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Time-dependent Ginzburg-Landau theory is used to investigate the resistive transition in a
"one-dimensional" superconductor as a function of temperature and current through the wire.
A diagrammatic expan'sion, in powers of the interaction between fluctuations, is described
for the electrical conductivity. The conductivity is then calculated using a Hartree-Fock
approximation for the interaction. When large currents flow through the wire, an unstable
region is found near the depressed critical temperature, suggesting possible hysteresis effects
which may have been observed in recent experiments.

I. INTRODUCTION

There has been a great deal of interest in inves-
tigating fluctuation effects in superconductors, and

recently some of this interest has centered on at-
tempts to obtain a detailed understanding of the
resistive transition in samples which are effectively
one dimensional. Such systems consist of tiny
whisker crystals of superconducting material with
cross-sectional dimension d much smaller than

g(T), the Ginzburg-Landau coherence length.
The original microscopic calculations by

Aslamazov and Larkin' described the additional
conductivity due to the presence of fluctuating pairs
at temperatures T & T„and in the limit of small
electric field, for systems of one, bvo, and three
dimensions. Later several authors obtained es-
sentially the same results from linearized time-
dependent Ginzburg-Landau (TDGL) theory, and

succeeded in generalizing expressions for the ex-

cess conductivity to include the case of finite elec-
tric field. ~ All of these calculations were intended

to describe the effects of thermally fluctuating pairs
on the properties of the normal state at tempera-
tures sufficiently above T, that interaction between
fluctuations could be neglected. The TDGL equa-
tion in this case is linear in the order parameter.

A theory of intrinsic resistance in one-dimen-
sional systems below the superconducting transi-
tion, in which the (repulsive) interaction between

Cooper pairs plays a dominant role, was proposed
by Langer and Ambegaokar' (LA) and developed in

detail by McCumber and Halperin' (MH). These
theories assume the system to be initially in one of
the metastable current-carrying states obtained

as solutions to the equilibrium Ginzburg-Landau
equations. Resistance is then due to thermal fluc-
tuations which cause a transition from this meta-
stable state to one with a smaller current, and

depends primarily on the free-energy barrier for
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such a transition. In MH the time-dependent theory
was used to obtain a detailed prediction for these
transition rates. The LA-MH theory is based on
the assumption of a large free-energy barrier to
such transitions, and is therefore inapplicable at
or above T,(f), the Ginzburg-Landau transition
temperature at the given current I.

An interesting new idea was proposed by
Maraelja and elaborated by Maskerp Maraelja,
and Parks' (MMP) in an attempt to extend the ap-
plicability of linearized TDGL theory throughout
the entire transition region. The essence of their
scheme was to include the fourth-order term de-
scribing interaction between fluctuations in what
may be characterized as a self-consistent Hartree
approximation. The resulting theoxy proposed a
prediction for the entire resistive transition in the
limit of small current for systems of one, two, and
three dimensions and was in essential agreement
with the earlier theories in the "Aslamazov-
Larkin" region above T,. However, although the
first experiments on filmsv and whiskers' indicated
the MMP result to be of roughly the correct shape
and width, the one-dimensional version of the theory
was in fundamental disagreement with the LA-MH
prediction in the asymptotic region below T,. The
most recent experimental evidence on whiskerso
strongly supports the general form of the LA-MH
result in this tail region, and we must therefore
conclude that MMP theory at best becomes invalid
at a temperature somewhat below T, in one dimen-
sion.

The present paper is an attempt to extend the
lineal ized TDGL theory describing the onset of the
transition to lower temperature on a more sys-
tematic basis than MMP. In Sec. II a nonequili-
brium perturbation theory based on the TDGI. equa-
tion is developed to describe the initial effects of
interaction between fluctuations in the presence of
a finite electric field. The results are then utilized
in Sec. III to formulate a self-consistent Hartree-
Fock (HF) theory of the resistive transition in one-
dimensional systems carrying finite current. In
Sec. IV this HF theoxy is compared with the MH
result and with MMP and its finite current general-
ization for various values of mean free path and
current.

Throughout this paper we shall assume the val-
idity of (nonlinear) TDGL theory as a basis for cal-
culating the electrical conductivity of a supercon-
ductor. We shall not consider here the difficult
theoretical questions involved in this assumption.

II. NONEQUII. IBRIUM PERTURBATION THEORY

In this section we present a perturbation theory,
based on the TDGL equation, for a system of arbitrary
"dimensionality" in the presence of a uniform elec-
tX'1C field.

The stRQdR1'd Glnzburg-LRQdau expressions fox'

the free energy and supercurrent density of a
super conducto1 al'e

F(@,r)= d'~ a~+(r)~'+ —(+(r)~'
2

(&
- acr) (2 I)

j,(r) = —
g

+*(r} —. &+ @(r)+c.c.28& ~ 1 2eA
I, Sc

(2. 2)

where 0= Qo(T —T~)/T~ and ao, b, and 5 are temper-
ature independent. These parameters may be re-
lated to the properties of the conduction band through
the microscopic derivation of Ginzburg-Landau
theory. ' The results, together with expressions
for the various scaling parameters which we shall
introduce, are summarized in Appendix A.

