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Exchange interactions within nearest-neighbor Cr ' pairs in Cr-doped spinel Znaa204 are
studied by means of electron spin resonance. Apart from isotropic exchange, biquadratic and
anisotropic terms are needed for an adequate description of the experimental results: , „

J~sf 82+j(s1 ' s2) +&[s1 '
s2 —2 ( s1 ' r12) ( st ' r12)/r12) . The coefficients are found tobe s J/k

= {-16.5+1.0) 'K, j/k= {-2.5+1.0) 'K, and &=+0.016+0.001 cm . Since dipole-dipole inter-
actions would lead to &d&p=+0. 067 cm, it follows that a negative anisotropic exchange coun-
teracts the d-d interaction to an appreciable amount. The large negative biquadratic exchange
is explained in terms «Kittel's exchange-striction mechanism.

Magnetic ordering in spinels (AB204) with pre-
dominant B-B interactions is generally ill under-
stood. ' The large difference between the asymp-
totic Curie temperature (8= —380'K) and the Noel

point (T„=15 'K) in ZnCr204 ' and MgCr, 04 ' sug-
gests that long-range ordering (TN) is induced by
non-nearest-neighbor interactions, whereas the
large value of 6 is mainly due to nearest-neighbor
interactions. The relevance of more distant inter-
actions to the explanation of complicated spin con-
figurations has been pointed out by several au-
thors. 7 In particular Dwight and Menyuk, ' using
the Luttinger-Tisza method, were able to show

that the observed helical spin structure' of
ZnCr2Se4 is stable if and only if the values of six
interaction parameters fall inside a rather limited
region. A similar treatment for the more com-
plicated spin structure of MgCr&04 ' has not yet
been attempted. An independent determination of
the B-B exchange interaction strengths seems high-

ly desirable. It is well known that the electron-
spin-resonance (ESR) method is able to provide
direct and detailed information not only about first-
neighbor interactions but also about more distant
interactions.

In this paper we report preliminary results of
an ESR investigation on the Cr3'-doped cubic nor-
mal spinel ZnGa, 04. We have chosen ZnGa~04 as
a host lattice because of the near perfect match in

ionic radii of Cr" (0. 63 A) 2nd Ga' (0. 62 A).
Therefore, substitution of Cr ' for Ga ' is expected
to cause only small distortions in the lattice. This
reasoning is substantiated by the close proximity
of the lattice parameters of ZnGa&04 and ZnCr~04,
viz, a=8. 335 and 8. 327 A, respectively.

Cr-doped ZnGa204 single crystals were grown

by a method described earlier. ' Red transparent
crystals were obtained with a spectrochemically
determined impurity content of 5x 10 g at. Rh,

+pair @1++2 ++ex (2)

contains, in addition to the sum of two single-ion
Hamiltonians Z; of the form of (1), an interaction
term Rex'.

3C.„=-Js, . s2+j(s, s2)'

1' ss 3(sl' r12) (s2' r12)/r12] ~ (3)

Here, the isotropic bilinear (Heisenberg) exchange
has been augmented with biquadratic and anisotropic
terms. The biquadratic term is necessary for a
correct description of the separations between the
spin multiplets (if s, , s2&~z). The symmetric an-
isotropic exchange is approximated by the pseudodi-
polar form, "which contains the classical point di-
pole-dipole interaction:

& =&2+&,.=g'us/r12+&

If we confine our attention to nearest-neighbor (nn)

1x10 '
g at. Pt, 9x10 '

g at. Ni, 1x10 4
g at. Fe,

and 2x10 g at. Cu per mole ZnGa204. The chro-
mium concentration used in these investigations
was 5&&10 g at. /mole.

The ESR spectrum of single Cr" ions at B sites
can be described' '" by an axial spin Hamiltonian

X1 g„(12H„—S—„+g,(12. (H„;S„,+H„S„)

+ D [s'„—2 s, (s, + 1)j,
with sg =

g& g(( = 1, 9776+ 0 00032 gJ= 1, 9867+ 0 0007&
and 6=+0. 523+ 0. 002 cm . The center axes
2; (i = 1, . . . , 4) are directed along the four local
trigonal (111) axes. In crystals containing 1-5
at. % Cr, additional weak lines appear in the spec-
trum, which on account of their Cr-concentration
dependence are ascribed to chromium pairs.

The spin Hamiltonian for a Cr-Cr pair
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FIG. 1. Lower trace:
part of ESH spectrum of
Znoa204. Cr3' at T=77'K,
H II t111), ~=9684 MHz.
Strong lines at 1845, 3475,
and 7755 Oe are due to single
Cr3' iona. Upper trace:
theoretical positions of 8= 3
(longer bars) and &=2 (short-
er bars) transitions of nn

pairs with z~ II t.111]II H.

pairs, the assumption J»D, g p.~ II is reasonable
and the total spin 8 will be a good quantum number.
Then X„&,may be rewritten as

X,~,= ——,
' JS (S+1)+—,

' jS (S+1)

~ [S (S + 1) —2s, (s, + 1) —2sa (s 3+ 1)]

+D [s,', +s~~cos y+ (s„s„n+s„as,~) siny cosX

+s„asln 'Y]+g pg O' 8+A [sL' sa —3 (sy' rg2)

to allow an unambiguous assignment to nn pairs to
be made.

