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Superoperators have been used in several recent papers to treat the effects of relaxation on
the shape of spectrum lines. Although the emphasis in these papers has been on Mossbauer
spectra, the generality of the treatments allows them to be applied in many fields of spectro-
scopy. To apply these theories it has been necessary in most cases of interest to plot out the spec-
trum, point by point, inverting a relatively large matrix at each point. In this paper it is
shown that parameters of the spectrum, such as linewidths, may be obtained directly from the
eigenvalues of the superoperators used in these theories. With the help of perturbation theory,
some general results are then obtained in the limiting cases of slow and fast relaxation rates.
This eigenvalue treatment greatly simplifies problems such as determining how a particular
term in the Hamiltonian affects the shape of the spectrum.

I. INTRODVCTION

Recently, several papers' ' have appeared that
use a superoperator formalism to obtain the Moss-
bauer line shape in the presence of spin relaxa-
tion. As has been pointed out, the same formalism
is applicable in other types of spectroscopy where
random processes affect the line shape. All of
these papers have the common feature that the
spectrum shape is given by an expression in which
the principal term is (~-6'), where 6 is a super-
operator. Except in a few simple cases, numeri-
cal methods have been the only feasible way of
evaluating the spectra. This, however, obscures
the relationship between the parameters character-
izing the spectrum and the constituents of g. For
example, using numerical methods to obtain the
linewidth produced by a given (P, one would first
plot the spectrum by inverting +-p for different
values of w, and then "measure" the resulting line-
width. To obtain the dependence of the linewidth
on the relaxation rate, it would be necessary to
repeat this process for many values of the relaxa-
tion rate.

In this paper, we show that (i) the spectrum is
given by a sum of resonance lines, the positions
and widths of which are, respectively, the real
and imaginary parts of the eigenvalues of O', The

amplitudes of the lines are obtained from matrix
elements ot' the eigenvectors of 6'. (ii) In cases
where one part of 6' is small, a perturbation ex-
pansion can be used to obtain expressions for the
line positions, widths, and amplitudes. With this
perturbation technique it becomes fairly simple in
many cases to examine how various terms of g af-
fect the spectrum shape. The perturbation tech-
nique is particularly useful when the relaxation
frequencies are either much larger or much smaller
than the hyperfine frequencies. In these cases,

the hyperfine terms in 6' or the relaxation terms,
respectively, may be regarded as the perturbation.

In Sec. II we discuss the basic theory: the eigen-
value treatment and the perturbation expansion for
the eigenvalues and eigenvectors. We then use the
theory to discuss the case of slow relaxation in
Sec. III, and the case of fast relaxation in Sec. IV.
In order to avoid being too abstract and obscure,
this paper discusses the relaxation effects in the
context of Mossbauer spectroscopy. The changes
necessary for application in other fields of spec-
troscopy will not generally alter the basic struc-
ture of the theory.

II. BASIC THEORY

where X; and li) are eigenvalues and eigenvectors
of A.

Essentially the same idea may be used to invert
the expression ~- {P . Using the notation of Ref. 3,
6'is given by

O' = —K()+i% —
2 iI',

where 1 is the natural linewidth. The I iouville
superoperatol $Cp is defined as the commutator of
the static Hamiltonian Kp.'

@pA =&pA -A$Cp, (4)

for any operator A. The Hamiltonian 3Cp contains
all of the time-independent interactions of the
nucleus and its surrounding electrons, principally

One may use the fact that an operator and its
inverse have the same eigenfunctions to show that
the inverse of an Hermitian operator A may be
written as

A '=Z,.~, '(i& &i
[

or, equivalently,
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the crystal field, Zeeman, and hyperfine inter-
actions. The relaxation superoperator VP contains
all the information about the x'elaxation of the spin
system; the exact form depends on the particular
model used. Due to this last term, 6'is a non-Her-
mitian superoperator, so that finding the inverse
of &o-p is slightly more complicated than Eq. (1).

The use of superoperators was first introduced
by Kubo and then applied by Zwanzig. 6 Since then,
the formalism has been used in several fields by
a number of authors. The present work uses
several px'opertles of supex'opel Rtol's which have
previously been discussed by Fanov and Ben-Reu-
ven. The px'operties of superoperators have been
summarized in the appendices of papers by Primas,
Blume, and Gabriel. The notation in the present
payer is a mixture of that of Blume and of Gabriel.
One new convention has been introduced: script
letters (except X) denote superoperators.

