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Measurements of the Knight shifts of In“s, Ga®, Ga“, Sbm, Sbm, and Te!?® in solid and
liquid InyTe;, Ga,Te;, and SbyTe; are reported for temperatures ranging from roughly 150 K
below the melting points to 1400-1500 K. Measurements of the nuclear spin-spin relaxation
rates of In'%, Ga®, Ga'™, Sb!¥, and Sb!%* are reported for the liquids from the melting points
to 1400—1500 K. The data are discussed in terms of various theoretical models for the elec-

tronic structure of liquid semiconductors.

It is shown that nuclear relaxation-rate measure-

ments provide a means for characterization of the microscopic electronic transport mechanism.
In the case of InyTe; and Ga,Te; an unusual enhancement of the nuclear relaxation rate relative
to the predicted Korringa rate is shown to be consistent with the existence of localized elec-
tronic states at the Fermi level. Sb,Tes, on the other hand, exhibits no appreciable enhance-
ment and is characterized as a metallic liquid. A general scheme is proposed for classifica-
tion of the electron dynamics in electronically conducting liquids by the correlation of the

nuclear relaxation rate and the dec conductivity.

I. INTRODUCTION

A number of electronically conducting liquids
have been described as “liquid semiconductors”
because their transport properties are reminiscent
of those found for ordinary crystalline semicon-
ductors. Although the properties of these liquids
are widely varied, some general characteristics
may be said to be typical of the group. ! For ex-
ample, most of the known liquid semiconductors
are binary alloys or compounds consisting of a
metallic component and a chalcogenide (O, S, Te,
or Se) and they are invariably semiconducting in
the solid phase. The liquids exhibit electrical
conductivities o less than about 10° (2cm)™, and
the conductivity increases with increasing tempera-
ture. In some cases, the temperature dependence
of o for the liquid is essentially a continuation of
that of the corresponding solid, while in others
(notably those with higher values of o) the tempera-
ture variation changes markedly at the melting point
T,. The Hall coefficients have been measured for
a few liquid semiconductors and have been found to
be negative and significantly larger than free-elec-
tron values calculated for the total number of va-
lence electrons. The Seebeck coefficients exhibit
complex behavior in that they may be either positive
or negative and, in fact, they often change sign with
variations in temperature or alloy composition.

Theoretical understanding of the properties of

liquid semiconductors in terms of their electronic
structure is still at an early stage. The transport
properties show clearly that these liquids are very
different from ordinary liquid metals and metallic
“molten semiconductors, ” such as Si or InSb. On
the other hand, it is by no means evident that con-
ventional semiconductor concepts derived for crys-
tals may be extended to liquids without major mod-
ifications. This situation has led to new and, in
some respects, conflicting speculations concerning
the electronic structure of liquid and amorphous-
solid semiconductors. The models differ partic-
ularly in their assumptions concerning the localized
nature of the electronic eigenstates and details of
electronic transport. These assumptions concern
phenomena which are microscopic in that they oc-
cur over distances comparable to the interatomic
spacing and, unfortunately, they are difficult to
test directly by measurements of bulk transport
properties at elevated temperatures.

In this paper we describe the application of nu-
clear magnetic resonance (NMR) to the study of
liquid semiconductors. We show that the sensitivity
of NMR experiments to details of the microscopic
electronic and molecular dynamics yields important
information not available from transport measure-
ments. Specifically, we will report and discuss
measurements of the Knight shifts and nuclear re-
laxation rates for In'!® in liquid In,Te;, Ga® and
Ga™ in liquid Ga,Te;, and Sb'# and Sb'?® in liquid
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Sh,Te;.2 The Knight shifts for Te'?® in all three
liquids and the Knight shifts for all the above nu-
clei in the solids near the melting points are de-
scribed also.

The organization of the paper is as follows.
In Sec. II we discuss the principal theoretical mod-
els and the relationship of NMR data to the impor-
tant theoretical parameters. Sections III and IV
contain, respectively, details of the experimental
technique and experimental results for In,Te;,
Ga,Tes, and Sb,Te;. The experimental results are
discussed in Sec. V and, in particular, the data
are related to the theoretical models and to a trans-
port property (dc conductivity). Finally, the prin-
cipal conclusions of the work are summarized in
Sec. VI.

II. THEORY

A. Models for Electronic Structure of Liquid
Semiconductors

1. Conventional Semiconductov Theory

Early attempts® to account for the properties of
liquid semiconductors were made, quite naturally,
within the framework of conventional semiconductor
theory as it applies to crystalline semiconductors.
Thus, it was supposed, the electronic states exhibit
a band structure with a density of states consisting
of the usual valence and conduction bands separated
by an energy gap of width E,,, [Fig. 1(a)]. The na-
ture of the conductivity might be » type or p type,
extrinsic or intrinsic, depending on the values of
E,,,, temperature, and impurity concentrations.

These conventional concepts were used extensively
by Cutler and co-workers in a comprehensive series
of papers*~® dealing with the transport properties
of liquid T1-Te alloys. The conductivity of these
alloys shows a sharp minimum at a concentration
close to T1,Te and the sign of the Seebeck coeffi-
cient @ changes from positive to negative as the Tl
concentration is increased through T1,Te. Cutler
et al. assumed that the sign of the majority carriers
corresponds to the sign of the Seebeck coefficient
and thus inferred that near T1,Te excess Tl or Te
atoms act as donors or acceptors, respectively.

The persistent negative sign of the Hall coefficient
in the so-called p type (@ >0) alloys remained to be
explained on independent grounds.

