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Supercooling and superheating have been observed for samples composed of small cadmium
spheres of uniform well-defined sizes. The data obtained for large sphere diameters are in-
dependent of size and represent, by all indications, ideal bulk properties. The supercooling
data for such spheres have been used to obtain the Ginsburg-Landau parameter ~ and, in con-
junction with BCS expressions, the penetration depth A, and the coherence length (0. The tem-
perature dependence of the supercooling field H~ shows an anomaly for t-0.8, very similar
to that previously reported for Al and Zn. The superheating field of these "bulk" spheres
shows strong effects of the nonlocal electrodynamics below 2;. Spheres of diameters equal to
or smaller than 10p show strong size effects in the supercooling and superheating fields, es-
pecially near Tc. The results are examined in the light of existing theories of critical fields
for small spheres. A systematic decrease of the critical temperature with sphere size has
also been observed. It seems related to a decrease in the gap anisotropy, produced by bound-
ary scattering. These results are analyzed in terms of the theory of Markowitz and Kadanoff.

I. INTRODUCTION

The Ginzburg-I, andau parameter K can be deter-
mined from either the supercooling or superheating
field of bulk superconductors when the metastable
states occur to their ideal limit. ' 7 The theoretical
relationship between the bulk supercooling H„
and superheating H,„fields and the thermodynamic
critical field H, b, was derived by Ginzburg by
solving the appropriate Ginzburg-Landau equations.
He found for 1 —t«1

H„=H,~
= W2 xH,~,

H 2-1/4 K-1/2 Hah K cb

Equations (1) and (2) should be valid very near T,.
Saint-James and de Gennes pointed out that the
nucleation of the superconductivity in decreasing
fields does not occur in the bulk [Eq. (I)j but at
portions of the surface parallel to the magnetic
field. In order to take into account this fact, the
Ginzburg-Landau equations must be solved with the
appropriate boundary conditions: It is found that the
supercooling field given by Eq. (1) must be multi-
plied by 1.695. The new supercooling field, usual-
ly referred to as H, s, thus becomes

H„= Hc3 = 1.695 H 2
= 2 4 K Hcb .

Equation (3) is valid for 1 —t«1. At lower tem-
perature we can use it to define a phenomenological
parameter K„

H„(t) = 2. 4z„(t)H,„.
The s„(t) is not very strongly temperature depen-
dent.

Although Eq. (3) is valid for 1 —t «1 (typically
1 —t& 0. 1), the requirements of validity of Eq. (2)

are' considerably more stringent for pure type-I
materials. Equation (2) was derived under the as-
sumption of local electrodynamics which only hold
for X(t) & $o, i. e. , for 1 —t &x . Thus the region
of validity of Eq. (2) is extremely small for mate-
rials with K -0.01, such as Al, Zn and, as we shall
see, Cd. It is also conventional to use Eq. (2) to
define a, temperature-dependent phenomenological
parameter N, „(t). For t = 1 we must have x,~(l)
=x„(1)=a. If the nonlocal nature of the electro-
dynamics is taken into account one finds, in the
temperature range 1» 1 —t» K', '

with C-1.36.
No attempts have been made to remove the re-

striction 1 —t«1 from the superheating-field cal-
culation. Attempts have been made, however, to
calculate the supercooling field at all temperatures,
this calculation being easier than for H, „because
it deals only with linearized equations. The tem-
perature dependence of ir„[Eq. (4)] can be decom-
posed into two parts, that arising from the temper™
ature dependence of H,2/H, ~,

" 's and that from the
temperature dependence of H,JH„.'4'"