The compllcRtlons cRused by tI16 non-Hex'Qlltlclty
of 6' are due to the fact that the eigenvectors of a
non-Hermitian matrix are not necessarily ortho-
gonal. Vie will denote the eigenvectors of g by
8 and the eigenvalues by P:

The Hermitian conjugate of (P has eigenvectoxs
which we denote Cz,' the corresponding eigenvalues
are the complex conjugates P&. As 6' is a super-
operator, B~ and C& are ordinary operators. In

matrix element form the eigenvalue equations are

2 (ijl+laf)&ulB, I&=p„&ilB
I j&, (8)

Z &i C, j&*(ij s uf) =p, &u C, I &* . (V)

The notation of Eqs. (8) and (I) is somewhat
clumsy for manipulative purposes. By using super-
operator notation, we may write the eigenvalue
equRtlons mole compactly:

s IB.)=p. B.),
{col+=pe(col .

(8)

(9)

By multiplying both sides of Eq. (8) by (C~ on the

left, and Eq. (9) by B ) on the right, we obtain
the result" that (C~ B,) = 0 unless n = P. Since the

eigenvalue equations do not determine the normal-
ization of A. ox 8, we may choose it such that

(c~IB )=5~, .
This provides the necessary orthogonality relation,
from which we may obtain

(~-&) '=».)(C. I(& -4') '
B&)(c&l

= ~.(~-p. ) ' B.)(c.I .

g(~)=i(Ap (~-s') ' A), (14)

where we have assumed that p is Hermitian.
Using Eq. (12) the inversion is readily obtained,

p i(Ap [Be)(ce]A)
e &Pe

In more conventional notation, the expressions in
the numerator are given by

(Ap B )= Tr[pA&B, ],
(C. IA)= Tr[C.'A].

(18)

(iv)

The spectrum line shape is obtained from the real
part of g((o):

[ ( )] g asn'Yn hn(& &e)
(~ -~.)'+ (~./2P ' (18)

where we have introduced the real and imaginary
pRx'ts:

(Ap B,)(C, A) = a, + ib, ,

Pn +n iYn/2 (20)

The first term in the numerator of Eq. (18) yields
a Lorentzian with width y, area proportional to
a, and centered at co=~~. There is also a, dis-
persion term proportional to b . Thus, we see
that the eigenvalues and matrix elements of the
eigenvectors of 5 give the important parameters
of the spectrum.

As a simple illustra, tion of the theory, we take
the trivial ease of no relaxation. Setting 'N = 0 in
Eq. {3)we have (P = —3C0 ——,'sl'. Since I' is diag-
onal, the eigenvectors of (P are the same as those
of the Liouville operator Xo, which is Hermitian.
As has been pointed out, 2' the eigenvalues and
eigenvectors of Xo may be obtained directly from
those of Xo, the static Hamiltonian of the system;
thus,

The spectrum shape is obtained from the function
g((o) defined as

g((o) = iTr[pAt((u-6') 'A],
where p is the density matrix, and A is the op-
erator for the emission (or absorption) of a photon.
In superoperator notation, Eq. (13) may be writ-
ten

Using Eq. (11)we may obtain an expression for
(&u-5') which is similar to Eq. (1). Making use
of the fact that 6', &u- a', and (&u-S') ' all have the
same eigenvectors, we obtain

where~~ u;& =-(E;—B&), and i and j denote eigen-
states of Ko'.

Poli) =Egli& .
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B -=B;q= i)(j
The spectrum is then given by

r/2
Re@(&o)]=K a;,

( ),

(23)

Since Kp is Hermitian, the eigenvectors & and
C are identical, and are given by

gp p
(0) p (0) (32)

Q~ +ibm(1) ~ (1) ~ . &8 Be+ e8 BN

8(WfM ) ~pe8

where

From Eqs. (29) and (30) the first-order change in
the size of the line is obtained:

where I~o= (C~ A)(AP BO) . (34)

a;q=(j pAj i)(i A j)
(assuming the right-hand side is real). When the
density matrix is diagonal (the usual ease), this
simplifies to

In this notation the zero-order line size is just
Whenever (Pp has a subset of degenerate

eigenvectors, these must be chosen, as in ordi-
nary perturbation theory, so that 6'& is diagonal
within this subset.

a~)= pyy (i & j) (28) III. SLOW RELAXATION

(1)
PN QS (27)

(g) Y' e8 BN
P0f

8(efM ) &Pe 8
(28)

~Bl ) P ~B0) Ba

8Qe ) Pe8

Equations (24)-(28) are, of course, just the ex-
pected result.