In the present paper, we interpret (2. I) as the
free energy of the conduction electrons taken over
the restricted ensemble of states which possess a
given configuration of the complex order parameter
4'(r). In the superconductor, this order parameter
corxesponds to the wave function for the condensed
pairs. We assume that +(r} can be treated as a
classical field, and that (2. I) and (2. 2) are valid for
any instantaneous configuration of the order pa-
rameter. The probability density for finding a
particular configuration @(r) in a system in thermal
equilibrium is then given by

(I /Z) e-E('k, r & /her (2. 2)

where the partition function is Z= Tre ~~ "ar. [The
trace here is over the configurations of the order
parameter, and is realized as a functional integra-
tion over the real and imaginary parts of g'(r). ]
All propex'ties of R supercoQductor in equilibrium
near its transition temperature may in principle
be determined from the probability density (2. 2).

In a one-dimensional model we do not consider
fluctuations across the sample; + is a function of
only a single spatial variable denoting position
aloQg the wlx'e. The equlllbl'ium prope1 ties of the
one-dimensional Ginzburg-Landau model constitute
an "exactly soluble" problem. Using well-known
techniques developed for other one-dimensional
systems, "one can express the partition function
Z, and all equal time correlation functions such
as (@"(r)@(~'}},(@*(r)e*(~')@(r")+(~"')),etc. ,
in terms of the eigenvalues and eigenfunctions of
the SchrMinger equation for a two-dimensional
quartic oscillator with potential aB'+ —,'bB' and
kinetic energy ——,

'
5(ks T/&d~)~Vg. In particular, for

a long sample the free energy per unit volume(- InZ/&ke 2') is just equal to the ground-state en-
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ergy of the oscillator, and (I @(r)Is) is the deriva-
tive of this quantity with respect to a, or the expec-
tation value of R in the ground state of the oscil-
lator. %e shall make no use of these exact solu-
tions here, but we remark that there is no true
phase transition in one dimension: The thermo-
dynamic functions are analytic at all temperatures
above zero, and there is no true long-range order
at any temperature.

If the position variable r is treated as two- or
three-dimensional, the properties of the equilibrum
model are no longer exactly soluble. In addition,
the model contains ultraviolet divergences which
must be removed by introducing a short-wavelength
cutoff and then renormalizing the Ginzburg-Landau
parameters as one lets the cutoff wavelength tend

towards zero. '
In order to study nonequilibrium phenomena we

must have a description of the way in which the
system evolves in time. TDGL theory predicts
that, for small and slowly varying fluctuations of
the order parameter, relaxation toward the con-
figuration of minimum free energy is described by
the equation

2ie V
by ——— 4'(r, t)

W

(a) (b) (C)

FIG, 1. Diagrams representing the zero- and first-
order contributions to (I (I'g (t) l ) in powers of the inter-
action between fluctuations.

lay —4; (t)= — a+It q, —::t )0'q (t)
d 2eE
N 1 k 1

coincide with the canonical distribution (2. 3).
Consider now a superconductor in the presence

of a constant electric field, and choose the gauge

V= 0, A= —cEt . (2. I}

In this paper, we shall neglect the possibility of
fluctuations in these potentials. ' The full nonlinear
TDGL equation with Langevin noise term added
then becomes, after Fourier transformation,

1- 2eA 2

a+ b~ +(r, t)~'+ 0 —. V+ 4(r, t),

N (r, t) 5E(4, Z')

N "(r, t)
' (2. 5)

%e must add to this equation a Langevin noise term
f(r, t) todescribe the effectof spontaneous thermal
fluctuations associated with this dissipation. The
simplest assumption is that f(r, t) is a complex
Gaussian stochastic variable with autocorrelation
function:

(f(r, t)f ~(r', t )) = 2hyksT5(r —r )h(t —t'),
(2. 8)

&f(, t)f( ', t')) =o.

(2. 4)

where V(r, t) is the electrochemical potential. s 's
.
5 '7's

The result of microscopic theory for the additional
parameter y is given by (A8). In the absence of a
scalar potential, (2. 4) assumes the purely dissipa-
tive form:

+—„Z ~;*,(t)~;,(t)~;, (t)~;,.;,„;„; +f;,(t),b

243C4

(2. 8)

where ~ is the volume of the system, and we have

taken

+(r, t) = &-'"P;+;(t)e"'.

The transform of (2. 6) then becomes

(f;(t)f; (t')}= 2&y~. T~;„- &(t - t'),

(f;(t)f; (t')}= o.

(2. 8)

(2. Io)

2

ny +a+~ q- t—Z'(q, t, t') =&(t-t') .
ag

In order to solve the TDGI equation (2. 8) we first
consider the Green's function K for the linear
part of the equation:

This choice of noise source assures that the equi-
librium distribution of +, for V= 0 and A indepen-
dent of time, obtained from the TDGL equation will

I

A'(q, t, t') =

exp — dt, a+ ~ q-
k

The solution of (2. 11}is

for t &t'

for t) t

(2. 11)

(2. 12)
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From this form we see immediately that E can be factored in a manner characteristic of a linear time
development oper ator:

zo(q, t, t') = e~z'(q, t, t")z'{q,t", t') (2. 18)

for t & t & t. This property will be of use in subsequent calculations. The time integration in (2. 12) may
be carried out explicitly, and we have finally

0 for t& I,
{j

1 (t —t ) 2eE eE, ~ 5 eE
exp —

@
++8 q-

&
t + (t-t ) + —

@
(t-t ) for t&t

Sp

(2. 14)

Notice that this Green's function depends on two time variables and not simply on their difference. This is
the result of the time dependence arising from our choice of gauge (2. V), and wiH be eliminated at the end
of the calculation.