The theoretical expressions given above for II„
and H, „apply to "bulk" samples of dimensions large
compared with the temperature-dependent coherence
length $(t). When any of the sample dimensions be-
comes of the order of f, size effects appear and the
expressions for H„and H,„must be modified.
Since $(t) diverges like (1 —t) 't' near t= 1, any
sample of finite size will show size effects suffi-
ciently close to T,. For sufficiently small samples,
the magnetic transition changes from first order to
second orders'6'~ and metastable states disappear.
For spherical samples this happens when the radius
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becomes smaller than the critical radius R, = 2.29K,
where X is the penetration depth. As we shall see
the radius of the Cd spheres used in this work
(R & 5000 A) is always larger than X(t), even near
T„and hence metastable states are expected to
occur in all samples measured. Nevertheless,
Eqs. (2) and (4) have to be modified so as to take
into account the fact that $(t) may be of the order
of R. For spherical samples and in the limit $(f)
» R Ginzburge found that Eqs. (2) and (4) must be
replaced by

H„=2&5H,~ X/R,

H,„=0.407H, ~(X/R) i

(6)

The derivation of Eq. (6) assumes local electrody-
namics. This equation must be modified for clean
type-1 materials since the vector potential A varies
rapidly over a Pippard coherence length, defined
by 1/$ = 1/$o+ 1/l, where f is the electron mean free
path and $o is the coherence length for the pure ma-
terial. If this coherence length is larger than the
smallest dimension of the sample, nonlocality ef-
fects will appear even at T = T,. Assuming $ (f)
» R in order to obtain an order parameter constant
throughout the sample, Tinkham and de Gennes"
found

H„(t) /H~( 0) = 4. 85K~ $ 'Oi /R i f(t), (8)

where X& is the London penetration depth at T =0
and f(t) a function plotted in Ref. 18. The function
f(f) can be approximated well by the temperature
dependence obtained from the two-fluid model

No calculations are available for the size effect
on the superheating field in the nonlocal case,

From the experimental point of view, the deter-
mination of z„and H, „and the observation of the
size effects discussed above require the prepara-
tion of samples sufficiently perfect to yield the
theoretical metastability limits of II„and Il,„.
fects of almost any kind tend to reduce the range of
fields for which the meta. stable states are possible.
The most successful technique for the preparation
of such samples was developed by Feder et al. '
The sample consists of a collection of well-separated
small spheres, some of which at least will exhibit
ideal behavior. H„and H, „are thus observed as the
fields at which the traces of either normal or super-
conducting behavior disappear. The superheating
measurement (and not the supercooling) requires
corrections of the effect of demagnetizing fields.
The application of these corrections is made easier
by using spheres. This technique has been also
used by other authors. The measurement of both

supercooling and superheating provides a simple
test of the ideal nature of these phenomena in the
particular sample under study: z„and z,„should
extrapolate to the same value for T = T,. This con-
stitutes a test of ideal behavior together with the
reproducibility of the results obtained for samples
prepared by different techniques. Vfe point out that
ideal behavior near T, does not guarantee ideal be-
havior at lower temperatues. Small defects which
limit ideal behavior at low temperatures may be-
come ineffective near 7'. , since the coherence length
increases as (1 —f) '~2. Such defects may produce
a, temperature variation of y„and g,„larger than
the ideal one. A peculiar temperature dependence
of g„was found for two extremely nonlocal super-
conductors, Al and Zn. No temperature dependence
was detected from T, to a reduced temperature t
-0.85; then a very rapid stepwise increase took
place until t-0. 70. From t =0.70 until the lowest
temperatures reached ~„ is again almost tempera-
ture independent. As pointed out2 technical diffi-
culties in the preparation of the sample made it
impossible to obtain homogeneity in the size of the
spheres. The size inhomogeneity might have been
invoked to explain the anomalous behavior ob-
served. The argument would go as follows: Owing
to the definition of H„used in Ref. 2 the spheres
that supercool most are the ones that determine
H„. At temperatures close to T, size effects could
increase the supercooling field for the smaller
spheres and the largest ones would determine II„;
at lower temperatures however, nonideality of the
la, rgest spheres would make H„be determined by
the sma. lier ones.

The Al and Zn samples just discussed were pre-
pared by spraying the molten metal into liquid
nitrogen. In order to ascertain the ideality of the
strong temperature dependence of z„just de-
scribed, we prepared samples composed of spheres
of uniform well-defined sizes. The material cho-
sen for our studies was Cd. Its superconducting
properties are rather similar to those of Al and
gn but its lower melting point permits the prepara-
tion of spheres by ultrasonic dispersion into hot
oil. The sonoration process was followed by a
suitable decantation so as to separate spheres of
approximately the same size.