The values of J and j are derived from the tem-
perature dependence of the resonance intensities.
The data for transitions mithin 8= 2 and 8= 3 are
incompatible unless a fairly considerable biquad-
ratic exchange term is introduced. The best fit
gives J/k = (- 16. 5 + 1) 'K and j/k = (- 2. 5 + 1) 'K.

Thus, for nearest neighbors, the bilinear ex-

~ (sa' r~2)/~in] (5)

where g = —,
' (g„+g,). The quantization axis is chosen

along the center axis s& of ion No. 1, where y is the
angle between the center axes of both ions, and for
first neighbors, y='70'32 .

The two leading terms in Eq. (5) give rise to the
four multiplets 8=3, 2, 1, 0 with energies —6J -Qj,
—3J'- 2V/2j, —J'- l3/2j, and 0, respectively. At
X-band frequencies (v =9VOO MHz) only transitions
within the multiplets 8= 3 and 8= 2 are observed.
To first approximation the positions of these tran-
sitions are independent of J and j, and can be cal-
culated from the single-ion D, g„and g, values, the
only adjustable parameter being A.

A typical spectrum for I tl [111]and T = VV 'K is
presented in Fig. 1. In Table I the calculated line
positions for those nn pairs which have z, ~~ [ill]~I IT
are compared with experiment. Satisfactory agree-
ment is obtained mith A =+0. 016+ 0. 001 cm-'.
Since dipole-dipole interaction mould lead to A„
=+0. 067 cm ', this result means that d-d inter-
action is counteracted to a large extent by pseudo-
dipolar anisotropie exchange: A~ = —0. 051 cm
The observed A value is sufficiently different from
the A value of second neighbors (A ~A~ = 0. 012 cm ')

a(theory)'

750 + 25
400 +100

2500 + 50
840 + 50

2050 + 50
3950 + 50
5100+25
100 + 100

5600 + 50
3850+ 25

0 3660 + 25
0-—1 3400+ 25

—1 —2 3036 + 25

H(expt)

730 +20
300 +10

2780 + 10
770+ 10

2150 + 10
4440 + 10
5070 + 10

60 +20
5500 +40
3890 +10

63+3
63 +3
63+3
63 +3
63 +3
63 +3
63+3
63 +3
63 +3

c

With &= (+0.016 + 0.001) cm ~.
T~ = temperature (in 'K) at which maximum intensity

occurso
CComposite lines.
Coincides with strong single-ion absorption.

Another 8 = 2, —1 —2 transition, due to nn pairs
with 8 ( z f, H) = g ( z2, H ) = 70 32 ', has been observed
H= 3120 +5 Oe. The texnperature dependence of its in-
tensity is identical with that of the 3041-Oe line.

TABLE I. Experimental and theoretical positiors (in
Pe) of ESH transitions within the 8= 3 and S = 2 multiplets.
H II t111] II g~, T=77'K, v=9684MHz. Transitions within
8 =1 are not observable at this frequency.
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change is found to be negative (antiferromagnetic),
as might be intuitively deduced from the strongly
negative value of 9 of the isomorphous compound
ZnCr, 04. Our result throws doubt on the positive
J value found by Blazey' from the fluorescence
spectrum of Cr-doped ZnA1~04 powders.

A negative coefficient j of the biquadratic ex-
change is not uncommon"' but is incompatible
with a fourth-order Anderson transfer mechanism. '
The magnitude of the effect, too, is in disagree-
ment with Anderson's' estimate:

j/k =J /k U = 0. 003 'K .

An alternative mechanism, leading to a negative
biquadratic term in the spin Hamiltonian is the ex-
change magnetostriction discussed by Kittel. '
This effect is most effective if J has a strong de-
pendence on the Cr-Cr separation ro:

j = ——,
' (p'/c ro) (6)

where p =dd/dro and c is the elastic stiffness.
Motida and Miyahara recently pointed out that p
is rather large for 90' Cr-Cr interactions as a
consequence of a subtle balance between negative
direct ' (Cr-Cr) exchange and positive indirect
(Cr-0-Cr) exchange interactions. A plotao of 8 vs
xo for the oxides LiCr02, ZnCr~04, MgCr&04,
NaCr02, HCr0~, DCrOq, CuCrOq, and CdCrq04
gives d8/dro= 35 x10' 'K/cm, which leads to
p =64x10 ' erg/cm if the assumption is made that
6 is mainly determined by nn interactions. With
c =20x10" dyn/cm2 and ra=2. 94x10 8 cm we
finally obtain j/k = —2. 5 'K, in excellent agreement
with experiment.

The authors are indebted to R. P. van Stapele
for suggesting the exchange-striction mechanism,
to F. K. Lotgering for helpful discussions, and to
H, van den Boom for technical assistance.
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