In terms of the Green's function for the linear operator, a formal solution of (2. 8) is given by

~; (() = «i&'(gi, &, &i) f;, (&i) ~E ~=;,('i)~;, ('iH';, (&i)';,.;,.;.',) (2. 18)

A perturbation theory in powers of the interaction may now be generated by successive iteration of this
equation. Iterating once yields

t
)I'; (t)= dtZ (q„t t) f; (t) —

~ Q 8;„-„-„.g dtZ (q„t„t) f; (t)f (t)f;(t) +O(b) .
(2. 18)

Multiplying this expression by its complex conjugate and retaining only terms to first order in the interac-
tion gives

(f~ (()f~', (&,')) ——.Z ((;,.;,„;„;II ««'(L&„4))(f;,(,~ )f;,(()f;,(4)f;,(«))

4

dt~Z ( q~, t,', t,) (f; (t,)f;,(t,)f; (t,)f; (t,)) + O(b~) . (2. 1V)
c2873a4

Using (2. 10), the zero-order term in the above
expression is seen to be

(~+; (t)~'&")=my', r j' dt[ z(q„t, t,)]'. (2. 18)

This term is represented graphically by Fig. 1(a),
&&here the time scale is in the vertical direction.
The open circle represents the action of the random

forces at time t„ the closed square the observation
at time I;, and the directed lines the Green's func-
tions Z associated with the factors of f* (forward
going) and f (backward going).

Now consider the first-order terms in (2. 1V).
Since the expectation value of a product of Gaus-
sian random forces factors in pairs, these terms
are easily reduced to the form

dt,z'(q„ t, t,) dt,'z'(q„ t„t,')z'(q„t, t,')(M yt, r)' ——„Z dt, [z'(q„ t„t,)]'
~I «o ~ QP 2

+ dt,'z'(q»t, t,') dt,z'(q„t, t,)z'(q„t,', t,)(2ayI, r)2 ——Q dt, [zo(q„t,', t,)]2
~Ct ~««o
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(0) (b) (C)

FIG. 2. Diagrams representing the second-order
contributions to (14~ (t) I ) which consist of successive
first-order corrections to the various propagation lines.
Four additional distinct diagrams are obtained by revers-
ing arrows in (b) and (c).

The corresponding diagrams are shown in Figs.
1(b) and l(c).

Higher-order corrections to (I+pl(t) I ) may be
obtained by successive iteration of (2. 15), but the

procedure rapidly becomes extremely tedious.
The structure of this somewhat unusual perturba-
tion theory may, however, be inferred by compar-
ing the diagrams in Fig. 1 with their corresponding
mathematical expressions. The nth-order contri-
bution to ( I @; (t) I ) may be obta, ined by drawing
all distinct diagrams containing n interaction ver-
tices (triangles), n+1 fluctuation vertices (open
circles), and a single measurement vertex at time
t (closed square). The vertices are labeled with
time indices and connected by propagator lines such
that four lines are attached to each interaction vertex
and two to each fluctuation and measurement vertex.
Three of the lines from each interaction vertex
must connect it to vertices at earlier times, and

the remaining one to a vertex at a later time. The
two lines attached to each fluctuation vertex must
connect it with vertices at later times, while the
measurement vertex must be the latest time in the

diagram. Each propagator has an arrow associated
with it, which may point either forward or backward
in time; but the number of lines entering any vertex
must equal the number of lines leaving it. The
lines of the diagram are labeled with wave-vector
indices to conserve wave vector at all vertices.
The value of such a diagram is then computed ac-
cording to the following rules:

(i) Associate with each propagation line of wave
vector q running between times t and t a factor
Ko(q, t, t ), where t is the later time, regardless
of the direction of the arrow.

(ii) Associate with each fluctuation vertex a factor
2@ye, I'.

(iii) Associate with each interaction vertex a, fac-
tor —2b/&.

(iv) Multiply by 1/2, where m is the number of
equivalent (identical) lines connecting pairs of in-
teraction vertices.

(v) Sum over all internal wave vectors and in-
tegrate over all internal times from —~ to their
upper limit as indicated in the diagram.
As an illustration, all topologically distinct dia-
grams corresponding to second-order corrections
to (I +;,(t) Is) are indicated in Figs. 2 and 3.

We shall next carry out a partial resummation
of this perturbation expansion. Notice that all of
the second-order diagrams in Fig. 2 result from
the insertion of additional first-order corrections
to the propagation lines of Figs. 1(b) and l(c). All
such diagrams may be eliminated by renormalizing
the Green's function self-consistently to first
order. This is accomplished by the solution of the
integral equation represented graphically in Fig.
4. The procedure here is precisely analogous to
the usual sort of Hartree-Fock approximation to
the self-energy in an equilibrium perturbation
theory. From Fig. 4 we have for the renormalized
Green's function E'

t

K'(q, t, t') =K'(q, t, t') + dt,K'(q, t, t )K1'(q, t„ t ) 28yksT ——Q dt's [K'(q„ t„ t,)]'
qp

=K'(q, t, t')+[-2&(~+ ')] ~ dtlK'(q, t, tl)K'(q, tl t )
t'