2. Pseudogap with Localized States

This model has been brought to its present state
in a series of papers by Mott? 18 although some of
its features date from earlier work of Anderson, ’
Gubanov, *® and Banyai.® The model is derived from
consideration of the effects of disorder on the elec-
tronic structure of the crystalline system and it has
been applied to both liquid and amorphous -solid
semiconductors,!®#:# There are two principal fea-
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tures, illustrated in Fig. 1(b), with which we shall
be mainly concerned. First, in the presence of
disorder due to fluctuations in the local atomic ar-
rangement (structural disorder), the valence and
conduction band edges become smeared and acquire
“tails” which extend well into the crystalline band
gap. In liquid semiconductors the tails may overlap
to the extent that the gap is replaced by a “pseudo-
gap” or minimum in the density of states. The sec-
ond and most distinctive feature of the model is de-
rived from the observation that those states whose
energies lie in or near the original gap are strongly
scattered by the lattice and thus are extremely sen-
sitive to the presence of disorder. Under suitable
conditions, it is argued, disorder leads to modifi-
cation of the character of the electronic eigenstates
from the extended (Bloch) states of the ordered
system to localized states in the liquid or amor-
phous system. Since the states in the pseudogap
are taken to be most sensitive to disorder, one
might expect to find a band of such localized states
in the pseudogap which connects valence and con-
duction bands containing extended states. Within
the band of localized states, electronic transport
requires phonon assistance whereas in the non-
localized region electrons scatter between nearly-
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FIG. 1. Density of states N (E) for a liquid semicon-

ductor as a function of energy E according to various
models: (a) conventional semiconductor model; (b)
pseudogap model; (c) pseudobinary alloy model. Diagonal
shading denotes occupied energy levels. Vertical shading
(b) denotes localized states. Broken line (c) describes
energy dependence of scattering cross section.
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free-electron (NFE) states as in liquid metals.
The localized states are easily distinguished in the
formal sense since they make vanishing contribu-
tions to the dc electrical conductivity as the tem-
perature approaches absolute zero.

The conditions for occurrence of localized states
in a pseudogap have been discussed in some detail
by Mott.'?> We mention here two points which are
particularly relevant to the discussion of our NMR
results. First, Mott has argued that localization
will not normally occur in liquids if the electronic
wave functions are s-like oz all atoms. However,
if the wave functions are p-like (or d-like, etc.)
on some of the atoms, then the increased sensi-
tivity to disorder provided by the directional char-
acter of the bonds makes localization much more
likely. The second point is that the occurrence of
localized states depends on the depth of the pseudo-
gap. That is, states will begin to become localized
when the interaction with the ions is sufficiently
strong to lower the density of states in the pseudo-
gap below some critical value. Mott'? has extended
Anderson’s criterion'” for localization in the pres-
ence of a randomly varying crystalline potential
(cellular disorder) and has argued that states of a
given energy E will localize when

g=N(E)/N(E);, < 1/3.5=0.285 , (1)

where N(E) and N(E),, are, respectively, the actual
and free-electron density of states.

3. Pseudobinary Alloy

This model has been developed from considera-
tion of the transport properties of binary liquid al-
loy systems by Enderby and Simmons? and Enderby
and Collings.® These authors have suggested that
the sharp minima of the conductivities of T1-Te
and Mg-Bi near Tl,Te and Mg;Bi, result from for-
mation of molecular bound states of these stoichi-
ometric compositions. Thus, near stoichiometry
the liquid is regarded as “alloy” consisting of a
molecular component (e.g., Mg;Bi,) and a metallic
component (e.g., Mg or Bi). The density of states,
shown in Fig. 1(c), consists of a filled “bound
band” separated by a real energy gap from a NFE
“free pand.” The number of carriers is determined
by the number of electrons in the free band which
depends, in turn, on the alloy composition.

The pseudobinary alloy concept contrasts with
the conventional semiconductor model in that elec-
trons are the current carriers at all compositions
whereas the conventional model permits both n-
and p-type conduction. This distinction rests on
the assumption in the pseudobinary alloy model
that the Hall coefficient rather than the Seebeck
coefficient provides the true indication of the sign
of the carriers. In order to explain the rapid vari-
ation and sign change of «@ near stoichiometry,
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Enderby and co-workers postulated the existence of a
strongly energy-dependent scattering or “virtual bound
state” for electrons near the Fermi level. Their

argument is based on the following formula for
a2t

™ 3T <3 lno(E))
a= — ,
E

3 ¢ \ oE 2)
where o(E) is the contribution to the conductivity
from electrons with energy E. If the scattering
cross section is sharply peaked near E for the
stoichiometric alloy [Fig. 1(c)], then Eq. (2) pre-
dicts that o must change sign as the variation of
composition sweeps E  through the region of the
virtual bound state. From consideration of the
required energy dependence of ¢ (E') Enderby and co-
workers estimated the widths of the virtual bound states
tobe 0. 2 eVfor T1,Te and 0. 6eV for Mg;Bi,. The
source of the energy-dependent scattering was taken
to be scattering from excess T1 or Te atoms in
Ref. 22 while it is suggested in Ref. 23 that the
virtual bound state results from scattering from
molecular groups such as Mg;Bi, in Mg-Bi. The
essential features of the model are, however, quite
similar in either case.

The present model differs from the pseudogap
model mainly in that the conduction-electron states
are extended (i.e., metallic) at all temperatures
and compositions and do not become localized.
Thus, according to Enderby and Simmons, the con-
ductivity is given by an equation of the standard
type valid for metals®

L mop( L i)
o met\ N A ) ®

where vy is the Fermi velocity, = is the electron
concentration, and Ay and A; are the mean free
paths for scattering by the molecular component
and the metallic component, respectively. For
T1-Te, Ay and A; are not less than about one inter-
atomic distance (about 2 10&). The essential dis-
tinction to be made here is that even in the pres-
ence of a virtual bound state the electron dynamics
are of an essentially metallic character and are
described in terms of the scattering of electrons
moving at the Fermi velocity with a well-defined
mean free path.

B. Interpretation of NMR Experiments in Liquid
Semiconductors

The two principal quantities to be determined
from NMR studies of liquid semiconductors are the
Knight shift X and the nuclear spin-lattice relaxa-
tion rate 1/7,. As is also true for solid and liquid
metals, the Knight shift and spin-lattice relaxation
are consequences of the static and dynamic parts,
respectively, of magnetic hyperfine interactions
with the conduction electrons. In addition, if the
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nuclei possess electric quadrupole moments, there
may be observable contributions to spin-lattice re-
laxation from dynamic quadrupolar interactions
produced by ionic and molecular motions. There
are no quadrupolar shifts because static quadru-
polar interactions are averaged to zero by the rapid
internal motions of the liquid. In this section we
discuss the interpretation of measurements of X
and 1/7; in liquid semiconductors with emphasis
on the connection between these parameters and the
important features of the theoretical models.

1. Knight Shift

In this paper we are concerned mainly with situ-
ations in which the conduction electrons exhibit
predominantly s character at the nuclear site of
interest. In such a case the dominant term in the
magnetic hyperfine interaction is the Fermi contact
interaction whose Hamiltonian is

3¢, = (§m)7,7.m°T- S6(7) @

where 7, and 7, are, respectively, the nuclear and
electronic gyromagnetic ratios, T and S are the nu-
clear and electronic spin operators, and r is the
electron coordinate. Application of time-indepen-
dent perturbation theory and performance of a ther-
mal average over the electron system then leads
directly to the following expression for the Knight
shift®:

=_A£ =%% [ " dE| 450 N B AE, +) - B, -)] .

