22) and (23) along
with the definition of the Fourier transforms allow

one to obtain the form of the static correlation
functions defined in Eq. (17). Since the form of
the Fourier transform is quite complex for general
values of 1 and 1', we consider two special cases.
We also indicate how, in these special limits, the
static correlation functions are related to be neu-
tron and LEED cross sections for magnetic scatter-
ing above the Neel temperature.

(i) Suppose 1 and 1' are both well inside the bulk
of the material. Then the terms in Eqs. (22) pro-
portional to e "'~ may be ignored. This approxima-
tion is valid provided both l, and E,

' refer to sites
that lie a distance much greater than the correla-
tion length f from the surface. In this limit, Eqs.
(22) reduce to simply

s@„(e,l,)=(a/2y) e "' "' .
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This result may be placed in a more conventional
form by taking the Fourier transform with respect
to z. Let

sy (z, l )= ' e'o~" '~'s(Q).dQ

2&

A short calculation gives

(-) a, ao&'

~"e.' 1 (e&)' '

where Q'= Q,', + Q,'. Noting that g'= a20/6(T —T„), one
has

go
3 1

6(T - T.) I+(e&P

From Eq. (24) one sees that the static correlation
functions for the semi-infinite crystal reduce to the
well-known Qrnstein-Zernicke form when l and l'

both lie a distance greater than the correlation
length $ from the surface.

The differential cross section per unit solid angle,
do/dQ, for the scattering of neutrons from the bulk
crystal is proportional to the quantity

S(q)=Eye'~' ''(S (i' )S,(1)) . (25)

When the correlation functions derived from Eq.
(24) are inserted into Eq. (25), one finds the Bragg
intensity for the scattering of neutrons in directions
close to the directions associated with antiferromag-
netic Bragg scattering below T„ is proportional to
s(Q), where q = G+Q and G is a reciprocal-lattice
vector of the antiferromagnetic crystal. Thus, as
T~ is approached from above, one observes very
strong critical scattering for wave-vector transfers
q near G since s(Q=O) diverges as T-TN from
above. Furthermore, the scattering intensity is
confined to a smaller and smaller solid angle
around the Bragg direction as T„ is approached
from above, since the correlation length $ becomes
infinite as T- T~. This is the mell-known magnetic
critical scattering that one observes in neutron ex-
periments as the temperature is lowered toward
the Neel temperature.

(ii) We next consider the case where l, =o. Sup-
pose that one of the two sites is situated in the crys-
tal surface itself. We shall let site l lie in the
surface by taking the limit I, 0 in Eq. (22). Then,
for z & 0, one has

s@„(z,O)=~ (1 —I")e "'

Consider the nature of the static correlations
between two spins situated within the surface layer.
From Eq. (17) and Eq. (23), when v is near unity
one has

(s,"'(&l, 0)s."(~,0))

e""' "~~ '"'s@ (O O) (27a)
d'Qii

2 (2&)'

e2S2 J2Q ~&a)) ' (i))- 1'„)
0 II

2 (2 )2 1 + 4g+ ~6(T T )1/2(] + q2~2)1/2

(27b)

The plus sign is chosen for (S, (I'„, 0)S,"(I„,0)),
the minus sign for (Se(«'„0)S,"(«„0)).

The function so„(0, 0) which forms the integrand
of Eq. (27) differs from the function s(Q) [Eq. (24)]
examined earlier in the discussion of spin correla-
tions in the bulk of the crystal in two very impor-
tant ways. First of all, as we have seen, as T- T„
the function s (Q) in Eq. (24) becomes singular at
Q =0. In contrast to this, sg„(0, 0) remains finite
at Q„=o, even when T= T„. Second, we have seen
that s(Q) becomes more and more sharply peaked
as a function of Q when T// is approached from
above. Even at T = T„ the function sg, (0, 0) remains
very broad, with no tendency to peak up at Q„= 0
when T„ is approached from above. This last
point may be appreciated by examining the form
of sg„when T= T„. One has

0
lim s@„(0,0) = (28)

Thus, considered as a function of Q„, sg„(0, 0) falls
to half-maximum when Q„=ao'(I + 4L). Hence, the
correlation length associated with the static correla-
tion functions (S,"'

(It„, 0) S,(I„,0)) is always the
order of a lattice constant, even at the Neel temper-
ature.

