
% II I IAM %. %ABBEN, JR. 3

F. Seitz and D. Turnbull (Academic, New York, 1956),
Vol. 2.

3~K. T. Micah, G. M. Storks, and W. H. Young, J.
Phy, C 2, 1653 (1969).

~D. Pines, in &olid &tate Physics, edited by F. Seitz
and D. Turnbull (Academic, New York, 1955), Vol. l.

33A. Abragam, &he I'rinciples of Nuclea~ Magnetism
(Clarendon, Oxford, 1961), p. 273.

34Beference 33, p. 314.
W, W. Warren, Jr. and W. G. Clark, Phys. Rev.

177, 600 (1969); 184, 606 (1969).
J. Korringa, Physica 16, 601 (1950).

'A. Narath and H. T. Weaver, Phys. Rev. 175, 373
(1968).

3 B. W. Shaw, Jr. and W. W. Warren, Jr. , Phys.
Rev. 8 3, 1562 (1971).

~F. A. Rossini and W. D. Knight, Phys. Rev. 178,
641 (1969).

4 Reference 24, p. 116.
4'See, for example, Ref, 33, Chap. VIII for a discus-

sion of quadrupolar relaxation via rotational modes; for
diffusional relaxation, see C. A, Sholl, Proc. Phys,
Soc. (London) 91, 130 (1967).

2V. M. Glazov, S. ¹ Chizhevskaya, and ¹ N.
Glagoleva, Lip'uid Semiconductors (Plenum, New York,
1969).

'3Materials Research Corp. , Orangeburg, N. Y.
44Beference 33, p. 292.

R. P. Elliot, Constitution of Binary alloys, First
SuPpl ement (McGraw-Hill, New York, 1965).

46A. I. Zaslavski and V. M. Sergeeva, Fiz. Tverd.
Tela 2, 2872 (1960) [Sov. Phys. Solid State 2, 2556
(1961)].

'P. J. Holmes, I. C. Jennings, and J. E. Parrott,
J. Phys. Chem. Solids 23, 1 (1962).

4 P. E. Newman and J. A. Cundall, Nature 200, 876
(1963).

49V. P, Zhuze and A. I. Shelykh, Fiz. Tverd. Tela
7, 2430 (1965)tSov. Phys. Solid State 7, 942 (1965)].

5 J. R. Drabble and C. H. L. Goodman, J. Phys.
Chem. Solids 5, 142 (1958).

J. Black, E. M. Conwell, L. Seigle, and C. W.
Spencer, J. Phys. Chem. Solids 2, 240 (1957).

W. D. Knight, B. R. Hewitt, and M. Pomerantz,
Phys. Bev. 104, 271 (1956).

3H. G. Dehmelt, Phys. Rev. 92, 1240 (1953).
~4H. Blakeway, Phil. Mag. 20, 965 (1969).

M. D. Banus, B. E. Hanneman, M. Strongin, and

K. Gooen, Science 192, 662 (1963).
K. C. Brog, W. H. Jones, Jr. , and F. J. Milford,

Phys. Hev. 144, 245 (1966).
"' The choice of one s electron per Ga ion is based on

the assumption that the bonding in "metallic" Ga2Te3
should have a high degree of ionicity as in InTeII (Ref.
56). In this case the configuration of the Ga ion is
approximately Ga {4s ). However, because of the cube-
root dependence of the free-electron density of states
on the electron concentration, the estimated values of
g are not highly sensitive to this assumption.

L. S. Palatnik, L. V. Atroshchenko, L. P.
Gol'chinetskii, and V. M. Koshkin, Dokl. Akad. Nauk. SSSR

165, 539 (1965) [Sov. Phys. Doklady 10, 1215 (1966)].
59M. H. Cohen, J. Non-Cryst. SoBds ~4 391 (1970).