In many cases, one is interested more in the
parameters, such as co,, and y which characterize
the spectrum, than in the spectrum shape itself
g(&o). We have shown that the task of finding these
parameters in the Presence of relaxation effects
is essentially similar to finding them in the ab-
sence of relaxation effects: It is only necessary
to find the eigenvalues and eigenvectors of a
matrix. In the latter case, a number of techniques
have been developed to help find the eigenvalues
and eigenvectors. Perturbation theory is one of
the more useful of these techniques, and may
readily be adapted to our problem. As we shall
see, it is very useful for investigating the limiting
cases of fast or slow relaxation rates.

As before, the principal complication is that we

are dealing with a non-Hermitian superoperator.
It is straightforward to rederive perturbation
theory for this case; we will only list some of the
low-order results here. As a rule of thumb, one

replaces I i) in ordinary perturbation theory with
IB ), and (i I with (C I. We divide 6' into two

parts +p and t&, with (p& assumed much smaller
than(pp. We denote the two sets of eigenvectors
and the eigenvalues of Go by IB,), (c I, and p, ,
respectively. The low-order terms with which we

shall be concerned are

When the relaxation rate is slow, the relaxation
term ~ may be treated as a perturbation. The
main part of 6'is then

(Pp= -Kp —wI",

while the perturbation term is

(Pg= i &' (36)

The zero-order eigenvalues and eigenvectors
have already been given in Eqs. (2l)-(23) in terms
of the eigenfunctions and eigenvalues of Xp, which
we will assume to be known. However, we might
comment that if ordinary perturbation theory is
used to diagonalize Kp, one could just as well take
the perturbation term out of $C 0 and include it in (P, .

The first-order correction to the eigenvalues
produces a broadening

lr';"=-(i~ j)'' (37)

The second-order correction produces a line shift

(O) g~ (ij I
'e

I &f)(&l I ~i ij)(o~ (0)

From Eqs. (37) and (38) the general features of
slow relaxation may be discerned. The diagonal
matrix elements of ~lead to a broadening of the

spectrum lines directly proportional to the relax-
ation rate. The remaining matrix elements cause
a shift in the spectrum line that is quadratic in the
relaxation rate. Since the numerator in Eq. (38)
is usually positive, the relaxation causes the spec-
trum' lines to be "attracted" to each other inversely
proportional to their separation.

To examine Eq. (37) in more detail, let us con-
sider the case where the hyperfine interactions
are diagonal with respect to the electronic states.
Specifically, we write the Hamiltonian Xo in three
parts:

(P . (Co P ~BO) (3l) 3C0 = X, +3Cen+K„ (38)
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where X, and $C„are the Hamiltonians for the elec-
trons a,nd the nucleus, respectively, and K„ is the
interaction between them-the hyperfine interactions.
When those matrix elements of X„which involve
different electronic states (of R,) are completely
negligible (or zero) compared to the energy sepa-
ration of the electronic states, X„is said to be
diagonal with respect to the electronic states. In
this case, an eigenfunetion of 3CO is a product of an
electronic and a nuclear wave function.

jU = v and p'= v'. The matrix elements of this
part are given by

(p u ls'Ol vv) = —f(2f'~,.—&&.)

(45)

The remaining "nonprincipal" part of 6'0 is zero
except for the diagonal terms

where 8'„„is the relaxation rate for the transition
p-v, and

w, „=- Z w„„.
v(~jf )

x, pm)=E„„, p,m), (40) (pvls',
I

pv) =(u„„-i(x,„+-,'r) for pw v, (46)
where p denotes a state of $C„m simply de-
notes a nuclear state and not necessarily the z
component of nuclear angular momentum. The
right-hand side of Eq. (3V) then becomes
—(Pm, vn Ill Pm, vn). For Mossbauer spectra we
need only consider the case p = v, since the in-
tensities of Eq. (25) vanish otherwise. For purely
electronic relaxation, Eq. (SV) becomes

fi) ur

@&A )

where W,„ is the relaxation rate for the transition
v. Since the inverse of the right-hand side of

Eq. (4l) is just the relaxation lifetime of l p), this
term simply represents lifetime broadening.