We have been able to show that the peculiar tem-
pera. ture dependence found in Al and Zn is also ob-
tained for Cd and that neither the spread in sphere
size nor any nonideal properties of the sample are
the causes of such beha. vior. The Cd sa.mples so
prepared have also enabled us to study size effects
on H„, H, h, and on the critical temperature at zero
field. All these effects seem to require for theo-
retical interpretation a value of $0 much smaller
than that obtained from H, ~ and the g found for the
largest samples.



II. SAMPLE PREPARATION

The samples were prepared by ultrasonic disper-
sion (sonorizing) of the molten metal into Dow
Corning 210-H Quid. The boiling point of this fluid
is about 350 'C and the melting point of Cd is 320 C.

The metal (Johnson-Matthey 99.999% Cd) was
placed into a beaker containing the oil and heated
until the metal melted. The tip of an ultrasonic
cutter was placed in the proximity of the metal,
thus producing the desired dispersion. The average
size of the particles depends on the ultrasonic
power and on the duration of the sonorizing process.
Immediately after sonorizing the metal tile oil wa, s
cooled and the particles were cleaned using differ-
ent solvents. In this way a shiny particle surface
is obta, ined; the particles are spherical with diam-

eters ranging from 1 to about 50 p. To obta, in good

separation by size the spheres were decanted in
different liquids (acetone, toluene, trichlorethy
lene, and alcohol) for different lengths of time,
and those reaching certain levels in the liquid were
collected, It was thus possible to obtain collections
of spheres of nearly the same size with standard
deviations, usually less than 10/o. The size of the

spheres (between 50 and 4 p) was deterniined by
microscopic examination and comparison with a
graduated scale. The sizes of the 1-p, spheres were
determined with an electron microscope. To avoid
distortion of the magnetic field due to proximity of
the spheres the sample powder was diluted using a
solution of alcohol saturated with sodium oleate;
only one-tenth of the total volume was occupied by
the spheres.

III. TECHNIQUE OF MEASUREMENT

The sample was placed inside a pair of coils and

the field transitions were determined by the varia. —

tion of the mutual inductance detected with a
bridge. ' The 1000-Hz ac magnetic field produced

by the primary was perpendicular to the applied

de fields and smaller than 50 mGe. More details
about the experimental arrangement will be pub-

lished elsewhere. To obtain the desired range of

temperature (T,= 0. 52 K), a conventional He

cryostat was used. The sample was immersed

inside the cryogenic liquid to ensure good thermal
contact. Different temperatures were obtained by

varying the pressure of the Hes„Temperature reg-
ulation was obtained by controlling the pumping

speed of the system. The temperature was deter-
mined with two carbon resistor thermometers used

in different temperature ranges so as to optimize
the sensitivity. Their resistance was measured
with an ac bridge operating at 33 Hz. Owing to the

low vapor pressure of He in the desired tempera-
ture range, the thermometers were calibrated by

measuring the critical field of an Al cylinder, 3 mm

in diameter and 12 mm long. The same mutuq, l in-
duetanee used for the Cd samples was used to de-
tect the transition field of the Al cylinder. The
cylinder and mutual inductance were immersed in
the liquid He . The carbon resistors were outside
the bath in the vacuum jacket thermally connected
to the bath by means of a, copper rod of 4-mm diam

and 40-mm length screwed to the bottom of the He

eonta. incr. The thermometers were placed inside
holes of appropriate dimensions in the copper rod
with Apeizon-N grease to improve the thermal con-
tact. Between 1.2 and 0. 5 'K the vapor pressure
of the He was used as an absolute thermometer;
readings of both the carbon resistors and the vapor
pressure were taken when performing measure-
ments. The transition width observed for the cylin-
der at zero field was - 3 m "K. The values obtained
for the critical temperature and eritieal fieMs with

the vapor pressure thermometer agree to better
than 1% with the values reported by Harris and

Mapother. We have made several calibrations us-
ing the same method, and the critical field value for
the Al cylinder always agreed to within + 1%. The
critical field of Al measured by Harris and Map-
other~o wa, s used to calibrate the carbon resistors
between 0. 5 and 0. 3 'K. The a.ccura. cy in the tem-
perature determination using this method is
about + 1%.