T. E. Faber and J. M. Ziman, Phil. Mag. 11, 153
(1e65).

I HYSICAL REVIEW B VOLUME 3s NUMBER 1 JUNE &97&

Doppler-Shifted Ultrasonic Spin Resonance in Metals'

Harold N. Spector
Physics Department, Illinois Institute of technology, Chicago, IlBnois 60616

J. 8. Ketterson
Argonne National I aboratory, &rgonne, Illinois 60439

(Received 11 December 1970}

A new' method of measuring the conduction-electron g factor by ultrasonic Doppler-shifted
spin resonance is presented. A Boltzmann-equation approach is used to obtain the attenuation
arising from both the self-consistent-field and the Yafet mechanisms. The magnitude of the
spin-dependent part qf the attenuation is too sma11 at the usual ultrasonic frequencies to be ob-
served directly but the derivative of the attenuation should be observable.

f.. INIODUCTION

There now exist well-developed experimental
techniques such as the de Haas-van Alphen (dnvA)
effect, ultrasonic geometric resonance, microwave
cyclotron resonance, etc. , by which the shape of
the Fermi surface and the Fermi velocity may be
explored. Another interesting physical quantity as-

sociated with conduction electrons is their g factor.
If the g factor is isotropic, the conduction-electron
spin-resonance (CESR) technique may be used. ' If
the g factor is anisotropic, this technique is less
useful, and other experimental techniques should
be explored. The harmonic content of the amplitude
of the dHvA oscillations contains information on the

g factor associated with extremal orbits, but precise
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measurements using this approach are difficult.
In this paper we propose that a variant of the

well-known Doppler -shifted cyclotron-resonance
(DSCH) technique may beusedto obtain information
on the g factor in metals. Consider a sound wave
in a metal propagating at an angle 8 with respect to
an external magnetic field Hp. Provided that Hp is
not too large, certain of the electrons will be in
Doppler-shifted cyclotron resonance or Doppler-
shifted spin resonance (DSSR) with the wave, i.e. ,

1 + — eos8

denotes the commutator. The distribution function

f is an operator in spin spa. ce which can be repre-
sented by a 2 ~ 2 matrix and we represent the Pauli

spin matrices by the standard notation:

0'q —
~

0'y — . ) 0'g —
1

~

The change in the distribution function because of
collisions is due both to collisions in which the spin
is flipped and collisions which do not flip the spin.
Using a relaxation time ansatz we can write

(2)

where (d, =eHO/m*c is the cyclotron frequency, &u,

= eHO/m, c is the Larmor frequency (m, =- 2mo/g'),

(V) is the average drift velocity along the field, and
+ is the sound frequency. Electrons near the limit-
ing point of the Fermi surface where VF lt Hp give
rise to an absorption edge, the position of the edge
being determined by m*V„or m, Vz. (Another ef-
fect, the "density-of -states resonance" should also
be noted. ') Thus, by varying the angle 8 and from
a knowledge of V~ over the surface, we can deter-
mine the limiting point value of m or m, . (V„can
in principle be determined from the splitting of the
absorption edge caused by the plus and minus sign
in the Doppler condition. )

A theory of ultrasonic spin resonance in metals
has been developed by Gerasimenko using a Boltz-
mann-equation approach. However, he made cer-
tain approximations in his treatment which make
his final results not applicable to the high-frequency
region, where qI »1. In Sec. II, we generalize
his solution to the Boltzmann equation to treat the
high-frequency region. We then calculate the ultra-
sonic absorption coefficient for the particular ease
where a circularly polarized shear wave is propa-
gating along the magnetic field. In See. III we com-
pare the absorption coefficient assuming different
mechanisms for the induced magnetic field which
couples the spins to the sound wave. We discuss
our results and their possible experimental verifi-
cation in Sec. IV.

II. ULTRASONIC SPIN MAGNETIZATION

We take as our model an electron gas, with each
electron having a spin magnetic moment $0', inter-
acting with a de magnetic field Hp and an ac magnetic
field H1 induced by the sound wave. The Boltzmann
equation for this system is'

Bf ~ 8f 8f e ~ j ~ 8f=+V ~ =+ =- ~ —Vx H+- [pv ~ H, f ]+ = =0,8t 8t 8p c I ' — 8 t

where H= Ho+ H~, &7 is the Pauli spin matrix and [, ]

f() [ ( p)/ r I]-1

f= —I dQf .1
4m

The magnetization induced by the magnetic field is

M = (p, /5 ') Tr J d'P o f

Since any 2~ 2 matrix can be expanded in terms of
the identity matrix I and the Pauli spin matrices 0,
we ean decompose f and f,:

f= fI+f ~ e, f0=a, I+y n ~ a,

where y, = ~ [fo(e —WHO) a fo(& + pHN)] and n is a unit
vector in the direction of the dc magnetic field, Hp
= Hpn . Then