(2. 2O)

where Green's function. The result is

K'(q, t, t') = K'(q, t, t') exp[(-2b(~ +i ')/ey)(t- t')] .

dt, [K'(q„ t, t,)]' (2. 21)
a

is independent of position and time in the presence
of a constant electric field. The integral equation
(2. 2Q) is easily solved by iterating and using the
fac'tox'lza'tion property (2. 13) of 'tile Ilollill'terac'ting

(2. 22)

Comparing this expression w'ith the explicit form
(2. 14) for the noninteracting Green's function, we

see that the Hartree-Fock approximation merely
amounts to replacing the parameter a in the linear
theory with
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(b) (C)

Here we have defined a fictitious "effective temper-
ature" parameter T by

(T- T) &Tg=—Qo T =CO

and a "temperature-dependent" coherence length

FIG. 3. Diagrams representing the second-order
COCtl'1t)utlOQB 'tQ ( I 4'g) (f) I ) WhlCh Rl'8 ll'1'BdUClk&16 ill

the sense that they are not simply iterations of the first-
order correction. Two additional distinct diagrams are
obtained by reversing all arrows in (b) and (c).

The scaling parameter for the electric field is

(2. 28)

a=a+2b(i Ii))) . (2. 22)

In two and three dimensions there is an ultraviolet
divergence in the expression (2. 21) for (I@ I ) which
must be removed from (2. 23) by a renormalization
of the transition temperature.

The average occupation of the wave-vector states
may now be determined in this Hartree-Fock ap-
proximation from Fig. l(a), using the renormalized
Green's function (2. 22):

a'"
&o(o) = 51i2ye

(2. 29)

All properties of the superconductor in the pres-
ence of a constant electric field may now be deter-
mined in the Hartree-Pock approximation from the
result (2. 25). In particular, the supercurrent
density in this representation is given by"

(2. 3o)

2keT ', -2(t-t')
aV' exp

0+5 j -
&

(k+t ), + — {t-i')eE I
~ 6 eE

This result now includes the contributions from all
diagrams in Figs. 1 and 2, as well as a whole
hierarchy of higher-order terms. The first correc-
tions to this approximation correspond to the dia-
grams in Fig. 3. The Hartree-Pock approximation
presumably remains valid so long as the density
of fluctuations in the system is sufficiently small
that these second-order corrections are negligible.

The rather inconvenient time dependence, due to
our choice of gauge, in the result (2. 24) may be
easily eliminated. The average population of pairs
with a given kinetic momentum Ak is independent
of time, for a constant electric field, and given in
the HF approximation by

HI. HARTREE-POCK THEORY

In this section we shall develop in detail the pre-
dictions of Hartree-Fock theory for the onset of the
resistive transition in one-dimensional supercon-
ductors. We begin by obtaining an expression for
the expectation value of the order parameter in the
presence of the electric field. Using (2. 25), we

obtain for a one-dimensional system

FIG. 4. Diagrammatic representation of the first-
order self-consistent renormaIization for the Green's
fUnction E (g, f, t ) .
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&T 1 F
xexp -y

~

-t+ —
2 E y, 3. 1

0

x exp — u+ &zu

where d is the cross-sectional area. The integral
involved in this expression has previously been
evaluated in terms of the tabulated Airy functions
by one of us in a different context. '4 We therefore
define the function

F, (x) -=(i/W)T ) J "duu-'" exp[ —(xu+ —,', u')]

= m([Ai(- x)]'+ [Bi(-x)] }

The function defined here is simply the derivative
of (3.2):

&p (x) = (i/v ~ ) J
"

du u' ' exp[- (xu + f'2u')]

= 2)T[Ai(- x)Ai'(- x)+ Bi(-x)Bi'(- x)]

as x- —~ . (3.2)

3/22x

2e»('I xl'")
as x-+ ~

as x--~. (3.8)

The result (3. i) may now be written in the form
We also adopt here the standard notation:

I, = ek~T, /vh . (s.8)

where we have defined the length

q—= & /bkeT, . (s. 4)

Equations (3. 5) and (3.7) constitute our HF theory
of the onset of the resistive transition in one-dimen-
sional systems. The familiar result in the
Aslamazov-Larkin region may be easily recovered
using the asymptotic forms given in (3. 2) and (3.8).
In the limit of vanishing electric field and for tem-
peratures sufficiently above the transition

Now that (I + I ) has been determined as a function
of the "effective temperature" T, we return to
(2. 23) in order to establish the relationship between
T and the actual temperature T. Using (3.3), this
relationship may be written

we have

Fe 3/2

'=iek~() rT

&'(0) En(0) '"
F & Eo(o) '" &T I

T~ T~ ')id E
I)

E T~ j
(3. 5)

Next we wish to determine the magnitude of the
current due to fluctuations. From (2. 30) and (2. 25)
we find for the supercurrent density in a one-dimen-
sional system

so that the excess conductivity due to fluctuations
in a one-dimensional superconductor is given in
this region by

(y) 7Te
3/2

iond' ~( ) ~T

In general, however, our equations are quite com-
plicated, and it will be advantageous to introduce
a more convenient set of parameters.

