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The interaction between we)l-separated Abrikosov vortices is calculated with the Ginzburg-
Landau theory for superconductors with s &%2. For s &1/u 2, vortices repel each other while
for s & 1/u 2 there is an attraction. Therefore, in the Ginzburg-Landau regime, all type-II
superconductors exhibit a X trapsition gradually changing into a first-order transition as

1/~2. Slightly above Hc~ a transition from the triangular- to the square-flux-line lattice
is found to take place. The variational method used admits more general applications.

I. INTRODUCTION

The transition Bom the Meissner to the mixed
state of type-II superconductors which takes place
at the lower caitica. l field H„has some unique fea-
tures. Although in most cases the transition is of
second order in the sense that the first partial de-
rivatives of the Gibb's free energy with respect to
the intensive variables are continuous in the thermo-
dynamic limit, a, closer look reveals that it has
many features of a first-order transition. The rea-
son for this is that above H„macroscopic quantized
Qux lines are crea,ted, leading loca.lly to jumps in
the internal fields. Thus a very sensitive experi-
ment mould show that even in a bulk type-II super-
conductor flux penetrates in small discontinuous
steps. The best evidence for the peculiar nature
of the transition is probably the observation of sub-
stantial superheating at H„. This phenomenon mas
discussed previously. '

As a, consequence of the above-mentioned fact,
calculations are usually much Qarder at H,&

than at
H,~ because there is no mathematically useful order
parameter mhich vanishes at H„. In this paper,
me calculate the thermodynamic behavior of type-
II superconductors with x & v 2 near H„using the
Ginzburg-Landau (GL) theory.

In essence, me derive an expression for the in-
teraction between widely spaced vortices using only
the a,symptotic form of the magnetic field and order
parameter far away from the core of an isolated
vortex line. Recently, a number of authors have
investigated the structure of an isolated vortex
line using more general theories. 3 6 One might be
able to adapt our method to these cases. Hopefully,
this would lead to a. clarification of the nature of
the phase transition at H„outside the GL regime.
Such calculations are important also in the light of
recent observations of an "intermediate mixed
state" which indicates attraction between vortices
at certain distances. v '

In Sec. II an expression for the interaction energy

II. INTERACTION BETWEEN VORTICES

Writing the GL order parameter as g =fe'P with
real f, and introducing the superfluid velocity
/=X —Vp/it, where X is the vector potential, one
obtains for the superconducting part of the Helm-
holtz free energy in the usual reduced units, "
F = f d r Q(l f ) + [(rr/«) f]—+Qsf s+ (curlQ) } . (I)

The magnetic field is given by h=curlQ. Minimiz-
ing F leads to the usual GL equations

[Q' —(v/It)']f =f(l -f '),
curl curlQ+ fsQ = 0 .

The isolated vortex carrying one-flux quantum is
that solution fp, Qp of Eqs. (2) and (3) possessing
cylindric symmetry and satisfying the boundary
conditions

fp-0, Qpr-K ' for r-0;
fp I Qpr Ofor -r -~ (4)

(r is the distance from the vortex core). Numeri-
cal solutions for the isolated vortex have been cal-
culated some time ago by Harden and Arp" and
by Neumann and Temordt. s

is derived valid to second order in the deviations
of the order parameter from the isolated vortex
solution. The interaction energy & consists of an
electrodynamic repulsion &, and an attraction &3

arising from the change in superconducting conden-
sation energy. For type-II super conductors
(z & I/v 2) one finds e, + et & 0 so that the mixed
state is stable and there is a X transition at H„.
For x=1/&2, one can show e, +as=0. In Sec. III
some results for x & I/v 2 are presented. The free
energy of the square-flux-line lattice turns out to
be lomer than that of the triangular one for a pene-
trated flux 8 larger than about 0. 3H, . Square-
flux-line lattices have in fact been observed in the
region predicted. "
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curl curlQ, +f»Q, + 2f»Q»f, =0 .