When "off-diagonal" terms of 'K„(i.e. , matrix
elements (pm1$C„i vn) for which p, x v) are no
longer negligible, the eigenstates of Xo are no
longer simple products as in Eq. (40). Consequent-
ly, the interpretation is not so simple. Neverthe-
less, the results are quantitatively similar.

IV. FAST RELAXATION

When the relaxation rate is fast, the hyyerfine
interactions may be treated as a perturbation. The
main part of 6 is then

6'o= t 'VP —3C8 —2ll

while the perturbation is

The nuclear Hamiltonian BC'„consists of two parts:
small terms such as a nuclear Zeeman interaction,
which D1ay be included ln +yy andy ln the Moss-
bauer effect, a large term giving the energies
(several keV) of the nuclear levels. This latter
term only adds a constant to v, and will con-
sequently be omitted here.

To illustrate the features of fast relaxation we
use the stochastic model proposed by Clauser and
Blume for the general case of electronic relaxa-
tion. Since 6'0 has only electronic operators in
this case, we will initially omit the nuclear quan-
tum numbers for simplicity. The matrix
(gvlgl P'v') breaks up into two parts. The "prin-
cipal" part of 6'0 is the square submatix for which

where Q7~„= (E~ —+p) and

X~„=—(W„~+ W„„), (4V)

+(Pv% 0 P )=0, (48)

from which it follows that an eigenvector of 6'o is

l~o)=+„up) . (49

The requirement of thermal equilibrium, '~ which
~ should satisfy, can be mritten

Z„q,(pplml p'v')=0,

wher6 g „ ls the probability of the electrons oc-
cupying the state i p,). We have assumed that p
is diagonal with p» =q„. Even if this is not the
case, a similar result may be obtained. From
Eq. (50) it follows that Coo is given by

(col =&.e.(upi .
The correct normalization for B~ and Co is ob-
tained with gq~ = l.

Reintroducing the nuclear quantum numbers m
and n, the zero-order intensity is

(5l)

Ioo „——(C00 „lA)(Apl BOO„„)

(52)

which ls t e sum of the rela ation rates of the
two electronic states. This part of 60 is already
diagonal; however, the eigenvectors I pm, vn) with
p4 v, are not immediately interesting since the
zero- and first-order intensities vanish for Moss-
bauer spectra [see Eq. (34)].

%6 are not prepared to write down all the eigen-
vectors of the principal part of +0; however, there
is one important eigenveetor we ean find. Equa, tion
(45) may be rewritten: Q„W„„=O, which says that
the columns of the submatrix W are not linearly
independent, and hence the determinant of W van-
ishes. Thus, one of the eigenvalues of W is zero;
the corresponding eigenvalue of 6' is --,'il". The
requirement of probability conservation, which
VP satisfies can be w'l ltteIl
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Using the fact that the other eigenvectors are
orthogonal to Bo and Co, it may be shown that all
the other zero- and first-order intensities van-
ish: Wewillshowthat (AplB „)=0, unless n=0;
a similar demonstration holds for (C, i&). First
we expand &

Then

IB:„„)=Z.I,I„m, pn). (53)

(~pIB.'.„)=&nI~'Im & &-„q. I,. (5

However, from Eq. (10), B, and Coo are orthog-
onal:

X,ff =h ~ I

where h is an ordinary vectox', not an operator:

h=ah, q„&pIs p&, (60)

Comparing Eqs. (54) and (55), we have the desired
result. This shows why 80 and Co are the impor-
tant eigenvectors: Up to at least second order,
all the others have zero intensity.

The x'emaining problem is the degeneracy of the
nuclear states. To apply perturbation theory, the
nuclear states m, m' must be chosen so that the
off-diagonal matrix elements of 6'1 vanish,

(Co „I(P,IBo,„.)=0, (56)

unless both m = m ' and n =n'. As we shall show,
the correct nuclear states are the eigenstates of
the "effective hyperfine Hamiltonian" K,«defined
as

x.« =~.q. & p Ix..l p&

If, for example, the hyperfine Hamiltonian is

Xem = aI ~ S (56)

then the effective Haxnlltonlan 18

and we obtain the desired result

(Co .Is'iIBo ")=5 (64)

where g' indicates that the terms with p = v are to

be omitted from the sum. By a straightforward
derivation, the real and imaginary parts of Eq. (65)
may be found in terms of ordinary matrix elements:

l
(as) F urn Fuvm

&omn = qv I (j / )a=

where v „=—(Z —E„). Equation (64) also gives
the first-order corrections to the line positions.
Thus, through first ox'der, the spectrum lines are
determined by the effective Hamiltonian K,ff.

