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The electron-phonon interaction in a disordered superconductor is calculated. One finds
additional electron-phonon processes which do not conserve the lattice momentum and a re-

duction of the normal and the umklapp processes.

The additional electron-phonon processes

contribute particularly to processes with low energy transfer, so that the Eliashberg function

depends linearly on the energy in the low-energy region.

This is in agreement with recent

tunneling experiments. The linear part of the Eliashberg function causes the strong-coupling
behavior of disordered superconductors. Therefore, the anomalous properties of a disordered
superconductor can be explained by the change in the electron-phonon interaction.

I. INTRODUCTION

Weak-coupling superconductors, condensed onto
a substrate at helium temperature, show an in-
creased transition temperature!=® and energy
gap. *® Also, these quenched superconductors
have an enlarged ratio 24,/kT,, which m2ans that
they behave like strong-coupling superconductors.
Recently Zavaritskii,” Knorr and Barth, ® and
Wiihl® measured the Eliashberg function a?E)F(E)
=G(E) for disordered superconductors, They found
that G(E) varies, particularly at low energies,
where it depends linearly on the energy in dis-
ordered superconductors. These authors inter-
preted the variation of G(E) by the assumption
that the disordered superconductor has additional
low-energy phonons, The same supposition was
made by Garland, Bennemann, and Miiller, *° who
attempted to explain the change of the transition
temperature in disordered superconductors.
Ewert!! refuted this assumption by measuring the
specific heat of disordered and annealed lead and
indium films, He found that there was no change
in the low-temperature specific heat, and concluded
from his measurements that there are no additional
low-frequency phonons in disordered superconduc-
tors. Markowitz and Kadanoff!? calculated the
change of T, as a function of the mean free path I,
They found a smearing of the anisotropy (which we
do not consider here) and, in addition, a small
change of T, proportional to 1/I, which they in-
cluded in the valence effect. Ginsberg!? showed
that the attenuation constant of ultrasonic waves
depends on the mean free path of the electrons,
and he concluded that the electron-phonon interac-
tion is increased for a short mean free path. The
author®'!* showed recently that the electron-phonon
interaction in a disordered superconductor is en-
hanced, and found good agreement with the experi-
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mental change in the energy gap. Karaivanov'®
calculated a change in the electron-phonon interac-
tion in alloys which resulted in an increase of the
transition temperature. Maksimov'® considered

the influence of crystal defects on the superconduct-
ing transition temperature by means of the cor-
relation scattering function.

In this paper we intend to derive the electron-
phonon interaction and the Eliashberg function
G(E) in the rigid-ion approximation for a simple
model of a disordered superconductor. We use
plane waves for the electron states. Our aim will
be to understand the experimental change of the
function G(E) and the fact that disordered super-
conductors are strong coupling.

II. MODEL OF A DISORDERED METAL

The structure of a quenched film is very com-
plex. It is somewhere between the long-range or-
der of the periodic crystal and the short-range
order of a liquid. Therefore it appears to be dif-
ficult to calculate the properties of a realistic
film. But we want to make a first step in this
direction by considering a very simple model of
the disordered film, We only require that our
model of the disordered metal has a residual re-
sistance at low temperature, For developing this
model we begin with a periodic crystal where the
atoms are located at the positions ¥}, Now we
displace the atom j at the position ¥} by a small
displacement 5?, . The final position of the atom
j will be ¥+ 6F,. The displacements 5%, shall be
completely statistical and given by a Gaussian dis-

tribution
exp[- (6F,)%/26%]. (2.1)

In a real disordered metal the displacements of
the atoms are preserved by internal forces which
keep the atoms in the displaced position. However,
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in our simple model the displacements would be
unstable without external forces. Therefore we
have to introduce external forces X, which act on
the atoms j. The external forces may be arranged
in such a way that the new positions T} +0F; of the
atoms are the new equilibrium positions.