The experimental set up allows us to change sam-
ples without removing the resistors from the copper
rod; no new wire solderings are performed between
experiments. In this manner the thermometer cal-
ibration does not change within the experimental
aceuraey from one set of measurements to another.

Owing to the very small field at which supercool-
ing occurs, it was necessary to compensate for
the earth's magnetic field. Using a pa, ir of Helm-
holtz coils the vertical component of the earth' s
magnetic fieM was reduced below10 mOe. The effect
of the horizontal component was eorreeted by mea, -
suring the transitions for opposite directions with

the field parallel to the horizontal component. The

field was measured with a Hall probe magnetometer

(RFL Model 1890, Radio Frequency Labs. , Inc. ,

Boonton, N. J. ). All magnetic materials were

carefully avoided near the eryostat and all the

supercondueting soldering was placed as far as
possible from the sample. During the first mea. —

surements a remanent field of the order of 0. 1 Oe

was discovered, despite all precautions. This
field suppressed the supercooling transitions at
temperatures close to T,. The remanent field was

produced by the carbon resistors, probably due to
currents induced in the internal copper leads of
the thermometers lined with a supereondueting

metal. The minimum remanent field, for a given

distance between the thermometer and the sample,
was found when ihe applied field was perpendicular
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FIG. 1. Magnetic transitions of a cadmium cylinder.
0, quenching field; , thermodynamic critical field; &,
supercooling field.

to the axis of the resistor. By increasing the dis-
tance between the sample and the thermometers we
are able to reduce the remanent field below 10 mOe.
This situation obtained when the thermometers were
3 cm from the sample and the magnetic field was
applied perpendicular to the thermometer axis.

IV. RESULTS

To determine the thermodynamic critical field
of our cadmium, a cylinder 2 mm in diameter and
15 mm long was measured. This cylinder was pre-
pared from a 4-in. rod of the same material used
to prepare the spheres. It was annealed in vacuum
at 150 'C; after annealing the surface was chem-
ically polished using an aqueous solution of 75%
HNO3. For increasing fields it was possible to
stabilize the signal at any value between the maxi-
mum and the minimum signal at all temperatures.
This indicates that no superheating was present.
However, a considerable amount of supercooling
was detected in decreasing fields. To obtain this
supercooling the magnetic field must be increased
to a certain minimum value (quenching field) above
the critical field at this temperature. This effect
has been observed in other materials" and seems
related to the existence of small regions inside
the metal that remain superconducting at fields
higher than the critical field. Figure 1 shows the
results for the critical field and the quenching and
supercooling fields of the cylinder. It can be seen
that the extrapolation of the quenching field to zero
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FIG. 2. Typical hysteresis loop (in the case for 50-p
Cd spheres at t=0.95). The lower curve shows the super-
cooling transition with an expanded horizontal scale.

field gives a higher critical temperature than the
one defined from the thermodynamic critical field.
The critical temperature T, defined from the extrap-
olation of the thermodynamic critical field is T,
=0. 536+0.002'K. The experimental data for H,
can be fitted to an expression of the form
H = Ho(l —f ). The value obtained from this fitting
for the critical field at zero temperature is Ho
=27. 3+0.10e.