Equations (6) and (7) hold not only if f, « fo and

Q, «Q» are satisfied but also for the case f,«fo
and Qo, «f, . This fact will allow us to retain Eqs.
(6) and (7) for superconductors with v & v 2 even on
the boundary of the cell (see below). Now expand
the free-energy equation (1) to second order in f,
and make use of Eqs. (2), (3), and (5)-(V). Taking
the integral in (1) over the Wigner-Seitz cell leads
to the following expression for the free energy &

per vortex line:

1
& =go+2 dS Qxcurl(Q»+»Qi)+ fi (f +o~ f

K K

(8)

where
2

dr o (1 -fo) + —fo + @of»+ (curIQ»)

(9)

The integral in (8) extends over the surface of the
cell while integral (9) is taken over its volume.
On the boundary of the cell the quantities g== 1 f, -
and Qo are small and Eqs. (6) and ('7) reduce to

v'f, 2K'f, =o, v'-Q, -Q, =0. (io)

For e & v 2, the asymptotic forms of Eqs. (2) and

(3) are identical with Eqs. (10). A solution of (10)
appropriate for a vortex lattice is therefore given
by14

f, (r) =- Z g(r r, ), Q, (r—) = Z Qo(r —r, ) (11)
i&0 i~p

(the r, are the lattice points). Also, from the as-
ymptotic solutions of (2) and (3) [see Eqs. (16)] and
from Eqs. (11), one sees that Qo, «f, holds inside
and on the boundary of the Wigner-Seitz cell. In-
serting (11) into (8) yields

E =6P+6g+62,

where cp is the energy of an isolated vortex line,
i. e. , it is given by Eq. (9) with the integral now

taken over all space. Furthermore, &, and &2 are
given by

Neax' H y the vortices form a widely spaced vortex
lattice and their individual structure does not differ
much from that of an isolated vortex. Inside the
signer-Seitz cell centered around a particular vor-
tex we write

Q=Q»+Q» f=fo+f~. (6)

The small quantities f, and Q, satisfy the perturba-
tional equations corresponding to (2) and (3) which
a.re given by

[@»+3/() —1 —(V/tc) ]fg+2f»Q» Qg =0, (6)

1
~, =2K ~(ds o,~.~r& g, — Z q), »3~

i~o J j&0» j& i

where we ha, ve written

f, (r) =g(r —r, ), Q, (r) =Qo(r —r, ) . (i6)

In deriving (12)-(14) use was made of the fact that
the terms with j = j which are left out in the sums
of Eqs. (13) and (14) just yield the difference be-
tween ~o and & o.1

The expressions (13) and (14) can be interpreted
in terms of pairwise interactions between vortices.
The terms with the double sum then represent the
contributions from other signer-Seitz cells. This
interpretation will become Dlore apparent aftex'
further evaluation.

Solving Eqs. (2) and (3) asymptotically for ~ & &2
yleMs

Q»=cK, (r)e, g=i fo=dE»(v 2rr-),

~, =- —;d'ZZ»(&zgr, ) .
K imp

The evaluation of the integrals is described in
Appendix A.

The electrodynamic repulsion between vortices
is given by &„while c2 represents an attraction
arising from the increase in (negative) supercon-
ducting condensation energy as the vortices over-
].ap. The expression for &, is valid for all K. For
large K it holds up to fields near H,2 and yields
Abrikosov's result. ' (Note that c=K ' for ir» 1. )
The term corresponding to &2 for large K is negli-
gible except nea, r H„.

One can show that for z = I/W2 the relation
d == c/v 2 holds (see Appendix 8) and it is then clear
that d& c/R2 for z && I/W2. Therefore, the follow-
ing relations hold:

&, + co & 0 for x & I/v 2 (19)

Thus for a & I/V2 the vortices attract each other,
for z = I/v 2 the interaction is zero (in Appendix
B it is shown that this result holds for a,ll vortex
distances), and for z & I/W2 there is repulsion. In
the last case the mixed state is stable and there is
a X point (second-order transition) at» "H„gradu-
ally changing into a first-order transition for

where Kp and E, are modified Bessel functions. We
determined the constants c and d from the isolated
vortex solutions obta, ined numerically by the authors
of Ref. 3. Finally, inserting (15) and (16) into (13)
an'd (14) gives

~, = 2vc' Z Z, (r,.),
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IH. RESULTS