If one considers low-energy electron scattering
from the crystal and the incident beam interacts
only with the surface layer, then the differential
cross section per unit solid angle is proportional
to4

S(qo) =~ e "' " " (S («'i 0)S (~ti 0)) ~

The function S(qg) is readily related to spy(0, 0).
If q„=G„+Q~~ where Q„ is a reciprocal-lattice vec-
tor associated with the antiferromagnetic order in
the surface layer, then we have

s(q„) =s@„(0,0) . (29)

1+46,+ goy

This result may also be written

g2~- t(Q)) )»

d() & & I + 4g ~ ~6(T T )1/2 (1 + q2(2)l/2

(26)

Equation (29), considered in the light of the re-
marks concerning the properties of the function
s&

~ ~

(0 0) near T„, im pIies that th er e shouId be n o
magnetic critical scattering of low-energy electrons
from the crystal surface, as the Neel temperature
is approached from above. The magnetic scattering
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should be distributed over a large solid angle for
T above T~, with no pronounced narrowing in the
angular distribution, or strong enhancement in
magnitude as the temperature approaches T~ from
above.

Palmberg and collaborators have measured the
temperature dependence of the LEED intensity for
Bragg scattering from the surface NiO below T„,
as we have seen. These authors offer no comments
on whether or not critical scattering above T„ is
present.

More detailed studies of the magnetic scattering
near the Neel temperature should provide an ex-
tremely useful means of probing the nature of spin
correlations near the surface. It would be particu-
larly interesting to investigate the occurrence of
critical scattering as a, function of incident-beam
energy. When the electrons penetrate into the
crystal a distance large compared to $, they should
sample the spin fluctuations in the bulk, and critical
scattering will result when the diffracted beam
emerges near a direction associated with antiferro-
magnetic Bragg scattering from the bulk. Thus
the study of the dependence of the critical scattering
as a function of incident-electron energy provides,
in principle, a means of probing the spatial varia-
tion of the critical spin fluctuations near the sur-
face.

IV. LANDAU-GINZBURG THEORY OF SIMPLE
CUBIC FERROMAGNET

It is straightforward to derive the Landau-Gins-
burg equation and the boundary condition appropri-
ate to the semi-infinite ferromagnet by the tech-
nique described in Sec. II. For the simple cubic
ferromagnetic with a free (100) surface, the Landau-
Ginsburg equation and the boundary condition have
a form identical to Eqs. (7) and (8), provided an
inhomogeneous term is added to the right-hand side
of Eq. (7) if an external field is present. For a
ferromagnet, the order parameter is

&(I) = (S'(I))/S .

Then, upon carrying out the procedure of Sec. II,
we find for 7 = T/Tc near unity,

(a(')/ )V6'q(x) + (1 —7) q(x) —Pq'(x) = -', (S+ 1)h(x)
(30)

where h(x) is the externally applied field. The
boundary condition is again

q(a) = q„= —,'(S+1)[T,/(T —T,)]h, . (33)

From Eq. (33) one obtains the Curie-Weiss law

for the susceptibility of the extended ferromagnetic
crystal.

In the surface layer the response of the spins to
the external field is much weaker than the re-
sponse of the spins in the bulk, when the tempera-
ture is close to the Curie temperature. From Eq.
(32), one finds

face is less than in the bulk.
Upon comparing Eqs. (30) and (31)with Eqs.

(7) and (8), one sees that the magnetization in the
surfa, ce of the semi-infinite ferromagnet is also
described by the result exhibited in Eq. (16) for
the geometry considered here.

Also, the static spin correlation function

(S,(1')S,(I)) has precisely the same form as the
co»elation function (S,"(1')S,"(1)) for the semi-in-
finite antiferromagnet. Thus the discussion in
Sec. III concerning the behavior of (S,"(1')S,(1))
for the antiferromagnet may be applied to the ferro-
magnet without alteration. Just as in the case of
the semi-infinite antiferromagnet, there should be
no magnetic critical scattering of low-energy elec-
trons from the surface of the ferromagnet as the
Curie temperature is approached from above, pro-
vided the energy of the incident electrons is suffi-
ciently low that the penetration depth of the elec-
tron beam is small compared to the correlation
length $.