III. PHONON SPECTRUM

Now we want to test whether the spectrum of the
phonons is changed in our simple model of a dis-
ordered metal, First, for the sake of simplicity,
we consider a linear chain, Let j be the number
of an atom, and T its equilibrium position in the
unperturbed periodic chain: ¥=bj, where b is the
lattice parameter. For the unperturbed chain we
have the classical equation of motion for the elonga-
tion s;:

ng:D(sj-1+Sj01_zsj) , (3.1)
where M =ion mass and D = interatomic force con-
stant, Using the ansatz s;xe’®¢“" the disper-
sion relation between w and ¢, and hence the pho-
non spectrum, may be found, Now we consider a
disordered linear chain. We introduce displace-
ments 67; from the periodic position by imposing
forces X, on the atom j. The new equation of mo-
tion is

M3, =X, +D(Sj.q +Sja1 = 25;) +D(07 ;4 + 0754y = 207).
3.2)

This equation still holds for vanishing lattice os-
cillations &, = s;=5;,; =5;,, = 0 and determines the
forces X;:

0=X,; +D(07 ;.1 + 07, — 207;). (3.3)
If we subtract this from Eq. (3.2) we find the
same equation of motion as for the unperturbed
chain. It can be solved by the same ansatz as be-
fore. These considerations can be generalized for
the three-dimensional crystal. We find that the
phonon spectrum in this simple model of a disor-
dered metal remains unchanged and that the phase
of the elongation 3, is determined by the unshifted

position of the atoms Fy:

%« en&'-?g-m) . (3.4)

An unchanged phonon spectrum is surely a sim-
plification for a real disordered metal. However,
Ewert!! concluded from his measurements of the
specific heat that, at least for the low energies,
the phonon spectrum is unaltered. This appeared
to be in contradiction with recent tunneling experi-
ments where the change of the Eliashberg function
G(E) was measured, We will try to resolve this
contradiction in Sec. V.
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IV. ELECTRON-PHONON INTERACTION
A. Heuristic Description

In this section we wish to give a heuristic de-
scription of the electron-phonon processes in a
disordered metal, whereas in Sec. IVB we give a
quantitative calculation. In Fig. 1(a) we have an
arrangement of atoms in the form of a periodic
crystal, Let an electron wave with momentum k
enter from the left., This electron wave is scat-
tered by each atom which is producing an elementary
wave, When one superimposes the amplitudes of
the elementary waves one finds that they cancel in
all directions, except in the original direction k
and the directionsk +g, (£, = reciprocal-lattice vec-
tor). In Fig. 1(b) we have the same entering elec-
tron wave, but now the atoms of the crystal are not
at rest but oscillate with the frequency w,, because
a sound wave with the frequency w,, and the mo-
mentum ¢ propagates through the crystal. There-
fore the elementary electron waves are modulated
in phase, We will separate the modulated wave
into one electron wave with an unshifted frequency
and two side lines whose frequencies are shifted
by twy . These shifted frequencies correspond to
the absorption and emission of a phonon w,,. The
emerging unshifted electron wave has the same
direction as in Fig, 1(a), whereas the shifted waves
have also a changed direction due to the space-
dependent phase of the oscillation. Only the sum
(or difference) of the electron and phonon momenta
is equal to the original k (normal processes with
momentum conservation) or 1?+§,, (umklapp pro-
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FIG. 1. Scattering of a plane electron wave in a peri-
odic and a disordered crystal demonstrating the electron-
phonon interaction.
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cesses). This is the already known situation for

a periodic crystal, In Fig. 1(c) we consider a dis-
ordered crystal where the arrangement of the
atoms is rather arbitrary. Now the elementary
waves do not cancel in any direction. _’The electron
wave is scattered into each direction k’ and the
umklapp processes are reduced. In Fig, 1(d) we
again have a sound wave which is propagating in
the metal. (This is difficult to illustrate.) We ob-
tain, as in Fig. 1(b), the normal electron-phonon
processes. In addition, we find the modulated
electron waves in every direction k’. Again we
can separate this modulated wave. & is important
that there is no conservation of momentum between
the electron and the phonon. In Fig. 1(d) we have
E'+E=E’¢E. We call these processes pseudo-
umklapp-processes.

B. Calculation

A single atom of the disordered metal is given
the potential

v(i")zz;v; et (4.1)

We assume that the potential is rigid and indepen-
dent of the arrangement of the atoms. The posi-
tions of the atoms are ¥,=F)+6F;. We calculate
the matrix elements of the Hamiltonian with the
functions of the free electrons. We obtain for
Vieg=Vieg

Vig=vig 21,0 % (4.2)

We calculate the square of the matrix element and
take the average over the statistical distributions
with Eq. (2.1):
o 2p2 2
| Vieeel 2=l oge-g [P[L% S0 00
(4.3)
where g, =reciprocal-lattice vector.