M=(2g/ff') f d'Pf,

and using the commutation relations for the Pauli
spin matrices [cr„o,] = 2i& „,o„ the Boltzmann
equation for f takes the form

sf /- e - e—+iV = f+ —(VxH) ~ = f ——(Ho+Hi)xf
~t ( Br c 8~ I 0 1

(f —y n) (f-f)
Tg

Linearizing the Boltzmann equation to first order
in quantities proportional to the ac magnetic field

where v, is the spin-lattice relaxation time and v is
the ordinary electron relaxation time. In this ex-
pression fp is the equilibrium distribution function
to which the electron spins relax and f is the average
of f over the Fermi surface since collisions which

conserve the electron spin do not lead to a change
in the electron density:

f0(f —/HO) 0
0 f(e+g((,))'
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H„we have f = y n+ f„where fq()L exp i((l ~ r —&4)

for a sound wave of wave vector q and frequency
This yields the following equation for f,:

f,(
8(gy H, f,

)

eXp — Q8 —g M6 (d~ —q' v g
8 I

For the magnetic fieM along the z direction and
using notation f„=f&„+if,, for circula. r polarization,
the above equation reduces to the form

Q'

,

—f(~ + &u. —. q V) + —.
. f, + —( V && 8,) ~ f, —

T p ' ep

2il(.y.H, f„
k

where ())8 = 2LLHO/5 and H~=Hy„ktHyq. The solution
to the above equation ls

where

V„(s) = Vsin8 cos(~,s+q)), V,(s) = Vsin8 sin(~, s+q)),
V,(s) = V cos8,

For a general orientation between the direction of
propagation of the wave q and the dc magnetic field
Ho, the calculation follows the same lines as that
of Cohen ef c/. for the ordinary ultrasonic absorp-
tion

8 8

ds' exp — ds" —j(~*&u,. -q, V cos8) + —+ iq„Vsin8 cos(&,s" + q))

j" J'„(Xsin8) exp g[n(~, s+cp) -Xsin8 sin(~~s+cp)] j
1/T -f((~+ ~, n~, -q-,Vcos8) (12)

and X=-q„V//&, Vhen we find that A. Propagation Parallel to Magnetic Field

When the sound wave is plopagatlng parallel to
the magnetic field q, =O, q, =q and we have

TI 8, q) ——.—
1 —f(~ ~ &, —qV cos8) T

dQ—I(8, q)) =M+iH,
4m

(16)

Using the above distribution function in Eq. (6) we
find that M, =- y, H„where

2ip~ ' "dQ
d~g(z)y v —f(8, rp

4m

v' —I(8, q)
QQ

2&~
I

4m
T- I 8~ cp

(16)

where no is the electron density.

and g(e) is the density of states for the electrons.
'@hen p, ao«q~-, where q~ is the Fermi energy, we
get y„= (()Ho(9fo/Bc~} and,

(d *(8
M =- arLtan qL *-+ ()2qVp qV~

(d + QP8—Rrctan gL
qVp

(19)
3 8

CO+ QP1+ (qI. )2 ——' -1
qVp

ln Kqs. (19), V); is the Fermi velocity and L, = V~7.
We then are left with the following expression for
X ++
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+ 3 in, p, '&u, r(M+ iH)
2@~(v —M -iH)

B. Propagation Perpendicular to Magnetic Field

When the sound wave is propagating perpendicu-
lar to the magnetic field q„=q, q, =0, and we have

favors low frequencies and high temperatures.
Also under these conditions, the spin-resonance
frequency will yield only an average value for the

g factor since it is being averaged over all the elec-
trons on the Fermi surface.

The other limit of interest when q II Ho is qL» 1.
In that case

" —I(8 )= Z ",(»)„1/T i(—(o + (o, —n(o, )

where' q Vy & 1 Q) —co + l

3gsop, ~~', qVg& l(o —ar, l

4&pq Vp

Op

(23)

g„(X)= J d8 sin8 J'„(Xsin8) .