Samples composed of spheres of 1-, 4-, 10-, 20-,
and 50- p, diam were measured. Large supercooling
and superheating was observed in all of them. A
typical transition for the 50- p. samples is shown
in Fig. 2. Different x scales were used in the re-
corder in order to obtain an accurate definition of
H„and H, „. The transitions observed for Cd are
much sharper than the ones obtained previously
for Al and Zn, due probably to a better quality of the
the sample (the Al and Zn samples, of higher
melting point, were prepared by spraying). Figure
3 shows the supercooling fields as a function of the
reduced temperature for several sphere sizes. The
results for the 20- p, sample coincide with those
for the 50- p one and are not shown in order to avoid
confusion. For the same reason, a smooth line is
drawn instead of the points for the 10-p. sample.
Figure 4 shows the observed superheating fields as
a function of reduced temperature. The results
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FIG. 3. Supercooling field measured as a function of
reduced temperature for spheres of several sizes.

for the 50-, 20-, and 10-p. samples are the same
within the experimental error. The points plotted
in Fig. 4 correspond to the 50-p, sample; only
smooth lines are shown for the 1- and 4- p. samples.
The smaller samples (4 and 1 p) clearly exhibit
size effects. The supercooling and superheating
fields seem to change in a monotonic way with

thickness, thus indicating that the observed change
is a real size effect. No size effect seems to be
present in the 50- p. samples and by all indications
the observed transition corresponds to ideal bulk
superheating.

The transition temperature for each sample was
determined by extrapolation of the supercooling and
superheating data to zero field. The temperatures
obtained from both extrapolations coincide to + 10 K.
The transition width at zero field was about
5x10-' 'K.

A systematic and well-determined decrease of the
critical temperature with the size of the spheres
was observed. The critical temperature for differ-
ent samples has been plotted in Fig. 5; an extrap-
olation to infinite size gives a critical temperature
of (0. 532+0. 002)'K. This value is only slightly
lower than the one obta, ined for our cylinder
(0. 526 'K).

We have used expressions (2) and (4) to define
and calculate the effective values of y„and g,„from
the experimental data. The results are shown in
Figs. 6 and 7; the bars in the figure indicate the
estimated experimental error in different tempera-
ture regions. To account for the shift in critical
temperature with sample size a reduced temperature

50
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FIG. 4. Superheating field measured as a function of
reduced temperature for Cd spheres of several sizes.
The triangles are points calculated with Eq. (5) for C = l.

representation is used. The critical thermodynamic
field H„used for the evaluation of g„and z,„ is the
one obtained from the bulk cylinder, but with a, crit-
ical temperature equal to that of the spheres under
consideration. It can be seen in Figs. 3, 4, 6, and
7 that the supercooling fields for 10-, 4-, and 1-p,

samples show size effects in all the temperature
range. However, it is interesting to note that,
for the same samples and temperature range, size
effects in the superheating field disappear for tem-
peratures lower than t =0. 82. Several samples of
spheres of a given size were measured; the results
for each size were always the same, thus suggest-
ing that ideal size effects were being observed.

V. DISCUSSION

A. Bulk Sample

The results shown in Figs. 3 and 4 indicate very
strongly that the transition fields of the 50-JL(, sam-
ples are the size-independent bulk fields. A com-
parison of these results to those of Al and Zn
shows that the temperature dependence of the bulk
z„ is quite similar for all those materials. In
Fig. 8 we have plotted for comparison w„of Zn and
Al ~together with ti.e corresponding parameter ob-
tained here for the 50-p Cd spheres. We have also
plotted, in the same figure, several possible theo-
retical temperature dependences for v„. The open
circles represent the temperature dependence pre-
dicted by Gorkov"; the dots correspond to the varia-
tion with temperature predicted by Gorkov, cor-
rected for the temperature dependence of H, PH, 2,
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for the case of diffuse scattering. ~ The crosses
represent the phenomenological two-fluid mode1. .2~

Although the total experimental variation of K,
shown in Fig. 8 is not much larger than the one us-
ing the temperature dependence of x(t) " and H,J
H+,

'4 no detailed agreement is found between theory
and experiment.