In most experiments, the total current carried
by the system

( E (0) ~~3 ET)
i=f„+I, =o„d'E+»g&l '

T l
(3 i2)

&T 1 Ex exp —y — + —= y . 3.6

Therefore the Hartree-Fock prediction for the total
supercurrent carried by the wire becomes

I,= d'(j, )

ek~T 1
d )/qdQQ

is held constant, and the resistance is measured
as a function of temperature. We assume that the
normal conductivity o„ is temperature independent
near the transition. The natural scale for the elec-
tric field is then the field E„which is present when
the system is in the normal state, so that

E =- o.E„=af/o„d',

and & is the ratio of the measured resistance to the
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normal resistance:

a = R/R„.
We will define a dimensionless current by

j =I/w—I, .
The reduced temperature is

e -=(T —T,)/T, ,

(3. 15)

(3. 16)

the HF approximation deviate substantially from
those obtained from the linearized theory, which
neglects interaction between fluctuations altogether.
We would not expect the HF theory to remain valid
as a perturbation expansion much beyond the point
at which interaction effects first become important.
Both of these ideas will be utilized in the detailed
interpretation of several numerical examples pre-
sented in Sec. IV.

a,nd the natural scale for this quantity turns out to
be

The prediction of microscopic theory for E, is
given by (A12). Using this set of parameters, Eqs.
(3. 5) and (3. I) assume the form

(3. 18)

where we have defined an additional dimension". ess
pa.rameter:

(s. 20)

The microscopic expression for this quantity is
given by (A13). It is found to depend only on the
mean free path and to be of the order of unity for
most systems of experimental interest.

The final step in formulating this theory is to ob-
tain some sort of estimate of its region of validity.
There are several ways this can be done. One
method is to calculate the contributions of the low-
est-order corrections to the HF expressions for
the order parameter and supercurrent, given in
Fig. 3, and then to assume the theory to be valid
down to temperatures at which these corrections
become significant. Explicit expressions for these
contributions are given in Appendix B. The result-
ing integrals are extremely complicated, however,
and we have not attempted to evaluate them exactly.
One can readily establish an upper bound to the
second-order correction in the form

where

C = ~[ZF, (x)]' F,(x), X=- Z-
Ec

(3.22}

The upper bound (3. 21) appears to be too crude to
be very useful in practice, however, particularly
at large currents.

Another way of estimating where the theory may
break down is simply to see where the results of

IV. COMPARISON WITH PREVIOUS THEORIES

The HF theory developed in the preceding sec-
tions will now be compared with the previous theo-
ries of superconducting resistance in one-dimen-
sional systems.

The present theory is basically similar to that
proposed by MMP with the following exceptions:
(i) A Hartrhe-Fock instead of a Hartree approxima-
tion is used to include the effect of interaction be-
tween fluctuations in a self-consistent manner.
(ii) The first correction terms to the HF theory in
powers of the interaction are used to estimate its
region of validity as a formal perturbation expan-
sion, while MMP assumed their theory to cover the
entire transition region. (iii) The present theory
is generalized to include the case of finite current.

The HF theory is contained in Eqs. (3. 18) and
(3.19) above.

All that need be done to employ a Hartree instead
of a Hartree-Fock approximation is to remove the
factor of 2 in (2. 23). This corresponds to replacing
(3. 19) with

(4. 1)

Equations (4. 1) and (3. 18) taken together then con-
stitute a, self-consistent Hartree theory, of which
the one-dimensional version of MMP is the zero-
current limit. The Hartree theory does not cor-
rectly give the first correction to the linear TDGL
theory as an expansion in powers of the interac-
tion, that is, for a low density of Cooper pairs.
However, Marcelja has argued in favor of the Har-
tree theory on the grounds that it gives the correct
limiting value for ( I 4 I & in zero electric field for
T well below T„whereas the HF theory does not.
The HF theory for the case of zero field has pre-
viously been derived by Schmid" using a variational
approach. More recently, Kajimura et al. "have
written down expressions for the supercurrent at
finite fields in the Hartree-Fock approximation,
but have not discussed the ease of one-dimensional
systems.

The LA-MH theory of intrinsic supercondueting
resistance in one-dimension is in a, sense compli-
mentary to the present work. The LA calculation
is based on the idea that well below the tra, nsition
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system over the free-energy barrier to the next
metastable state of lower current is proportional
to e ""~"~, where DF„ is the barrier height; this
rate is then proportional to the resistance. MH
succeeded in doing a detailed calculation, based on
TDGL theory, of the "attempt frequency. " These
theories are valid only for temperatures below T,(I),
where the free-energy barrier 5I".» ABT so that
the current-carrying states involved are truly meta-
stable. The present HF theory, by contrast, ap-
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FIG. 5, Graphs of resistance vs temperature for dirty,
intermediate, and clean one-dimensional systems carry-
1ng iÃlfinitesixnal curreQt according to tI1e HE MMP (Har-
tree), and MH theories. Ybe scaling factor &~ for the
reduced temperature &= (T- Tc)/Tc is mean free path
dependent and given by (A12). Solid portions of curves
indicate estimated regions of validity.
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the system is essentially superconducting and can
be found in one of the metastable current-carrying
states which are obtained as plane-wave solutions
to the equilibrium Ginzburg-I andau equations. A
solution carrying a current I, and corresponding
to a local Ininimum of the free energy, exists below
the mean-field critical temperature