(5)

In Eq. (5) H, is the applied magnetic field, |y;(0)I2
is the probability density at the nucleus for elec-
trons of energy E, N(E) is the density of states per
atom for a single direction of electron spin, and
the Fermi functions f(E, ) are given by

AE, +)={expl(Ex 37, iH, - Ep)/kT]+ 1} . (6)

For a conventional intrinsic semiconductor [Fig.
1(a)], % is obtained by evaluating the integral in
Eq. (5) over the detailed form of N(E) determined
by the band structure. Considerable simplification
is achieved in situations such as those represented
by Figs. 1(b) and 1(c) . In these cases the electron
system is degenerate and variation of N(E) is neg-
ligible over an energy interval of width 27 near E.
The approximation

fE, +) = f(E, =)=y, 1H,0(E - Ep) O]

then leads to the familiar expression, also valid for
metals,

=470y, 0| p(0)| D r MES) , (8)

where (| (0) |%) represents the s-electron probabil-
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ity amplitude at the nucleus averaged over all states
at the Fermi level.

In principle, Eq. (8) can be used to determine
N(Ey) from experimental values of X. Unfortu-
nately, this procedure is subject to several uncer-
tainties which rather severely limit its accuracy. In
the first place, of course, is the fact that (| $(0)1% 5
is not generally known with precision. Although it
is possible to determine |(0)|%) from electron-
spin-resonance data, this has been done for only a
few special systems such as some of the alkali
metals®”"®® and the III-V semiconductor InSh. 2
More generally one can make use of atomic values
of 19,(0)1? obtained from optical hyperfine struc-
ture and correct these with calculated or otherwise
estimated values of the “penetration factor”3°

£=(| 9(0)| D5/| 92 (0)]* . ©)

In Li and Na the values of £ are known®'2® to be
0.44 and 0. 60, respectively, and various calcula-
tions and estimates yield similar values for a num-
ber of other metals. 3! For crystalline InSb, di-
rect measurement®® of |9(0)!2, yielded a value 0. 62
for £.

Another important correction to Eq. (8) results
from neglect of electron-electron interactions. The
exchange and correlation effects in metals
are known?""*? to produce appreciable enhancements
of X relative to the value given by Eq. (8). The
enhancements in alkali metals, for example, lie in
the range 1.7-2.0. Thus, in this case, the effects
of electron-electron interactions and the penetra-
tion factor are roughly equal in magnitude but have
opposite signs. In the absence of specific data for
either correction in liquid semiconductors the
most straightforward approach is simply to neglect
both these effects and employ Eq. (8) with values of
(19(0) 1% 5 equal to the optical hyperfine coupling.
This procedure should suffice to yield estimates of
N(Ep) accurate to within about 30%.

An alternative procedure, possible in some
special cases, consists of comparing the value of X
in the liquid semiconductor with the value of X for
the same nucleus in a system of similar composition
for which N(Ej) is known. Thus, for example, if
there exists a temperature or composition range for
which the system of interest is a sufficiently good
metal so that N(E;) may be assumed to be close to
the free-electron value, we may take

&=N(Eg)/N(Ep);e
~% (liquid semiconductor) /X(metal).
(10)

In using this method it is assumed that £ and the
electron-electron effects are the same in the metal
and liquid semiconductor and that the degree of s
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character is roughly the same in both systems.

Finally, we reemphasize that Eq. (8) describes
only the contribution to X from s-electron contact
interactions. If the wave functions contain a large
fraction of p character at the nuclear site in ques-
tion, additional contributions to % may be expected
from core polarization and orbital interactions.
Since these p-electron hyperfine fields are normal-
ly about an order of magnitude smaller than s-elec-
tron fields, the use of Eq. (8) in the presence of
appreciable p character would lead to an under-
estimate of N(E).

2. Spin-Lattice Relaxation

It is convenient to discuss spin-lattice relaxation
in liquid semiconductors in terms of the time cor-
relation functions for the interactions responsible
for relaxation. For a system of nuclear spins
perturbed by an interaction 3¢’(f) which is a random
function of time, the probability for a nuclear spin
to undergo a transition from a Zeeman state m to
a state m+ u is given by the standard formula®®

Wm,m+u = ﬁ-z _[_:dteiuwot {(mlgc'(t)‘ m+ p)
x{m+ p|5' )] m}, (11)

where w, is the nuclear Larmor frequency and the
curly brackets denote an ensemble average. A
common approximation is to let

{Gm| 5" @)] mo+ w¥m + u[ 56 ©) m)}
={[(m|5c'| m+ uwy| et (12)

where 7 is an appropriate correlation time for the
interaction. Upon substitution into Eq. (11), Eq.
(12) leads to the following general form for the
transition probability:

27

1+ (uwyr)® (13)

Wm.m+u=7,l;1§ {'<m’3C,| m+ H«>| 2}
For the purposes of the present paper we need con-
sider only the short correlation time limit (w7 << 1)
in which the nuclear magnetization may be shown?*
to approach equilibrium with a single time constant
T,, where

4
i

R=—3 {|(m|5¢'| m+ w)|}r . (14)

1
Ty
We emphasize that the exponential form [Eq. (12)]
for the correlation function is introduced ad hoc
without further justification. Nevertheless it de-
scribes the essential physics encountered in many
physical systems and we shall assume that numeri-
cal results obtained from the use of Eq. (14) are at
least semiquantitatively correct.