From Eqs. (1V) and (16) one can calculate the
thermodynamic properties near the lower critical
field. IJ„itself is defined as that applied field Ilo
at which the Gibbs's free energies G=E —2' for
two states with and without a vortex are equal.
Since each vortex carries a flux quantum 2v/x, one
finds H~g = &OK/4v. The relation between 8 and H0
is found from the equation

Here I' is now the spatial average of the free-ener-
gy density and 8 the spatial average of the magnetic
field taken over the whole specimen. Since Bx/2v
is equal to the number of vortices per unit area,
there exists a simple relation between the lattice
constant and the induction depending on the geometry
of the lattice. With its help, Eq. (20) can be eval-
uated. The magnetization curve is found to agree
well with expe11ments by Flnnemore et Ql. OQ

niobium which has a rc of 0. VB (see Ref. 2).
%'e also find the Gibbs's free energy for the

square-flux-line lattice to be lower than that of
the triangular one in a certain field region. This
is rather surprising, since previous calculations
valid either near' ' ' H, & or well below H, 2 and e»1
("London approximation"') have shown the triangular
lattice tobe stable. ~0 To demonstrate our result we
have expanded the Gibbs's free energy and Eq. (20)
to first order in tc —I/V2 in nearest-neighbor ap-
proximation. One obtains

place. Clearly the transition is of first order and
the induction undergoes a jump from B~ =0. 238 to
8 =0. 247. Unfortunately, our approximations be-
come inaeeurate beyond the transition.

Using the Essmann and Trauble '2' technique,
Obst" was able to observe square lattices in the
predicted region on Pb-1. 6 wt%%uo Tl (z = 0. V2). His
results also indicate that the flux-line lattice is
influenced considerably by the crystal anisotropy.
Clearly such effects are not included in our calcu-
lation.

IV. CONCLUDING REMARKS

In See. II extensive use was made of variational
techniques. One convenient feature was the possi-
bility of writing the interaction energy between
vortices as a surface integral. It is clear that al-
ways when the solution fo of a variational problem
involving a functional E[f] is perturbed by some
function f, the change in E appears to first order
only in surface terms. If in addition f, is a solution
of the perturbational equation obtained from Euler's
equation of E (i. e. , if f, is to first order equal to
the difference between two neighboring solutions of
the variational problem), then also the second-order
change of I' appears only in surface terms. The
reason is that the above-mentioned perturbational
equation is identical with the Euler's equation which
makes the second variation of E stationary (usually
called the Jacobi equation). This is precisely the
situation encountered in Sec. II. Therefore, this
method is appbcable quite generally . We hope

-IO-4

where 5 is the lettiee constant and z the number
of nearest neighbors. The numbers a 3nd p are
connected with the constants c and d introduced in
Eq. (16) by the following relations:

I

CD
u

c+d

In Fig. 1, gis plotted as a function of A,. For very
large vortex distances only the electrodynamic
repulsion is of importance. Therefore, very near
II,~ the triangular lattice is stable as is the case
for a London superconductor. '9 However, at
5=0. 13, a transition to the square lattice takes

IO 3x IO-I

FIG. 1. Gibbs's free energy G of the Qux-line lattice
in nearest-neighbor approximation as a function of applied
field &0 for K slightly larger than 1/W2. Above h =0.13
the square lattice has lower free energy.
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to be able to apply it to the generalized QI.
theory. "

It appears that our theory does not lead to an
"intermedkate mixed state" ' "for specimens with
x & 1/W2. Owing to the attraction between flux
lines however, we see a possibility for such a
state when x& I/&2. The distortion of the magnetic
field outside the specimen furnishes the balancing
counter force. %e hope to investigate this point
further.

In Sec. IG, we found a transition from the tri-
angular- to the square-flux-line lattice slightly
Rbove 0~1. Slee Rt Hca tI1e trkgngular lattkce 18
stable there must be another transition back to tri-
angular symmetry. To push the investigation fur-
ther, a complete numerical vortex lattice solution
of the GL equations seems inevitable. The tx'ansi-
tion is probably usually broadened or even sup-
pressed owing to the energy barrier separating
the two lRttlces and to 1lltex'Rctkons Kith the crystal
lattice.