The second-order contributions are of two types.
The first comes from matrix elements involving
the "principal" eigenvectors (i.e. , the eigenvectors
of the principal part of (Po). Since we do not have

a general formula for these eigenvectors or their
eigenvalues, we cannot give the exact terms here.
In spite of this, lt 18 not diff lcult to see that they
will produce terms of the form i& pm iX„I pn&
x &p,

'm' iX„ip'n'&/ao„, where so„ is an eigenvalueof
the matrix W [Eq. (44)] and is thus related to the
relaxation rate. This is the "motional narrowing"
term usually encountered in fast relaxation.

So far we have encountered terms involving only

hyperfige matrix elements which are diagonal with

respect to the electronic states. The "off-diagonal"
matrix elements enter t e second type of second-
order contribution. This second type comes from
matrix elements of the eigenvectors i pm, vn), the

eigenvalues of which are given by Eq. (46). This

part of the second-order contribution, which we

denote p'"', 18 given by

(as) ~'~ (Co niXsai pm~ sm )(p™~"n i~eaiBo o)

ff. v m'gP Vwv+& ~gv

a component of which is

Is, =aZ, q„&p S,
I

p, & (6I)

(2b)
'Koan g Fuvn+F uum 2~uvmn

"(~,./~, .)+ (&„/~„)
where

(6V)

To show that the eigenstates of X„are the correct
nuclear states, we first write out the matrix ele-
ments of 6', :

(Co „Is'(IBo i„i)= —Qqq(gm, PnIXe~I P m, P n )

=-&q.«- &p™IX-Ipm'& —6-&pn'IX-I pn&1.

(62)

If Im) is an eigenstate of X,«, the matrix elements
become

Q„q„&p, IXm„I pm'&=&mIX„, Im'&=E 5

(63)

&~IX., I pm&&pnIX„Ivn&
pvmn

When the relaxation rates (&„„)are small com-
pared with the electronic-level separations (co ~„),
yet lax'ge compared with the hyperfine energies,
Eq. (66) has a simple interpretation: When F„„ is
summed over p, , the second-order correction to
the energy of the state i vm& results. Neglecting
the denominator, Eq. (66) then averages these
second-order energies to give the second-order
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corrections to the energy differences of the ef-
fective Hamiltonian X,ff.

As the relaxation rate exceeds the electronic-
level separation, the denominator of Eq. (66)
causes the second-order terms to vanish. This be-
havior is caused by the presence of X„„in the diag-
onal of the "nonprincipal" part of ~. It is also re-
sponsible for the existence of the broadening given
by Eq. (67). As a function of X„„, this broadening
has a maximum at X„„=~„„and has the appearance
of a broad resonance. ' Further discussion of this
effect, including hypothetical examples, will be
given in a forthcoming paper.

V. CONCLUSION

In this paper we have shown that the parameters
characterizing line shapes may be obtained directly
from the eigenvalues and eigenvectors of a super-
operator y. This superoperator appears in the re-
sults of several theories concerning the effects of
relaxation of line shapes. By using a perturbation
expansion, we have obtained some general results in

the limiting cases of fast and slow relaxation. Some
of these results have been obtained previously,
though in somewhat more restrictive circum-
stances. When the relaxation rate is slow, there
is a broadening of the spectrum lines proportional
to the relaxation rate and a shift proportional to the
square of the relaxation rate. When the relaxation
rate is fast, the hyperfine spectrum line positions
are determined primarily by a thermally averaged
"effective" Hamiltonian. The lines are broadened
(or narrowed) inversely proportional to the relaxa-
tion rate. If the hyperfine Hamiltonian contains
terms which are not diagonal with respect to the
electronic states, a new effect appears: a line
broadening which has a maximum when the relaxa-
tion rate is of the order of the electronic-level
spacing.
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