The interactions 3¢’ causing relaxation may be
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classed as either of two types depending on whether
they involve coupling between the nuclear dipole
moment and perturbing magnetic fields (“magnetic
relaxation”) or coupling between the nuclear elec-
tric quadrupole moment and fluctuating electric
field gradients (“quadrupolar relaxation”). In gen-
eral the observed rate R may contain contributions
from both kinds of interaction and it is not possible
to separate these unambiguously. However, if
measurements of 1/T, can be made for two isotopes
of the same atomic species (e.g., Ga® and Ga™),
direct decomposition may be accomplished. Thus,
given experimental values for the relaxation rates
R* and R? for two isotopes A and B at a common
temperature, it is straightforward to compute the
magnetic and quadrupolar contributions R, Rg,
Rj, and Rj according to the following formulas®:

RA_ o B

A_Zv Qgg

RM"‘ 1_ aQ/aM ’ (153)
RA_a RB

A _ M

R4~ gy g (15b)

Rfl'-‘Rﬁ/aM ) (15¢)

Rg=R%/aq , (15d)

where the parameters o, and @, are given in terms
of the gyromagnetic ratios ¥, nuclear spins I, and
quadrupole moments by

ag=fl,)Q4 /) Q5 , (16a)
ay= ('VA/'VB)Z , (16b)
F)=@1+3)/1%21-1) . (16¢c)

a. Magnetic relaxation. The dominant magnetic
relaxation process in metals and degenerate semi-
conductors is usually the Korringa process’® in
which nuclei couple to the spins of s-like conduction
electrons through the Fermi contact interaction
[Eq. (4)]. If electron-electron interactions are
neglected and the electrons are considered to oc-
cupy plane-wave or Bloch states, the relaxation
rate is given by the familiar formula

Ry =% 1%y % 2 RTIN(ER) X ¥(0)| D%, 17

where T is the temperature. This relaxation rate
may be expressed in terms of the Knight shift by
direct substitution of {19(0) %) zN(Er) from Eq. (8)
to yield the Korringa relation®®

Ry=41y3RTXE/veE . (18)

While Eq. (18) is subject to modification by inclu-~

sion of the effects of p electrons and electron-elec-
tron interaction, *”**® it remains an extremely useful
approximation because its parameters are available
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from independent experiments. In liquid metals
the deviations from Eq. (18) lie mostly in the range
+ 30%. 35,39

The Korringa relaxation process is ordinarily
independent of the details of electron transport.
Thus in metals and crystalline semiconductors there
is no direct connection between R, and, say, the
electron mean free path A. The reason is easily
seen if we express R, in terms of a correlation
time as in Eq. (14). In this case the appropriate
correlation time is the time 7, during which an
electron interacts with a particular nucleus. For
NFE, 7, is roughly the time required for an elec-
tron traveling at the Fermi velocity to traverse
one nearest-neighbor distance a and, so long as
A>a, 7,is independent of A, For NFE the Fermi
velocity is related to the density of states by*

vp=2a/zAN(Ep) , (19)
where z is the number of electrons per atom.
Hence,

Te~a/vp=~hN(Ep), A>a. (20)

We now consider the case in which electron trans-
port cannot be described by a mean free path at
least as great as the interatomic spacing. Although
no detailed theory of nuclear relaxation yet exists
for this regime of very strong scattering we can use
the correlation-time formalism to derive an ap-
proximate analog of the Korringa relation.,, Thus,
from Eq. (14),

Ry=~@/m®{|(- 33| |%, , (21)
where 3 is given by Eq. (4) and T, now has the sig-
nificance of the lifetime for “residence” of an elec-
tron on a nuclear site. The coupling strength is,
approximately,

{1€=3l3c,| 3|2 = (&m)2r 2y 2 54| 9(0)| DAN(E )T
(22)

in which the factor N(Ey)%T is introduced to account
for the effect of energy conservation which restricts
participation in the relaxation process to electrons
whose energies lie within an interval of width 2T

at the Fermi level. Expressing (|9(0)1%% in terms
of X2 by means of Eq. (8) we obtain

Ry =16y2K2kTT,/v 3NN (Ey) . (23)

In the long mean-free-path limit, 7, is given by
Eq. (20) and, to within a factor 4/7, Eq. (23) re-
duces to the standard Korringa form given by Eq.
(18).

The crucial feature of Eq. (23) is that it predicts
an enhancement of R, relative to the prediction of
Eq. (18) if the electrons remain in the vicinity of the
nucleus for average times longer than ZN(E;). This
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may be expressed by defining an enhancement pa-
rameter

n=RM/(RM)KorrgTe/hN(EF) ’ (24)
which is a measure of the tendency for the electrons
to localize on a particular site. Since (Ry)xq., may
be computed easily from measured values of X by
means of Eq. (18), 7 may be determined from mea-
surements of R,. Furthermore, if N(Ez) can be
estimated from the Knight shift value, the residence
time 7, may be obtained from Eq. (23) or (24).

The sensitivity of R, to the microscopic dynamics
of the conduction electrons exhibited by Eq. (23)
represents a major virtue of NMR experiments on
liquid semiconductors. As compared to the macro-
scopic transport properties (o, R,, @, etc.), the
parameters 7 and 7, provide a relatively direct
measure of localization of the conduction electrons
from the point of view of the time during which they
reside on a nuclear site.

b. Quadrupolar velaxation. In any liquid diffu-
sional and vibrational thermal motions of atoms or
ions produce fluctuating electric field gradients at
the nucleus. In addition, rotational modes also
modulate the local field gradients in liquids com-
posed of molecules or other relatively stable atomic
associations. These time-dependent electric field
gradients can provide an important source of spin-
lattice relaxation for nuclei possessing electric
quadrupole moments., *!

Calculation of the appropriate correlation func-
tions [Eq. (11)] for quadrupolar interactions in
liquids is very difficult owing to the current incom-
plete state of knowledge of the complex microscopic
dynamics of the liquid state. For the purposes of
this paper it is sufficient to employ the approximate
form given by Eq. (14) which becomes?*

Ro=15 fD(eQ/m*oV i}, , (25)
where 6V, is the instantaneous fluctuation of the
electric field gradient and 7; is a correlation time
for the appropriate ionic motion. Since all other
parameters are known, 7; could be obtained from
measurements of R, if an independent determination
of {6V2,} is available, for example, from static
quadrupolar effects in the solid state of the system
of interest or in a closely related solid.

A common characteristic of liquid semiconductors
appears to be preservation of a marked degree of
local atomic order above T,.* This implies the
existence of molecular associations which are long
lived in comparison with those in pure liquid metals
or liquid alloys. The quadrupolar correlation time
7T, thus acquires particular importance in liquid
semiconductors since it corresponds to the lifetime
of a particular local arrangement of ions.
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III. EXPERIMENTAL METHODS

The samples used in these experiments were
commercially prepared?® from 99. 999% pure ele-
mental materials. In order to ensure adequate
penetration of the radio-frequency field into the
samples, powdered sample material was mixed
in roughly equal proportions with powdered quartz.
This procedure was sufficient to maintain separa-
tion between the sample particles in the liquid
state. The mixtures were sealed under vacuum in
quartz vials for the experimental runs.