The electron-phonon matrix element is calculated
by introducing the lattice oscillation with the elon-~
gation s; according to (3. 4):

§j = Z’ (aéx +a.) & e it , (4.4)
ar
where a;-rm and a_3 are the creation and annihilation
operators of the phonons. E;A is the polarization
vector of the phonon with the wave vector § and

the polarization X and has the length
lear|2=r/2LMw;, | (4.5)

where M =ion mass, L=number of atoms per unit
volume, and wy, =frequency of the phonon qr. We
obtain for the electron-phonon matrix element
griap=ivp g8 G-k D expik-K") ¥, - ig- 7]
(4.6)

and find for the statistical average of |gp.gnl?

g +L(1 - e..(i--k") 252)],
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|gzeal? = [vpez|?| 8| ?lk - K’ *cos® (@ , K - k)
.., 02 2 » e, 2
x{L2e~EE% Siiegz,+ L [1 - e~ ED 52]}.
(4.7)
Therefore the electron-phonon processes which oc-
cur in‘tl}ezpzeriodic crystal arereduced by the fac-
tor e~ ¥°% jn the disordered state. This means
that the normal processes, as well as the umklapp
processes, are reduced. However we obtain ad-
ditional electron-phonon processes which we called
pseudo-umklapp processes and which do not con-
serve the lattice momentum.
The Hamiltonian operator has the general form

neRe 4 t
H:Z——ﬁc‘cwrz Vigcse Cp
49 £Ck+ & Vg Cir Cx
¥ m REe

+gghgi'i&x CE: Ci(az'x +a.q). (4.8)
The matrix elements | V.12 and |g¢312 have two
different contributions. One part conserves lat-
tice momentum; there both |V]% and |g|2are
proportional to L?. The other part does not con-
serve the lattice momentum causing the scattering
of the electrons and the pseudo-umklapp-processes.
This part is proportional to L. The part of | Vil 2
which is proportional to L? determines the shape
of the Fermi surface. The second contribution of

| Viegl 2 which is proportional to L describes the
scattering of the electrons, their resistance, and
finite lifetime. In the following calculation we ne-
glect the off-diagonal elements and approximate
the Fermi surface by a sphere and the eigenstates
by plane waves, We find a simple relation between
the electron-phonon matrix elements of the pseudo-
umklapp-processes and the scattering matrix ele-
ments (i.e., the terms which are proportional to
L):

2|k ]2

lgesal 2= | Ve cos*(&,,k~K') .

(4.9)

_k__
2[1]14(.()“1')L

V. ELIASHBERG FUNCTION

In Sec. IV we obtained a changed electron-phonon
interaction in a disordered superconductor. Now
it would be interesting to calculate the energy gap
and the transition temperature of the disordered
superconductor. The author® has given such a
calculation neglecting the reduction of the normal
and umklapp processes. This calculation required
simplification in order to avoid solving the Eliash-
berg equation, which requires a computer calcula-
tion. The Eliashberg equation determines, in
principle, both 24, and 7, if G(E) and the Coulomb
pseudopotential pt are given. G(E) is (without a
factor 7/2m) the probability of an electron of the
energy E, to make a transition into any state of
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FIG. 2. Electron-phonon transitions fornormal processes
and pseudo-umklapp-processes.

the energy E, by emitting a phonon of the energy
E=fw=E,-E, (Fig. 2). This transition probability
is factorized into the product a®(E)F(E), where
o¥(E) is the averaged electron-phonon matrix ele-
ment [ggpgnl?and F(E) is the density of phonon
states. G(E) has been determined recently by
Zavaritskii, Knorr and Barth, and Wiihl for dis-
ordered superconductors. They measured the
derivative of the tunnel characteristic and refolded
it [assuming that the Eliashberg equation is still
correct for disordered superconductors if one uses
the correct G(E) and u']. They found that G(E) is
changed in the disordered superconductors and that
for small energies it is proportional to the energy.
We will show that the change at low energies can be
explained by the change of the,.electron-phonon
interaction.

Again we use free-electron states as the eigen-
states, At first we will discuss the energy depen-
dence of G(E) (see Fig. 2). It is proportional to
the square of the matrix element ‘é’ilizixlz times
the number of final states (which is not equal to
the density of phonon states).
it is lgg gl cw ™Ik~ kyl?c¢?/w e E. The num-
ber of final states is restricted by the conservation
of momentum and is proportional to g E, There-
fore we have for normal processes G(E)cx E?, For
pseudo-umklapp-processes we do not have to con-
serve the momentum. The final phonon states lie
on the surface of a sphere with the radius ¢=w/c
=E/fic and their number is proportional to EZ,

The number of final electron states is independent
of the energy and equal to the density of electron
states N(Ey). The averaged matrix element

gt iyl 2cw™ | Ky ~ k12 1/E, because |k, - K| ?
does not depend on the energy. Therefore we find
in the disordered superccnductor that G(E) is pro-
portional to E, A detailed calculation gives

G(EB)=20t,20:20, (82,8 02| 6(E - Ticq)B(Ey - E; - E).
(5.1)

For normal processes
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After transforming the sum over Ez into an integral
over the Fermi surface and the sum over ¢ into

an integral over 41rqqu, and introducing Eq. (4.9)
for low energy or momentum, we find

L 2 n as x e
C(E)= g & 474" da 2LMc,‘qjh’vF K- ol

x | Vi 1,] 2cos?(@ , Ky ~ k) 6(E - Ticq) .