The rate at which thermal fluctuations carry the

MH

1l

94.0 -)2.0 T (I) -8.0
C

s
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FIG. 6. Graphs of resistance vs temperature for dirty,
inteI'IAedlate, RHd cIBRQ oIle diIQBQslonal systems 1Q the
presence of a fixed current I= 50@I~, Ij- l. 05K~ pA
(2'~ in Nj „as predicted by the HF, PRrtree, and MH
theor1es.
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proaches the transition from above by assuming the
system to be essentially normal, but containing a
low density of thermally fluctuating pairs resulting
in a small reduction in resistance. This theory
ceases to be valid when the density of pairs becomes
so large that their interactions play a dominant
role. By combining these two pictures, we can ob-
tain a complete description of the superconducting
transition in one dimension everywhere but in a,

small region near the mean-field critical tempera-
ture. In the present notation, the MH results may
be written as

n= no —. [1 —e 'J] — e -~ B c-s e. -Ep Ar
7T

&& (1 —~3~)" ' (1+ —,'~'), (4. 3)
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HF
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where K is determined from

j =4~ (e/e, ) ~"'~(1 —~')

and the free-energy barrier is given by
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Numerical solutions depicting the predictions of
HF, Hartree, and MH theories for several values
of current and mean free path are shown in Figs.
5-7. Aside from determining the temperature
scale through a„ the important mean-free-path
dependence of these theories is contained in the
parameter no. In developing these data, we have
assumed the relation (A13) between no and / pre-
dicted by microscopic theory.

Consider first the results for dirty, intermediate,
and clean samples in the limit of zero current
shown in Fig. 5. All the theories simplify consid-
erably in this case, and their limiting forms are
summarized in Appendix C. In each of these figures
it appears that the HF theory, coming down from
above T„may be joined smoothly to the MH pre-
diction approaching the transition from below. If
such an interpolation were made, we see that in
the dirty limit the over-all shape of the transition
would be very close to that predicted by MMP. In
fact with a slight shift in critical temperature,
MMP would be essentially indistinguishable from
the combined HF and MH picture, except far down
into the tail region. For the cleaner samples, how-
ever, the shape of the MMP prediction becomes
noticeably different from the combined HF and MH
results. In the first experiments on one-dimen-
sional systemse the data obtained on dirty samples
were fit remarkably well by the MMP form, while
in cleaner specimens the fit was not especially good.

g =)0.0 fo
I "-5007rI)

0.5-

0
-64.0

MH~
I a I I I a I i I a I

-56.0 T (() -4Q.Q -52.0 -24.0 -16.0
C

C

FIG. 7. Graphs of resistance vs temperature for dirty,
intermediate, and clean one-dimensional systems in the
presence of a fixed current L=500xI) [J= 10.5Tc yh.
(Tc in 'K)], as predicted by the HF, Hartree, and MH
theories,

Later measurements strongly support the general
form of the MH result over MMP in the tail region,
and we suspect that the initial success in fitting the
MMP theory to data on dirty samples was due to the
coincidence noted here. In addition we remark that
possible discrepancies in the Azlamazov-Larkin
theory for the linear region above T, in clean
samples have been investigated both experimental-
ly ' and theoretically. These considerations on
the validity of TDGL theory are beyond the scope
of the present paper.
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Graphs of the resistance versus temperature at
a fixed current I =50vI, [I=1.05T, pA (T, in K)],
are shown in Fig. 6. The most important feature
here is that in the dirty limit the HF prediction ap-
pears to remain valid down to temperatures at or
below the mean-field critical temperature T, (I).
In Fig. 6(a) we see from the separation of the HF
from the Hartree result that the effects of interac-
tion between fluctuations are just becoming signifi-
cant in the neighborhood of T,(I); and our upper
bound (3. 22) on the lowest-order corrections to HF
theory also becomes non-negligible in this region.
The prediction of a basically normal-state solution
to the TDGL equation existing below the mean-field
transition temperature for this relatively small
current in dirty samples is therefore marginal.
On the other hand, MH theory predicts a basically
superconducting state, with resistance R/R„= 0 on
the scale of the diagram, up to temperatures in the
immediate neighborhood of T,(I). This raises the
possibility of multiple solutions to the TDGL equa-
tion under these conditions. For the cleaner sam-
ples in Figs. 6(b) and 6(c), the HF approximation
breaks down as a formal perturbation theory well
above T,(I), and there is no evidence indicating
multiple solutions.

The results for a relatively large current
I= 500vI„[I=10. 5T, pA (T, in 'K)], are shown in
Fig. 7. The possible overlap in the regions of
validity of the HF and MH theories noted above in
the dirty limit may now be firmly established. In
Fig. 7(a) we see that the effect of interaction be-
tween fluctuations remains negligible down to tem-
peratures far below T,(I). Even the gross overesti-
mate (3. 22) for the magnitude of the lowest-order
corrections to the HF prediction is found to be of
order 10 near T,(I), and indicates that the HF ap-
proximation is an excellent one well down into the
region in which MH theory predicts that the sys-
tem will be essentially superconducting. For the
intermediate system in Fig. 7(b), we would begin
to make a reasonably confident prediction of such
an overlap near this value of the current, while
in the clean system of Fig. 7(c) the HF approxima-
tion once again breaks down well above T,(I).