High temperatures were obtained in a cylindrical
furnace employing a platinum heating element
wound noninductively on an alumina ceramic form.
The single platinum rf coil was embedded in the
inner wall of a cast alumina cylinder which fitted
closely around the sample vial. Sample temper-
atures were measured with Pt vs Pt—10% Rh

“thermocouples and the accuracy, including the
thermal gradient over the sample volume, was at
least +4 K over the temperature range covered.
The temperature was stabilized with a simple
regulation system employing a thermocouple as
sensor. The stability during application of rf
pulses (5-usec pulse width at 200 pulse repetitions
per sec) was better than +0.1 K.

Nuclear resonance signals were observed at
frequencies of 9.0, 10.2, and 16.0 MHz using co-
herent pulsed NMR techniques. The amplitude of
the rf magnetic field was normally 40-60 G.
Knight shifts were measured relative to the reso-
nance position of appropriate ions in reference
solutions. These were (i) aqueous solution of
Iny(SO,); for In'¥s, (ii) aqueous solution of GaCl,
for Ga® and Ga™, (iii) HSbF, for Sb'®! and Sb'%,
and (iv) a solution of TeO, in HC1 for Te'®, In
each case the reference solution was made suf-
ficiently dilute that the resonance position became
independent of concentration.

Measurement of spin-lattice relaxation time
T, was difficult for the liquids studied owing to
the unusually rapid relaxation rates encountered
(1/T,>10° sec). Under these conditions we found
that the spin-spin relaxation time T, could be
measured from the free-induction decay with
greater precision than was obtainable from stan-
dard two-pulse T, measurements. Under the con-
ditions of extreme narrowing (w,7< 1) applicable
to these liquids, we are justified in taking®*

R=1/T,=1/T,. (26)

The equality of T, and T, was checked in a few
cases and found to hold to within the + 25% ac-
curacy of the Ty measurements. The magnetic
and quadrupolar rates Ry and R, for the Ga and
Sb isotopes were obtained from measured values
of R by means of Eqs. (15a)-(15d).

leo

1IV. EXPERIMENTAL RESULTS

NMR signals were observed for In'!%, Ga®",
and Sb**"'® in In,Te;, Ga,Tes;, and Sb,Te, at tem-
peratures ranging from roughly 150 K below the
respective melting points to 1500 K (1400 K for
Sb,Te;z). The lower limits of these ranges were
imposed by vanishing signal amplitudes probably
caused by the onset of quadrupolar broadening in
the solids at low temperatures. The high-temper-
ature limit was determined by onset of chemical
reactions between the sample materials and the
supporting quartz powders. Because of poor sig-
nal-to-noise ratios and the general invalidity of
Eq. (26) in solids, meaningful relaxation-rate mea-
surements were not obtained below T,, for these
nuclei.

The Te'?® resonance signals were very weak due
to the low abundance (7.03%) and low spin (I=3) of
this isotope. Although Te® has no quadrupole
moment, measurements on this isotope in the solids
were also limited to temperatures near T,. At
lower temperatures long spin-lattice relaxation
time made observation of the Te'?® resonance in-
creasingly difficult. Because of the over-all low
quality of the Te'?® signals, measurements on this
resonance were limited to Knight shifts.

For each sample the melting transition was
marked by discontinuites in the Knight shifts and
linewidths. The temperatures at which these tran-
sitions occurred lie within 5 K of values of the
melting points given in the literature?®® for the stoi-
chiometric compounds.

A. In2 Te,

Knight shift data for In!®® (%!*°) and Te'® (%!%)
in solid and liquid In,Tes are shown in Fig. 2. We
call particular attention to the following features
of the data. The small temperature-independent
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FIG. 2. Knight shifts %!!5and !? for In''® and Te!?

on In,Tey as functions of temperature. Right-hand
ordinate shows density-of-states reduction factor g.
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In,Tes as a function of temperature. Dashed line
represents Korringa relaxation rate (R}}®)g, calculated
from experimental Knight shifts and Eq. (18).

values of X at the lowest temperatures correspond
to expectations for an intrinsic semiconductor at
low temperatures. For Te!% the small value of
%% persists up to T, (940 K) whereas X% shows
a marked increase over a 150-K interval below
T,. The changes in X% and %! at T, are very
small (e.g., AX'5<0.05%). Above T, both x5
and ' rise rapidly with temperature and X !'°
appears to reach a constant value at the highest
temperatures obtained. The value of %% remains
much smaller than X'*® gyer the entire temperature
range covered. The temperature dependence of

% 5 was reversible with respect to heating and
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FIG. 4. Knight shifts X% and %% for Ga®, Ga'™,
and Te!?® in Ga,Te; as functions of temperature. Data
were taken for sample No. 1 during initial heating of
the sample; sample No. 2 was cycled repeatedly through
T, before data were taken below 7,,. Right-hand ordi-
nate shows density-of-states reduction factor g.
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cooling in both solid and liquid states.

The total relaxation rate R for In'*® in In,Teq
is plotted in Fig. 3. Near T, the observed relax-
ation rate is very high and, for example, exceeds
by more than an order of magnitude the value of
R in liquid InSb. *® In this temperature range
R''% exceeds the calculated Korringa rate (R35)gopr
by about two orders of magnitude while at higher
temperatures R!''5 decreases and begins to approach
(Rus)Korr'

B. Ga, Te,

Knight shift data for Ga®'" and Te!® in solid
and liquid Ga,Te; are shown in Fig. 4. Within
experimental error the observed shifts were the
same for the two Ga isotopes and the plotted values
%% pepresent the average of the measured shifts
X% and K™ at each temperature. The range of the
data for %'®° was limited by deteriorating signal-
to-noise ratios for Te'®® above 1200 K in this
material. The temperature dependence of the data
is strikingly similar to that of In,Teg. The mag-
nitude of %% is understandably smaller than X!!°
since the hyperfine coupling strength increases
with increasing atomic number.3® The principal
difference between the data for the two systems is
the larger negative value of %'2° in solid Ga,Te,,
and its rather sharp increase at T,, (1065 K). Above
T,, the magnitudes and temperature dependences
of %'%° are closely similar in In,Te; and Ga,Te,.

Effects related to the thermal history of the
sample were investigated by measuring X' both
for a sample (No. 2) which had been cycled many
times through 7,, and a sample (No. 1) for which
data were taken as the material was heated for the
first time. As shown in Fig. 4 the effect of re-
peated melting was a systematic increase in %"
just below T',,, whereas no appreciable dependence
on sample history was observed above T,,.