We then have the following result for X,:

+ 31npp Q)&T p g&(X)
I/T —i(v s w, —nv, ))

. (23)1/T —i((0+ Q)z n(dz)

III. ABSORPTION COEFFICIENT

The power absorbed per unit volume in a system
of changing magnetization is

dM
Q = ReH ~ = &u ImH ~ M = u& H,

' Im y .
dt (24)

The absorption coefficient is the power absorbed
per unit volume divided by the incident acoustic
flUX

Q 2 ~H

2)( )2
=

V ] imX » (25)

Snop ~, M —(M +H )/r
(1 —M/~)'+ (H/~)' (26)

In the limit qL «1 and q V~ »
I ~ + ~, l we get the

result

where $ is the amplitude of the acoustic wave. The
absorption due to the interaction between the ultra, -
sound and the electron spins depends both upon the
imaginary part of the ac magnetic susceptibility and
the ma, gnitude of the magnetic field induced by the
sound wave.

For propagation of the ultrasound parallel to the
magnetic fieM we have

and we obtain a Doppler-shifted spin resonance.
The condition for observing Doppler-shifted spin
resonance is qL» 1 which favors low temperatures
and in addition, the resonance frequency will yield
the factor g/V~ at limiting points on the Fermi sur-
face. If one knows the Fermi velocity at the limit-
ing points from other experiments, one can deter-
mine the g factor at the limiting points of the Fermi
surface from the resonance frequency.

For propagation of the ultrasound perpendicular
to the magnetic field we will only discuss the same
case as was considered by Mikoshiba, qL» 1 and

~,T» 1. Under these conditions since ~- ~, -~,
and X = (~/~, ) (Vz/V, )» 1 we can use the asymp-
totic forms for g„(X), i. e. , g„(X)=1/(2X) for
n&X and we find tha, t'

Sino', (o,r cothp([l —i((o —/d, )T)/(g, T)
4q V~&~ 7 —(m/2q V~) cothm{ [1—(&- &,)T]/&, T)

Although this expression yields the same conditions
for observation of the spin resonance as Mikoshiba
obtained, the expression for the absorption coeffi-
cient differs considerably from Mikoshiba's result.
This is because the Boltzmann equation must be
used to obtain valt. d results when X& 1.

The magnetic field which appears in Eq. (24) can
arise from either of two mechanisms. For trans-
verse waves propagating in a metal, a self-consis-
tent magnetic field is induced because of the pres-
ence of transverse currents accompanying the ultra-
sound. This self-consistent magnetic field can be
obtained using Maxwell's equations and the expres-
sion for the current density induced by the ultra-

TABLE I. Parameters used for bcc sodium.

Sn,p'~, 1/7, + ,'(qL)'/~-
[1/&, + l (ql )'/v ] ~ (~ —io,)')

(2&)

which is the result obtained by Gerasimenko. ~ In
this limit, the condition for observing ultrasonic
spin resonance is that 1/v, &/d & (3/7') I Vz/V~ I which

g factor (g)
Effective mass (an*)
Density (p)
[100] sound velocity (V,)
Fermi velocity (Vz)
Fermi energy (E+)
Lattice spacing (ap)

2.0015
1,27slp g
1.01 g/cm3
2.392 x 10 cm/sec
8.40 x10 cm/sec
4.09 x].0-~2 erg
4. 225 A
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sound interacts with the electron spins through the
ordinary electron-lattice interaction via s in- b't
coup ing by the ultrasound. As a result of this
mechanism, the matrix element for spin reversal
is given by Cq Aga$, where C is the deformation
potential, hg=g- 2. 0023 is the g sh'ft, and a is the
lattice spacing. Equating the matrix element of
the term giving the interaction of the el tec ron spin
wi e effective magnetic field induced b the

asound to the matrix element given by Yafet
we find that the effective magnetic field is

a, =q'(Conga/p)$ . (32)
0 J 1 IC J I

0.2 0.4 0.6 0.8 I,O 1.2 14 1.6 1.8 2.0

FIG. 1. Magnetic field dependence of the DSSB atten-
uation for the case of sodium and f f=109 H
=10 .3

n or = 0 HzandqL

The induced magnetic fields in Eqs. (31) and (32)
may be used in Eq. (24) to determine the absorp-
tion coefficient versus dc magnetic field for values
of qL mith propagation of the ultrasound parallel
to the dc field.