Our measurements for Cd give x„(t=1)=0.012,
in good agreement with the extrapolation of g,„to
t= l. A fair agreement between expression (5) and
the results for H,„was found near T,. In Fig. 4
the triangles are points obtained from expression
(5) with x = 0. 012 and C = 1. In order to make x in
expression (5) coincide with x„at t = 1, it was nec-
essary to choose for C a lower value than the theo-
retical 1.36. While the significance of this fact is
not known, we point out that values of C also close
to 1 are necessary to fit similar data for Sn, In, '
Al, and Zn.

From the value of g(t = 1) and the slope of the
critical field at T, it is possible to calculate the
London penetration depth X~(0) at T= 0. Neglecting
energy-gap and band-structure anisotropies ' the
BCS theory yields the expression":

Xi(0) T, .2e dHO 4

C T=T C

(9)

As was said before, no size effects were detected
in the 50- and 20- p, samples. The first sample
that shows a size effect is that composed of 10-&-
diam spheres. Baratoff and Bergeron have found
an expression for H„ for a sphere of radius R as
a function of R/$(T), valid for (1 —t) « I and R
» ((t):

(lo)

This result can be understood qualitatively in the
following way. When the radius of curvature of

Using our experimental values for H, (T), T„and
x(t= 1), Eg. (9) yields Xl, (0) =315 A. Similarly,
from the relation x =0. 96hz, (0)/$0, we obtain for
Cd $0= 25000 A, where we emphasize again the fact
that anisotropy effects have been neglected. "

B. Size Effects
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FIG. 6. The &~(t) for Cd spheres of several
diameters, , d =1g; 0, d=4 p; &, d = &0 p; ~,
d=50p, .
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the sample is much larger than $, the nucleation
occurs in that portion of surface around the equa-
torial plane that can be assumed flat and parallel
to the field. When the coherence length becomes
of the order of 8, the nucleation field should de-
crease [($/R)2i~ term in Eq. (10))because the nu-
cleation does not strictly take place in a surface
parallel to the field. At the same time the usual
size effect, discussed in the Introduction, tends to
increase the transition field [$/R term in Eq. (10)].
The relative importance of each of these competing
effects depends on the value of $/R. Using Eq.
(10) with the value obtained for the coherence length
of Cd ($~ = 2. 5 p) and the appropriate temperature
dependence [(1—f) 'i~], it can be seen that an appre-
ciable size effect is expected even for the 50-p
spheres. This effect is not observed experimental-
ly; thus either the coherence length is smaller than
our estimate or Eq. (10) overestimates the size
effects. If Eq. (10) is assumed to be correct, one
must have $(t =0) (0.2 p in order to eliminate size
effects for the 50- p, spheres. Even in this case a
size effect would be expected for the 20-p, spheres.
It is very unlikely that the neglected gap and band-
structure anisotropy~5 will change the estimated
$(t=0) to values below 0. 2 p. The experimental

results thus suggest that Eq. (10) grossly overesti-
mates the size effects in large spheres.

Let us consider now the 1-JL(, sample. Here the
coherence length is larger than the size of the
spheres throughout the whole temperature range.
Consequently, we can expect Eq. (8) to apply.
Figure 9 shows a plot of the ratio H„/H„as a func-
tion of (1 —f )

' for the I-p, sample; it is obvious
that the expected temperature dependence is not
found. In view of the discrepancy between observed
and predicted temperature dependence of II„for
thicker samples, the present discrepancy for thinner
samples is not too surprising. The anomalous kink
observed for the 50-p (bulk) spheres in Fig. 3
at t = 0. 84 is also present for the 10-p, and 4- p.

spheres. The effect of this anomalous temperature
dependence on the supercooling field of the small
spheres would be diminished if we plotted the ratio
of this field to the corresponding field of the 50-p
spheres. Using expressions (4) and (8) we find

H„(d = 1) X,~, f(f)
H„(d = 50) 1.695R v 2 x(t) (1 —f )

where X,« =4. 85 Xi/oi~/R'i~ and R = 5xl0 5 cm is
the radius of the small spheres. Using the two-
fluid model to approximate' f(t) and the tempera-

Al Zn
02 ~~~~ ssemefie ~~~~

Cd
J.