Ga,Te,

ad
=]

o TOTAL RELAXATION RATE R”!
4 MAGNETIC RELAXATION RATE R7!

® QUADRUPOLAR RELAXATION RATE Rn

T

o

[}

n

<

o}

@ I&

w N

540 %\gf\} 1

2 Sy g :

£

$20rTh 4

< (RT1) — -

g | i—s i

© 00 ___._t!?._i——- = ’—i— ¥ % I
1100 1200 1300 1400

TEMPERATURE (K)
FIG. 5. Total nuclear relaxation rate R, magnetic

rate R}, and quadrupolar rate Ry for Ga™ in Ga,Te, as
functions of temperature. Dashed line represents
Korringa relaxation rate (Ri)k,.. calculated from ex-
perimental Knight shifts and Eq. (18).
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Relaxation rates for Ga™ in liquid Ga,Te, (R™)
are shown in Fig. 5. Also shown are the magnetic

and quadrupolar rates (R} and RY!, respectively)
computed from measured values at R® and R™ and
the Korringa rate (R}})xo., computed from Eq. (18).
The decomposition shows that the Ga™ relaxation
rate is mainly due to magnetic processes whose
strength exceeds the Korringa rate by more than
two orders of magnitude near T,,. The value of

R} approaches the Korringa rate at the highest
temperatures as was also observed for the total
rate R in In,Te;. The quadrupolar rate decreases
somewhat more rapidly with increasing temperature
and could barely be resolved at 1400 K.

C. Sb, Te,

Knight shifts for Sb'?""!® and Te'® in solid and
liquid Sb,Te; are shown in Fig. 6. These data
contrast with those for In,Te; and Ga,Te; in several
respects. A surprisingly large value of %121,123
was observed below 7,, (889 K) and this value was
nearly independent of temperature. There is a
small drop in X 212 jyst below T, followed by a
small but sharp increase at the melting transition.
As the temperature was raised in the liquid range
only a modest increase in %''!® was observed.
The value of X!%° below 7,, is very close to its
value in Ga,Te; but jumps to a much larger value
at the melting point.

The behavior of the resonance signals in the
vicinity of T, was quite complex. The transition
at T,, was marked by an appreciable narrowing of
the Sb*®! and Sb'® resonance lines. However, the
linewidth transition was quite sluggish and oc-
curred over a (20-30)-K interval centered on the
expected melting point. The small change in ¥ 12112
was much sharper than this and occurred within
10 K. In contrast, the change in 512 began about
50 K below T, where two Te'® resonance lines
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FIG. 6. Knight shifts %2125 and K125 for spi?!, spi23,
and Te!? in Sb,Te; as functions of temperature. Double
values of %12 just below T, apply to two resonance lines
observed in this temperature range.
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FIG. 7. Total nuclear relaxation rate R!*!, magnetic

rate R}, and quadrupolar rate Rb” for Sb!?! in SbyTes

as functions of temperature. Dashed line represents
Korringa relaxation rate (R},;m)xo" calculated from ex-
perimental Knight shifts and Eq. (18).

could be resolved. The “solid” value of %% tended
to increase slightly in this range while the “liquid”
value decreased. Above T, only one Te'® line was
observed.

The total relaxation rate R'?! and the magnetic
and quadrupolar rates R}?' and R for Sb' are
shown in Fig. 7. Here, in contrast with Ga,Te;,
the majority of the observed relaxation is quad-
rupolar although the temperature dependence of
RP'is similar to that of R} in Ga,Te;. The small
magnetic component R} is close to the calculated
Korringa value over the whole range of temperatures.

V. DISCUSSION

A. Solid and Liquid Structure: Melting-Point Changes
and Quadrupole Relaxation

Knowledge of the atomic arrangement is an im-
portant prerequisite to understanding the electronic
structure of a metal or semiconductor. We there-
fore begin our discussion of the experimental re-
sults by summarizing the available structural data
and relating this to new information obtained from
changes in the NMR parameters at T,, and from
quadrupolar relaxation above T, in In,Te;, Ga,Tes,
and szTeg.

In,Tes and Ga,Te; crystallize in a defect zinc-
blende structure®® in which % of the In (Ga) sites
are vacant. X-ray and infrared transmission
studies®®*® of both materials have shown that the
vacancies exhibit long-range order at 300 K in
suitably prepared samples. Investigation of the
relation of ordering in In,Te; at 300 K to the ther-
mal history of the material®” has shown that a trans-
formation to a high-temperature disordered phase
occurs roughly 50 K below T,,. Both compounds
are semiconductors with electrical gaps®® of 1.12
eV (In,Tez) and 1.7 eV (GayTe;) below T,

Sb,Te; crystallizes in the layer-type Bi,Te; or
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FIG. 8. Density p as a function of temperature for

SbyTe3, InyTes, and Ga,Tey (Ref. 42).

“tetradymite” structure®®*® consisting of five-layer

packets (Te-Sb-Te-Sb-Te) joined by relatively
weak Te-Te bonds.*® The bonding between packets
is believed to be similar to the bonding between
chains of Te atoms in crystalline Te.*? The energy
gap (optical) at 300 K is 0.3 eV, %!

The densities*? p of In,Te;, Ga,Te;, and Sb,Te,
at high temperatures are shown in Fig. 8. All
three compounds undergo a decrease in p upon
melting. Above T, the densities of In,Te; and
Ga,Te; increase slightly with increasing T over an
interval of about 150 K before onset of the more
normal decrease due to thermal expansion. The
behavior of Sb,Te; is more conventional and p de-
creases monotonically with increasing temperature
in the liquid.

The electrical conductivities (Fig. 9) of In,Te,
and Ga,Te; are 14 and 30 (Qcm)™, respectively,
just above T,, but rise rapidly in the temperature
range in which the density increases. The temper-
ature dependence of o becomes weaker at temper-
atures well above T,. The value of o for Sb,Te; is
relatively high just above T, and only a modest in~
crease in o occurs upon heating to higher temper-
atures.

The melting behavior of In,Teg and Ga,Te; con-
trasts with that of such semiconductors as Si, Ge,
and InSb. The latter materials contract upon melt-
ing, increasing the atomic coordination number,
and they exhibit metallic conductivity [0 >10%*( cm)~!]
immediately above 7, .* The expansion of
In,Te;, GapTes and Sh,Te; on melting suggests that
the local atomic arrangement or “short-range
order” of these materials tends to be preserved
through melting. This idea is supported by the
small size of the observed changes in Knight shifts
and transport properties. The density maxima
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exhibited by In,Te; and Ga,Te; imply, however, that
an increase in local coordination does occur in
these liquids at higher temperatures while there is
little indication of further structural modification
in szTe3.