It is interesting to examine the response of the
semi-infinite ferromagnet to a uniform applied
field. Suppose T & Tc, and let h(x) = ho, indepen-
dent of x in Eq. (30). Then the p' term may be ne-
glected if only the linear response of the medium
is of interest. Furthermore, if the surface is in
the x-y plane, q(x) will depend only on a. In this
circumstance, we find

(S+ 1)h,T
3(T- Tc)

g]g 1+48
( ~ 4a+ v 6 [(r —7'~)/rc]"')

Far from the surface, where z is large compared
to the correlation length $,

(I+4a)q(x) ~g 0=a,—
c=0

(31)

where 6 = —bZ/Z is a, parameter that measures
the amount by which the exchange between spins
in the surface layer differs from the bulk value.
As above, 6 is positive if the exchange in the sur-

From Eq. (34), one sees that the magnetization
induced in the surface layer is smaller than that
in the bulk by a factor of (T —Tc)'~a, for T near
T~. A result of this form ha, s been derived earlier
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from a microscopic theory of the semi-infinite
ferx'omagnet, for the case 6 =0.

Notice that if the surface is stiffened sufficiently
so that 1+4A & 0, then the denominator of Eg. (34)
becomes singular at a temperature T~" & T~. The
molecular-field theory thus predicts that if the ex-
change in the surface is stronger than in the bulk,
magnetic ordering in the surface region will occur

in the temperature range Tc & T & 7.'c". For the
reasons discussed in Sec. III such a true phase
transition localized in the near vicinity of the sur-
face will most likely not occur in a real crystal, al-
though it is possible for the correlation length ap-
propriate to the static correlation function
(S,(1)S,(1')) to become long compared to a lattice
constant in this situation.
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The exact solution of the modified potassium dihydrogen phosphate model of a ferroelectric,
previously considered in a direct field only, is now extended to include a staggered field. The
thermodynamic properties are found to remain unchanged with the addition of a staggered field;
namely, the specific heat vanishes below the transition temperature T~ and diverges as
(T- T~} above T,. Phasediagrams similar to those of an antiferroelectric in a direct field
are obtained. Behavior of the polarizations in both direct and staggered fields is also discussed.

I. INTRODUCTION

Considerable progress has been made in recent
years in solving a number of two-dimensional fer-
roelectric models. ' However, afewrelatedproblems
still remain unsolved. One of the outstanding un-
solved problems is the consideration of a, staggered
electric field. The staggered field is one which
reverses direction from site to site thus playing the
role of a direct field for an antiferroelectric. The
staggered field is important to consider because it
is the staggered polarization, for example, which
is analogous to the spontaneous magnetization in a
-ferromagnet. 2 Unfortunately, the method of solu-
tion, namely the use of the Bethe ansa tz, which
proves to be useful in solving the previous ferro-
electric models, is no longer applicable when a
staggered. field is present. A new approach is ob-
viously needed to attack this problem.

We wish to report in this paper that there exists
one model which is soluble by the existing method
even when a staggered field is present. This is

the modified potassium dihydrogen phosphate (KDP)
model of a ferroelectric considered by the present
author. " The modified KDP model is a special
case of the general ferroelectric model and is unique
in that its solution can be obtained independently by
the method of Pfaffians. There is considerable
interest in studying the behavior of a ferro-type
model with a staggered field. In the magnetic lan-
guage, e.g. , this is equivalent to considering an
antiferro-type model in a direct field. While the
modified KDP model lacks the inversion symmetry
with respect to the horizontal and vertical fields,
it is quite symmetric as far as the staggered field
is considered. Therefore the behavior of the mod-
ified KDP model with respect to the staggered field
is typical of that of a ferroelectric model. This
motivates our study since the Slater KDP model
with a staggered field has not been solved. It turns
out that the solubility of a ferroelectric model by
the Pfaffian method is unaffected by the introduction
of external, direct and staggered fields. Thus from
the observation by the present author that the par-