QI—

~ X

o ~ Xa
J

~ XT
J

FIG. 8. Experimental results for &s, for the
50-p Cd spheres and those for Al and Zn re-
ported in Ref. 2. Expected values for v«(t)
using different possible theoretical tempera-
ture dependences, as indicated in the text.
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The decrease in the critical temperature with de-

creasing sphere size, shown in Fig. 5, can also
be attributed to a size effect. - It is well known2' ~~

that a decrease in the critical temperature of a
pure superconductor can be produced by doping it
with nonmagnetic impurities. Markowitz and
Kadanoff have attributed this effect to the decrease
in the gap anisotropy associated with the decrease
in the mean free path produced by the doping. If
no other effect is produced by the doping (e.g. ,
valence effects), this decrease of critical tempera-
ture continues until the electronic mean free path
is of the order of the coherence length. ~ Markowitz
and Kadanoff assume an anisotropic pairing
interaction of the form

I ) I i l i

0 I 2 3 4 5
(i-t4) "*

FIG. 9. Ratio of the supercooling field for sample of
1-@diam to the thermodynamic critical field as a function
f (1 t4)-1 / 2

V„. = [1+a(A)] V[1+a(A')],

where 0 is a unit vector along the direction of the
quasiparticle momentum p, and a(Q) is the anisot-
ropy function defined so as to have zero average.
Under these conditions, the decrease in T, due to
the impurities is

ture dependence for a(t) given by the same model~~

we have

H„(d = 50) 2W2 1.695Rz(t = 1) 1 —t

Figure 10 shows a plot of the experimental ratio
H„(d = 1)/K„(d = 50) as a function of (1+P)'~2/
(1 —t')'~'. Except for the points very close to T„
the temperature dependence of this ratio is very
well described by Eq. (11). The slope of the
straight line in Fig. 10 is given by n- ($o/R)
If we use the value A=5&&10' cm for the small
spheres and the experimental value of a, we get
go=0. 60 p. This value is smaller by a factor of 4
than the value obtained from the supercooling and
superheating fields of the bulk spheres. Here
again, the size effect predicted theoretically is
much larger than the one observed.

&T, =It'y, —0. 36(a ) T, y+V. 8x10 (a ) gT, lnx,

(12)

where the doping parameter p is given by

I/~.
kT, Av~

(13)

In Eq. (13), r, is a scattering time appropriate to
the removal of gap anisotropy '

by the impurity and

v„ is an average of the Fermi velocity. The BCS
theory gives for the constant A the value 0. 18.
This equation is a good approximation to the numer-
ical calculation" in the range 1 & y&100. The first
term in the right-hand side of Eq. (12) represents
effects of the doping other than the removal of gap
anisotropy. Its magnitude depends on the type of
dopant and, in particular, its valence.

The presence of boundaries in small samples pro-

IO—

o6
un

8 gzz

FIG. 10. Ratio of the supercooling field
of the sample of 1 P to that of the 50-p saln-
ple as a function of (1+t }~ 2/(1 —t }~

0
lo
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PEG. 11. +Pc/~c& as a function of in&.
0, experimental points; the dashed line was

obtained from expression (10) as explained
in the text.
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X =&o&AR . (14)

Using vz=1. 63x10 cm sec ', )~=2. 5&&10 cm,
the value determined here, and T, =0. 536'K, we
find from Eq. (13) a value of the dimensionless
parameter A = 0. 11, somewhat smaller than that
predicted by the BCS theory (A = 0. 18) in the ab-
sence of anisotropy corrections. We shall use
A=0. 11 in our discussion. The size dependence of
T, should become weaker for l-R &)~=2. 5 p. . The
results of Fig. 5 agree with this estimate. In order
to perform a. more quantitative analysis we plot
in Fig. 11, nT, /T, y as a function of In': According
to Eq. (12) we should obtain a straight line whose
slope should yield the anisotropy parameter ( a ).
The experimental points fall, within the experimen-
tal error, on a straight line; from the slope of the
line we find (a ) =0.012. From the intercept of this
line the parameter K' of Eq. (12) can be obtained.
As mentioned earlier for boundary scattering we
expect this parameter to be close to zero. The
dashed line in Fig. 11 corresponds to K' =0 and
lends support to this contention.