The quadrupolar relaxation rates provide addi-
tional evidence for solidlike short-range order or
molecular association in Ga,Te; and Sb,Te;. In
Table I we compare values of RY and RE! just
above T,, in Ga,Te; and Sb,Te; with values obtained
for the same nuclei in the pure metals and some
metallic liquid compounds at comparable temper-
atures. The quadrupolar rates may be seen to be
appreciably higher in the tellurides than in the
other systems and, furthermore, this difference
is much greater for Ga,Te; than for Sb,Te;.

In principle the rapid quadrupolar relaxation of
the tellurides could be explained by large values of
either {6V2} or 7;. However, two factors argue
strongly that the latter is the dominant effect. The
first is that unusually large values of {6V2} are
required to explain the observed rates if we assume
7; to be the same as the pure metal. For example,
the static value of V,, increases by only about 2%
times as one goes from pure solid Ga to the highly
ionic insulator GaCly. % On the other hand, the
observed value of R in the nearly metallic liquid
Ga,Te; requires that the value of 6V,, produced by
a typical noncubic arrangement of ions in the
liquid exceed the static V,, in solid Ga by more
than a factor of 8.

The second point is that at very high temper-
atures Rg in the tellurides begins to approach the
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FIG. 9. Electrical conductivity as a function of tem-
perature: SbyTes [curve 1, Ref. 42; curve 2, Ref. 54;
curve 3, J. E, Enderby and L. Walsh, Phil. Mag. 14,
991 (1966)]; In,Te; (curve 4, Ref. 49); Ga,Te; (curve
5, Ref. 49).
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TABLE I. Comparison of quadrupolar relaxation rates and correlation times of Ga™ and Sh!*! in pure liquid metals
and some intermetallic compounds.

Isotope Liquid T (K) Rg (10% sec™?) eQV,, (MHz) 7, (10712 sec)
Ga™ Ga 1050 0.10% 13.73° 0.14°
GaSh 1050 =<0,46% 13.73 =0.62°
AuGa, 1050 0.47¢ 13.73 0.63°
Ga,Tes 1070 7.0° 13.73 9.4°
Shit Sb 905 3.6f 76.98 0.65°
GaSb 940 9,52 76.9 1.7
InSb 900 13.5¢ 76.9 2.5°
Sb,Te, 900 42¢ 76.9 7.7

2A. L. Kerlin and W. G. Clark (unpublished).
YReference 52.

®Equation (25).

9W. W. Warren, Jr. and J. H. Wernick (unpublished).

values observed in more conventional metallic
liquids. This implies that in this temperature
range {GVZ} and 7; are rather weakly dependent

on composition. It is easy to understand why 7;
should increase at lower temperatures as a re-
sult of slower rotations and diffusion and the for-
mation of larger aggregates of atoms. It is far
less clear why {6V2,} should increase dramatically
as the temperature is lowered. In summary, while
it is difficult (and probably incorrect) to exclude
entirely variations in {6V} among the various
liquids, it is most plausible that the rapid quad-
rupolar relaxation rates in the liquid tellurides
result from rather long values of the ionic cor-
relation time 7;.

In order to obtain rough numerical estimates of
7; in the various liquids we have made the simple
assumption that the rms field gradient fluctuations
in the liquid compounds, {6VZ}!/2 are the same as
the static field gradients V,, in the appropriate
pure solid metals. The resulting values of 7;
calculated from Eq. (25) are given in the final
column of Table I. The principle feature we wish
to emphasize is the systematic lengthening of 7;
as one proceeds from the most metallic liquids
(Gaand sb) to the most “semiconducting” (Ga,Tes).
This qualitative behavior gives additional support
to the notion that low electrical conductivity in the
liquid state is associated with the presence of
relatively long-lived molecules or other associa-
tions of atoms.

B. Knight Shifts and Magnetic Relaxation Rates

The strongly temperature-dependent Knight
shifts in In,Te; and Ga,Te; might result from either
a temperature-dependent density of states or an
increase in the amount of conduction electron s
character at higher temperatures. We believe the
former effect to be dominant for the following
reasons. First, the magnetic susceptibility42 be-

®This research.

Reference 35.

®R. R. Hewitt and B. V. Williams, Phys. Rev. 129,
1188 (1963).

comes more paramagnetic while remaining roughly
proportional to X as T increases. This suggests
an increase in the density of states since the elec-
tron spin susceptibility should not be highly sen-
sitive to the relative s or p character of the wave
functions. Similarly, the transport properties

o and ¢ indicate an increase in the number of
charge carriers at higher temperatures, 4%
Finally, the relative magnitudes of & 5 and %"
with respect to ¥'% are good evidence that the wave
functions at the In (Ga) sites are, at 7,,, already
very much more s-like than those at the Te site.
The similarity of the temperature dependences of
K5 (387) and X 1% indicates that this situation
does not change dramatically athigher temperatures.
For purposes of estimating the density of states
and the parameter g [defined by Eq. (1)] we will
assume that the states at the Fermi level have
predominantly s character at the In or Ga site at
all temperatures in the liquid.

We estimate g for In,Te; by comparing ®*° in
In,Te, to the value of x'® in the metallic solid
InTe II as described in Sec. IIB. The pressure-
stabilized metallic phase InTe II is a good metal
[o=~10* (Qcm! at 300K *] and has a large In'*®
Knight shift: %*'*(InTe II)= 2. 79+ 0. 04% at 300 K. %
Thus according to Eq. (10) we take

g= X15(In,Te;)/ K15 (InTe II). (27

The resulting values are displayed by scaling the
data for X5 in In,Te; on the right-hand ordinate
of Fig. 2 and characteristic values are given in
Table II.

Unfortunately no data on an appropriate metal
are available for comparison with the Ga,Te; Knight
shifts. Therefore we used an optical hyperfine
value® 19,(0)1%2=6x10% cm™ to obtain the density
of states and calculated N(Ez),, from free-electron
theory assuming one s electron per Ga ion.*" The
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values of g obtained in this way are shown in Fig.
4 and Table II.