(5.2)

With {cos®@3z,, Ky - K,))ay= & We obtain

mk 1 2 >
COB) = oo (c_? * 5?:)““1 - K| Ve, D B

(5.3)

¢, and ¢, are the transverse and longitudinal sound
velocities. The average of |k; —k,|?| Vg 4,1% is
taken over the Fermi surface and can be expressed
by the mean free path of the electrons,
- > 2mitR% 1

k=Kol 2| Vet | Dav= =2 T (5.4)
Finally we introduce the number of electrons per
unit volume

n=(1/32k3, (5.5)
and obtain
in 1 1\1
G(E)= m(a +E>Z_E' (5.6)

G(E) indeed depends linearly on the energy, as was
found in the tunneling experiments.

The energy dependence of G(E) for large energycan
be discussed only qualitatively, because its cal-
culation is difficult even in a periodic crystal and
depends very much on the detailed structure of the
Fermi surface. The same difficulty occurs in the
disordered superconductor. We obtain, however,
from Eq. (4.7) that G(E) is reduced for the normal
processes as well as for the umklapp processes.

VI. COMPARISON WITH EXPERIMENT

We make a comparison between the calculated
slope of the Eliashberg function G(E) at low ener-
gies and the measured slope by Knorr and Barth
for tin and lead. We use for tin

LM =17.3%10° kg/m™3, n=1.5%x10% m"®,
c;=3.3x10° m/sec, c=1.7x10° m/sec,
Iy =65%107%m

and for lead
LM=11,5x10° kg/m®, n=1.3x10**m™3,
c;=2.05x10° m/sec, cyu="7.1x10° m/sec, .

1, =50x10"1%m |
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We obtain from these the following values: For
tin, G(E)=4.2 or 1 (eV)™ and for lead, G(E)=30or
10 (eV)™ for experimental and theoretical values,
respectively. The theoretical slope is smaller

by a factor of 3-4 than the experimental value,
This may be caused by the free-electron approxi-
mation,

The reduction of the normal and umklapp pro-
cesses which we found in the theory is in qualitative
agreement with the experiment, where, except for
the low-energy region, G(E) is slightly reduced in
the disordered states.

VII. STRONG-COUPLING EFFECT OF DISORDERED
SUPERCONDUCTORS

With the exact knowledge of G(E), one can cal-
culate the energy gap A, and the transition temper-
ature T, by solving the Eliashberg equation. The
author is not able to do such a computer calcula-
tion yet. However, we wish to remark that the
unexpected property of strong coupling in a disor-
dered superconductor may be understood qualita-
tively. As we saw, the function G(E) for a disor-
dered superconductor has a finite slope at low en-
ergies. The strong-coupling parameter A =2 [G(E)
dE/E weighs the energy dependence of G(E) with
the factor E™ and favors the low-energy contribu-
tion, Therefore, it is the change of the electron-
phonon interaction and its contribution to low-energy
transitions that cause the strong-coupling behavior
of disordered superconductors, Furthermore, the
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parameter determines the phonon renormalization
of the electron mass. Therefore, we expect an
increase of the effective electron mass and the
density of electron states in a disordered metal,

VIII. CONCLUSION

The electron-phonon processes in a disordered
superconductor have been discussed. We found
additional electron-phonon processes which do not
conserve the lattice momentum. These processes
contribute to the Eliashberg function G(E) at low
energies and are responsible for the strong-coupling
behavior of disordered superconductors. Therefore
it is not necessary to assume that the phonon spec-
trum in a disordered superconductor is changed to
explain its anomalous properties. We used the
free-electron eigenfunctions for the whole calcula-
tion. It would be very useful to extend the calcula-
tion by using the correct eigenfunction of the dis-
ordered superconductor, Being an experimentalist
the author would like to leave such a calculation to
a theorist. The results also apply in many respects
to superconducting alloys and amorphous super-
conductors.
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