IV. NUMERICAL RESULTS AND DISCUSSIONS

sound:

d&J=S 8 +J
dt (30)

4vn, e(V,/c)&
1 —(4'/iM) 8( V,/c )' (31)

can give rise to anThe second mechanism which can g'
induced magnetic field accompanying the ultrasound
in a metal is that put forth by Yafet. " The ultra-

where J, = o ~ E is the induced electron current
densit' y, o is the ac-conductivity tensor for the
electrons and E '

, and E is the self-consistent electric field
accompanying the ultrasound in a metal. The self-
consistent magnetic field is then found to be

%e must now inquire as to whether the predicted
magnitude of the attenuation arising from DSSR is
observable in the presence of the much stronger
background attenuation caused by the DSCR. Since
our formalism has been developed in the free-elec-
tron picture we mill carry out our calculations for
the case of sodium for which this approximation is
applicable. The parameters used in the calculations
have been collected in Table I. Calculations were
carried out for frequencies of 10 10' and 10'
Hz and for values of ql. equal to 10, 10', and 10
(we have taken 7, =~). Figure 1 shows the spin
portion of the attenuation for f=10~ Hz and ql. = 103

for the self-consistent-field (SCF) mechanism
The Yafet mechanism is much smaller in this fre-
quency range due to the small g shift in sodium

H(kG)

I I I I

100 200 300
I I I I

I
I I

159.2 159.6
H (kG)

I60.0 160.4

a

200—

100

DSCR

f = IO

qL=IO 9.0

E
8.8

O
8.6

J
0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

QJs I+—(d

80 I

0.996 0.998 1.000

Cdq /(i +—)Id

I

1.002 1.004

FIG. 2. Magnetic field dependence of the DSCR a-
tenuation for the case of sodium and for f=10 Hrf= z and

FIG. 3. Field derivative of the total attenuation in
sodium as a function of magnetic field with f=10~ Hz and
qL=10 .
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For other materials (Bi, heavy transition metals,
etc. ) where larger g shifts are encountered, the
Yafet mechanism may contribute significantly to
the attenuation. The attenuation n is plotted as a
function of both H and ar,/(1+ Vr/V, )u&, the latter
quantity being unity at the limiting point. Figure
1 clearly shows that, providing it is observable,
the position of the DSSR edge can be used to accu-
rately determine the limiting point g factor. Fig-
ure 2 shows the attenuation arising from DSCR
which we observe is larger than the corresponding
DSSR by a factor of order 10 . Note that the shape
of the DSCR attenuation curve is different from that
usually expected due to the breakdown of screening
at high frequencies. At a frequency of 10' Hz the
DSSR is approximately 10 times smaller than the
DSCR; higher frequencies are clearly desirable.
Owing to the lack of availability of steady-state
fields larger than -250 kG, frequencies larger than
about 10 Hz are not of practical interest. Although
the direct observation of DSSR in the attenuation is
impractical, the same statement does not hold true
for the derivatives with respect to field Bn/BH or
frequency Bn/Bf. Figure 3 shows the total field de-
pendence of Bn/BH (arising from DSSR and DSCR)
forafrequencyof10 Hzand aqLof10 . %e notethat
there is a clearly observable anomaly in the magnitude

of the derivative at the position of the DSSR edge.
Since the magnitude of the derivative at the spin-
resonance edge is proportional to qL, very pure
samples are required. The maximum achievable
qt. would be limited by size-effect considerations
which for an 0. 1-cm sample of sodium corresponds
to qL=2. 6&&10 with f=10 Hz. Thus the param-
eters used in calculating Fig. 3 represent condi-
tions which are achievable in the laboratory with
present experimental techniques. (Since the skin
effect makes a field derivative experiment difficult
to perform, a frequency-modulation approach may
be more favorable. ) Observation of 8 n/BH or
8 n/Bf (by detection at the second harmonic of the
modulation frequency) would, of course, enhance
even more the DSSR near the position of the edge.

The present technique, being a resonance experi-
ment similar to microwave CESR, determines a
g factor which presumably does not contain the
Stoner (or susceptibility) enhancement factor. This
is to be compared with the g factor obtained from
spin-wave transmission' or the harmonic content
of the dHvA effect since these latter experiments
contain the Stoner enhancement. Thus a compari-
son of these two types of experiments would yield
information on the magnitude and anisotropy of the
enhancement.

Based on work performed under the auspices of the
U. S. Atomic Energy Commission.
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