The anisotropy pa, rameter (a ) =0.012 is similar

duces a decrease in the mean free path which should
also effect a decrease in the anisotropy of the gap.
Such effect has been observed2 ' in In and Ga and
shown to be in qualitative agreement with Eq. (12).
On the basis of this argument, a decrease in the
particle size should result in a decrease in the
critical temperature describable by Eq (12).with
E' = 0. For a quantitative discussion of the results
of Fig. 5, one must establish the relationship be-
tween sphere size and effective electronic mean free
path. In view of the uncertainties in the scattering
process at the surface of the sphere, we simply
assume that the mean free path is close to the ra-
dius of the sphere A. Under these assumptions
Eq. (13) becomes

to that of Al, ' a somewhat surprising fact since
Cd is considerably more anisotropic than Al.
Ducla-Soares and Cheeke~' recently reported (a~)
= 0. 05 for Cd and (a ) = 0. 02 for Zn, also a highly
anisotropic material. The accuracy of their
determination is not known. It is worthwhile to note

that a higher slope is obtained in Fig. 11 if y is
multiplied by a factor smaller than 1, i. e. , if
either $~ is decreased or the mean free path in-
creased. When this is done E' becomes no longer
negligible. In order to obtain (a ) =0. 04, X must
be divided by 3 and K' becomes equal to —5. 2
&&10 ~('K). We cannot offer any physical interpre-
tation for this possible nonvanishing value of E'.
Here again, as in the case of the size effects on the
supercooling and superheating fields, in order to
obtain agreement with independent values of (a'),
we are forced to accept very small values of $z/l.
Either the required coherence length $~ disagrees
with our determination for bulk samples or the mean
free path is considerably larger than the sphere
radius R.

VI. CONCLUSIONS

The anomalous behavior of z„ found' for Al and

Zn is also present in Cd and, by all indications,
seems to be a property of bulk ideal samples of
these materials. For small Cd spheres, size ef-
fects appear but the sphere sizes at which these
effects become noticeable are considerably smaller
than one would expect on the basis of the $~ deter-
mined for the bulk samples. In order to explain
quantitatively the size effects in the supercooling
and superheating fields of small Cd spheres on the

basis of existing theories, one must assume values
of $~ an order of magnitude smaller than those de-
termined for bulk samples. We have not found any

explanation for this inconsistency; however, we
would like to point out that it seems to be a fairly
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general phenomenon. Cody and Miller, for in-
stance, determined anomalously large values of rc

for Pb and Sn by studying size effects on the
critical fields of films and foils. These values of
g —0. 34 for Pb and 0. 22 for Sn as opposed to 0. 22
and 0.087, respectively, determined for bulk sam-
ples4'~ —also seem to suggest anomalously small
values of $s. Measurements with films and foils
of small s materials (Al, Cd) are now in progress.
They should contribute significantly to the clarifi-
cation of this disagreement.

The size effect found for the critical temperature
of our Cd spheres seems to be related to the re-
moval of gap anisotropy by the presence of the
boundary. If one uses the value of the anisotropy
parameter recently reported ' and a mean free
path approximately equal to the sphere radius, the
theory of Markowitz and Kadanoff 5 also leads to
a value of (s much smaller than that found for
bulk samples.

Note added in manusn iPt. Dr. F. Rothwarf

has pointed out that a possible explanation for the
quenching field in our bulk cylinder may be the
presence of clusters of light isotopes of Cd, with

correspondingly higher critical temperatures. His
evaluation of the effect and the recent results of
Fassnacht and Dillinger 4 indicate that this explana-
tion is likely to be correct. It is interesting to
point out that the main part of the transition at zero
field takes place between 0. 527 and 0. 536 K but
there is still a signal different from zero to temper-
atures as high as 0. 555'K, where the quenching
field extrapolates to zero.
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