81ODS.

APPENDIX A

Zo(»') +— Z Zo(i r —r» i ), (Al)
2 j&0; j& i

(, = —2&2()(Z () 8 ) (rc((Wa)((i-r;()
iAQ~

)( )()(&2)())+- 5 x)())2)( ( (( ) I-.
j00; j~i

(A2)
Let us 1ntx'oduce the auxiliary functions

h, (r) =cZ,(ir -r,. i)z .
Then h,- satisfies the equation

(A3)

The integrals (13) and (14) are to be evaluated.
Inserting (15) and (16) into (13) and (14) yields

(,= 2((Z
(()

d5 i I)( (( r —r) ()

The author wishes to thank Dr. U. Essmann and
Professor M. J. Stephen for very helpful discus-

curl curlh, +h; = 2i)c5( ' (r —r;)z

From (Al) or(13) w, e now obtain

(A4)

«, =2Z
iW

dS ho+ — Z h& xcur15,.
2

=2Z I d'» curl ha+ — Z hi curlh; —5 + — Z 5, curlcurlfi;,
i&0 ' j)0» j« j00; jPi

=2Z t dr curl ho+ — Z h& "curlh, +h, 2~cd(»)z —curlcurl ho+ — Z h&
(((' 0 j&0' j&i

= 4») cZ ti;(0)+2Z dS h, && curl 50+ — Z h&
i/Q i/0 2 jgQs

(A6)

Qne should keep in mind that the integrals are taken either over the surface or the volume of the %igner-
Seitz cell centexed around zero. With the help of some more vector analysis one also finds

Z &)dS h()+ — Z fi& &('curlFi;+h;xcurl h, + — Z h~
iII:Oy 2 jXO; j&i j&0:j&i

d8 V 0' h +— hj
i/0 2 j80;j8 i

d . g h~ h0+ h0+h@ h+-
i&0» i&0 2 i&0» i&0 j&0~ j& l» i

Here h~ = ho(r —r~) can refer to any lattice site ex-
cept the origin. From the symmetry of the vortex
lattice it now follows that the expression in (A6)
vanishes. To see this, consider one of the plane
surface segments, S„say,of the Nigner-Seitz

cell and let rg be the lattice po1Dt obtRlQed by

reflect-

ionn of the orkgln Rt Sg. Then the terms appearing
in (A6) are symmetric with respect to reflection at
8&. Therefore, their normal derivatkves vanksh

at S, and the expression in (A6) is zero. Finally,
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this result applied to (A5) gives

e, =2wcE h, (0) =2vc Z Ko(r)) .
i&0 1&0

(Av)

The solutions of (BS) are given by

Q = cK,(r), g = cKo(r)/K2,

Similarly, one obtains for c2 the result given in

Eq. (18).

APPENDIX 8

We show that d= c/v2 holds for superconductors
with g = 1/f2 and furthermore, that in this case the
interaction between vortices vanishes exactly. For
x = 1/v"2 the GL equations (2) and (2) admit first in-
tegrals which all two-dimensional bulk solutions
satisfy. Letting the z axis be the symmetry axis
of the superconductor, the first integrals are given

24

so that d = c/v'2 holds.
Next we insert (Bl) and (B2) into the free-energy

equation (1) integrating over one Wigner-Seitz cell.
Making use of Eq. (2) one obtains

& =2 jd'r(Q f o+( curlQ) ]=2fdS [Q&&curlQ] .
(B4)

The integral over the surface of the Wigner-Seitz
cell vanishes since the tangential component of Q
is zero. There is, however, a contribution from
the vortex core leading to

curl Q= (1 f)a/v2-,

pf = -f(Qx R)/K2 . (B2)
2r 1a=2 der —=—2——=2/ H =e (B5)r~ v"2 ~ l2- o .i o-

d 1 d——(rq) -q=o,
dr T2

' (Bs)

The asymptotic forms of (Bl) and (B2) far away
from the core of an isolated vortex are where Po is the flux quantum. This shows that there

is no interaction between vortices. At an applied
field H0=H„=H,2=H, the Gibbs's free energy is al-
ways zero.
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