The existence of two distinct solutions to the
TDGL equation over a certain temperature range,
for sufficiently large values of the current, opens
up several interesting possibilities. First, we
note that the existence of a third (unstable) solution
is required by the fact that there must be a unique
solution of the TDGL model for every value of tem-
perature and electric field, and the resulting cur-
rent must be a continuous function of these vari-
ables. Notice that the curves obtained from the
Hartree theory in Figs. 6(a), 7(a), and 7(b) have an
S shape, with a region of multiple values for the
resistance in a range of temperature near T,(I).

IIII
FIG. 8, Qualitative features of the I- V characteristic

for a one-dimensional superconductor at a temperature
sufficiently low that multiple solutions to the TDGL equa-
tion exist for a range of current values.

(The HF curves would have a similar shape, but
have not been plotted outside their expected region
of validity. ) Although neither the Hartree nor
the HF approximation is expected to be quantita-
tively valid in this region of multiple values, we
nevertheless expect that the qualitative shape of
the resistance curves is the same as the ones
which would correspond to an exact solution of
the TDGL model under these circumstances. In
addition it may readily be shown that a plot of
voltage versus current in the Hartree or HF approx-
imation at a fixed temperature in these regions
must also be S shaped, with an interval of negative
differential resistivity dV/di, as sketched in Fig.
8. A negative resistance region was noted inde-
pendently by Gor'kov" for the case of a thin film
at finite currents.

The possible physical consequences of such
multiple solutions to the TDGL equation are quite
interesting. If the temperature is varied at con-
stant current, we might expect a vertical first-
order transition between the low- and high-resis-
tance states in the neighborhood of T,(I). It may
also be possible for the system to remain meta-
stably in either state over some temperature
range, in which case a hysteresis would be observed
in the experimental resistance-versus-temperature
curves. Another possibility is that the system may
become spatially inhomogeneous with some portions
of the wire in each of the two states, orthatportions
of the system will oscillate rapidly in time between
the two states with associated production of elec-
tromagnetic radiation. A more detailed investiga-
tion of these possibilities would undoubtedly require
proper consideration of voltage fluctuations, which
have been ignored in the present model.

The instabilities and hysteresis effects which one
might predict on the basis of this analysis may
have been observed in experiments on one-dimen-
sional samples at finite currents by the Cornell
group. ' Some of their samples exhibit the hystere-
sis behavior discussed here, but with the superposi-
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tion of small, curiously regular, resistance steps
on the otherwise vertical hysteresis lobes of the
transition. In many of their data at finite currents,
however, these steps appear as the dominant fea-
ture, with a small amount of hysteresis showing
only on the individual steps. The origin of these
resistance steps is not at present understood, and
is the subject of considerable interest. It is hoped
that the theory presented here will provide an im-
proved basis for understanding such effects.

&0 =0. 18@my/ke T,

and the density of conduction electrons is

N= (1/sg )ky .
The Gor'kov function is defined by

x(p) = Z 1 1

„0 (2m+1) (2p+1+p) „0 (2p+1)
Z

so that in the clean and dirty limits we have

(A2)

(As)

(A4)

V. CONCLUSION

In this paper we have developed a systemmatic
perturbation theory for Ginzburg-Landau systems
in the presence of a finite electric field, and have
applied it to an investigation of thy onset of the
resistive transition in one-dimensional supercon-
ductors. In the limit of zero current, the HF theory
derived here may be joined smoothly to the previ-
ous MH prediction of intrinsic superconducting re-
sistance below the transition temperature. At suf-
ficiently large currents, these two theories together
predict the presence of an instability near the mean-
field critical temperature and the possibility of
associated hysteresis effects. Such instabilities
are predicted to set in at smaller currents in
dirtier samples.
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APPENDIX A

The expressions obtained from microscopic
theory for the Ginzburg-Landau coefficients depend
on the normalization chosen for the order param-
eter. (The final results for all physical quantities,
such as electrical conductivity, are of course
normalization independent. ) One choice which is
fairly common leads to the expressions

O2 T-T, hT
2m]'(0) T, ' T,

(Al)
2 @2

2m) (O) Xq(0. 882],/f) '
2m

These expressions are derived on the basis of a
spherical band model for the conduction electrons
with effective mass m. Here / is the mean free
path and $0 the BCS coherence length:

1,
X(0. 882)p/l) =

1 38f/ (A5)

The Ginzburg-Landau coherence length is defined by

(A6)

where

$(0) =0. 74[y(0. 882)0/I)]'i $0

0. 74)0, $0(~ i

o. 88(],f)"',
(A7)

The microscopic result for the additional param-
eter in the time-dependent theory is

gao
BkB Tc

(As)

3/2
() ao 8 AT,

l'e p e$ (0)
(AQ)

2

=8 ~ k T X(0 882(0/&)kgb'(0),
B c & B

mI, = eke T,/h = 2. 097T, && 10 pA (T, in 'K), (All)

$ (0) bkeT,
c ~d2 ~

1/2 3/2d2

= Gp
' [y(0. 882)0/l)] '

(A12)

+o = I = 1 84 [y(0 882)0/l)] ~ (A13)
e„d E()(0)E, l

] 0

Several of these quantities may be expressed in a
somewhat more convenient form by utilizing the
BCS relation for the bulk critical. field in the neigh-
borhood of the transition temperature:

H, (T) = 1.74H, (0)[1—T/T, ] . (A14)

We now list expressions for the various scaling pa-
rameters introduced in this paper both in terms of
Ginzburg-Landau coefficients and the corresponding
microscopic expressions:
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Ne then have

o odt(o) tt!(o)t'(o))
kB &g

u T= ' "
:(o){(o) ')

]0 5]7 N B c
5'{(0)/Odk tt,'(Ol{(O)dk)

'

APPENDIX 8

In this appendix we shall calculate an upper bound for the first correction in powers of the interaction to
the HF theory developed in the text. The lowest-order diagrams not contained in our first-order resumma-
tion are shown in Fig. 3. Dashed lines have been placed on this figure to indicate the way in which we in-
tend to break up the time integrations U. sing the factorization property (2. 13), the top —, of each of these
diagrams is identical and we can write them together as

t 2 t1 4

( I &,(t) I'&{"= «,[ff(Ih, t, t )]'(ft~)' (2@» T)' —— »3,.~, 3,.34 dt{ IJ [&((1;,t„ tI)]

P t'1 tt
x
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dt, fZ(rt„t'„t, )]')
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dt, ftt(itrtit, )]'f , rt, t ftt(r)4 tf 64)l'

~00 «O{f)

t3 tl tl

+ t dt)'[fk((l„ t'„ t", )] dt3[K(~(13 t) t3)]' dt4[Z({l„ t,', t4)]t
I

7

2

O jl dt, Itt(IO, t'„ t","]'))dt, [tt(rr„ 6'„ t, )]' dt, ftt(it„ t'„ t, )]') . (O()
J O(k

The terms corresponding to Figs. 3(b) and 3(c) carry an extra factor of 2 because the diagrams with all lines
reversed are not shown explicitly as in Figs. 1(b) and 1(c). The term corresponding to Fig. 3(a) also car-
ries an extra factor of 2 here because of the other possible relative time ordering of the two interaction
vertices. This factor of 2 is, however, canceled in the terms corresponding to Figs. 3(a) and 3(b) due to
the presence of equivalent lines qs and q4. Eliminating the explicit; gauge dependence as in Sec. II, this
expression may be reduced to'the form
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To satisfy the wave-vector conservation condition we take

k2 —P1-k1, k3- P, —P2,

In one dimension, the wave-vector summation then becomes
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It would, in principle, be possible to carry out the integration in (85) exactly, since all that is required is
a convolution of Gausslans, but the result would be hopelessly complicated. IQ order to obtRln R viRMe
result we make the grossest possible simplification, which gives as an upper bound to (85):
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Using the Schmartz inequality it may be shown that

dyp exp -y2 — + = y2 — dye y, ~ exp -y& — +

nT I E
0

d3'1 Xa exP Xa
~ 7( +I2 ~ 3'3) (AT Eo

Since the first factor on the right-hand side in (BV) is just ( I@I,, I )IIF, we readily establish the inequality
(3.2l).

APPENMX C

In the limit of zero current, the various theories
of superconducting resistance in one-dimensional
systems may be reduced to the following forms:

HP theory:

valid for 6

Hartree (MMP) theory:

MH theory:

~

9/4 4~2 s ~

1/1
II =(~&II)' 'cI, — exP — —— (C3)

cl 3

valid for —6
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Influence of Dislocation Motion on the Ultrasonic-Velocity Change in

Superconduc ting Indium
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The change in velocity of compressional sound waves propagating in superconducting
and normal indium has been measured at 13 MHz as a function of temperature and ampli-
tude of the cw ultrasonic signal. It is found that the velocity of sound is strongly am-

plitude dependent, especially in the superconducting state. At the highest amplitude utilized,

the velocity is observed to have changed by about one part in 10 . The results can be ex-
plained on the basis of a direct interaction between the conduction electrons and oscillating
dislocations as proposed by Granato and Lucke and by Kravchenko.

INTRODUCTION

Recent publications by several authors' have

questioned the existence of a direct interaction be-
tween the electron gas in metals and oscillating
dislocations, a mechanism which has been postu-
lated to explain amplitude-dependent effects ob-
served in ultrasonic attenuation measurements.
The purpose of this paper is to report that com-
pressional-wave ultrasonic-velocity measurements
in normal and superconducting indium strongly con-
firm the existence of an electron-dislocation inter-
action, and the experimental observations agree
qualitatively with the theory of Granato and Lucke. 6

The results also are in accord with several recent
experimental and theoretical investigations of the
effect of the conducting electrons on dislocation
motion (both vibrational and translational). 7 ' It
appears that this technique might be quite useful
for investigating dislocation effects in pure metals,
especially the phenomena which occur when the

electron gas is shorted out by the superconducting

electrons.
The model of Granato and Lucke assumes that

a network of dislocations of length L„ in a crystal
is pinned by impurity points L~ apart and by the

intersection of the network dislocation loops. When

an external stress wave is applied, the dislocations
oscillate in a manner similar to the forced-damped
vibration of a string' and two loss mechanisms

are predicted to change the velocity and the log-
arithmic decrement (i. e. , the attenuation) of the
impressed wave. These are (a) a frequency-de-
pendent amplitude-independent effect caused by the
interaction of the forced dislocation motion with
some damping motion (in this case, the conduction
electrons) and (b) an amplitude-dependent loss due

to the fact that on the basis of this model, the same
stress-strain law is not followed on the loading and

unloading cycles. Granato and Lucke derived the

following equations for eases (a) and (b), respec-
tively:

(
+V Cf Mo —Q)

v „2g (~2 —+2)2+ +2d 2