It is interesting and reassuring that the absolute
values of g estimated for In,Te; and Ga,Te; are
similar in spite of the quite different means employed
in obtaining {|$(0)|%r. In both systems g varies
smoothly from g =0 in the crystalline semiconduc-
tors to g=~ 0.5 far above T,,. Although most of the
increase in g occurs in the liquid range, the rise
just below T,, is particularly interesting. The ob-
served values of ¥ ! and %" ip this range are
at least an order of magnitude larger than might
be expected from thermally excited carriers with
a 1-eV gap. The fact that the signals are quite
weak in this temperature range suggests that the
resonances observed might be due to small amounts
of Te-rich material in the sample mixture. An
alternative explanation is that an appreciable num-
ber of states is introduced into the energy gap
above the order-disorder transformation. The
widths of these rises in !5 and X%'™ might then
reflect the high sensitivity of the ordering temper-
ature reported®® for very small departures from
stoichiometry.

The negative temperature-independent value of
%'%%in solid Ga,Te; appears to be a chemical shift
with respect to the reference compound (TeO, in
HCI solution). It is interesting that there is no in-
crease in X% coincident with the rises in X' and
%% just below T, in In,Tey and Ga,Te;. This
means that those states responsible for the observed
values of %'° and X®'™ in this range have appre-
ciable s-wave character only at the In (Ga) sites.

In the case of Sb,Te; a slightly different situation
occurs. Here X!¥113 jg pearly constant at a me-
tallic value over the solid range covered while i 25
is small and negative, as in Ga,Te;. The large

TABLE II. Characteristic values of the density-of-
states reduction factor g, the magnetic relaxation-rate
enhancement factor 71, and the electronic correlation
time 7, for liquid In,Tey and Ga,Tes.

T (K) g n 7,(10715 sec)
InzTe3
950 0.12 1002 1.81%
1025 0.21 172 0,54
1100 0.31 6.0 0.28
1250 0.41 2,92 0.18
1400 0.46 2.02 0.14*
Ga,Teg
1070 0.086 151 1.87
1125 0.13 49 0.93
1200 0.25 9.3 0.34
1300 0.37 3.5 0.19
1400 0.45 2.1 0.14

#Not corrected for quadrupolar relaxation.
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value of %'?!'¥ may be a result of departure from
stoichiometry which is known to markedly increase
the conductivity of Sb,Te;.*? Whatever their origin,
the states responsible for the Sb!#'® ghifts in
solid Sb,Te; also have s character only at Sb po-
sitions.

For liquid Sb,Te; there is no evidence of a strong-
ly temperature-dependent density of states. Since
there is good reason to expect p-electron effects
to be more important for pentavalent Sb than for
trivalent In and Ga, we have not attempted to ob-
tain a numerical value for N(Ep) from %213 jn
Sb,Te;. (The relatively large role of p-electron
effects in Sb,Te; can be seen from the much larger
ratio %'#/ 5! 13 jp Sh,Te, compared to, say,

X'25/ %115 in In,Tes.) We point out, however, that
%2418 in Sp,Te, is within 20% of its values in liquid
Sb and InSb.3® Both of the latter liquids are good
metals and may be assumed to have values of

N(Eg) close to the free-electron value.

The behavior of the nuclear relaxation rates
serves to further distinguish In,Te; and Ga,Te,
from Sb,Teg. The very large enhancement of R,
relative to (R y)gor near T, in In,Te; and Ga,Te,
means that the conduction electrons in these liquids
are strongly disposed to remain near a particular
nuclear position. The magnitudes of the enhance-
ment factors 1 and correlation times 7, calculated
from Eq. (24) (Table II) show, in fact, that the
electrons are localized for “residence times” more
than two orders of magnitude longer than appro-
priate for NFE with the same density of states. In
contrast, R}?!'in Sb,Te; agrees with the Korringa
predictions (i.e., n=21) at all temperatures and
there is no evidence of a large departure from
NFE dynamics.

C. Comparison of Experiment and Theoretical Models

The two most relevent NMR parameters for
testing the validity of the theoretical models are
(i) the magnitude of the In (Ga, Sb) Knight shift or
equivalently, g, and (ii) the magnetic relaxation
enhancement 7. Inthis subsectionwe describe what
we believe to be the state of consistency between
these parameters measured for In,Te; Ga,Te;, and
Sb,Te; and the theoretical models described in Sec.
II. The results of these comparisons are sum-
marized in Table IIIL.

It is quite clear that conventional semiconductor
theory is inappropriate for the liquids we have con-
sidered. The magnitudes of the Knight shifts are
much too large to be explained by intrinsic concen-
trations of thermally excited carriers for values
of the energy gap which are comparable to those of
the crystalline solids. Moreover, even if the car-
rier concentrations were very high owing to high
concentrations of donors or acceptors, the holes
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TABLE III. Agreement of the observed magnitudes
of Knight shift X and relaxation enhancement 1 with
three models: conventional semiconductor theory (CST),
pseudogap model (PG), and pseudobinary alloy (PBA).

I.nzTes GaZTe3 szTes

MODEL x Ui X n x n
CST No No ? No No No Yes
PG Yes Yes ? Yes Yes Yes Yes
PBA Yes No ? Yes No Yes Yes

Interpretation of 1 for In,Te; is ambiguous because
of possible uncorrected quadrupolar contributions.

and electrons would behave as free carriers and no
enhancement of the relaxation rate would be expected.
This result is in accord with Allgaier’s conclusion?
that the Hall and Seebeck coefficients of many liquid
semiconductors are inexplicable within the frame-
work of standard semiconductor concepts as con-
ventionally applied to crystalline materials.

The pseudobinary alloy model is in general agree-
ment with the Knight shift data since a minimum in
the density of states of the “free” band permits
values of N(Ey) with any magnitude less than or on
the order of N(Ez);,.. However, the enhanced re-
laxation rates present a serious problem for this
model. As we have discussed, electron dynamics
are described for the pseudobinary alloy in terms
of scattering of NFE with an energy-dependent
mean free path A. Now A must be presumed (as
in Ref. 22) to be at least as large as one inter-
atomic spacing since the concept of a mean free
path (as it is normally employed in scattering
theory) loses meaning when the mean free path be-
comes less than the distance between scattering
centers. But according to the arguments presented
in Sec. IIB, one would not expect to see large en-
hancements of the relaxation rates in In,Tez and
Ga,Te, if such a NFE model represented an appro-
priate description of the electron dynamics. We
conclude, therefore, that the pseudobinary alloy
model in its present form does not provide an
adequate picture of the electron dynamics in liquid
In,Te; and Ga,Tez. On the other hand, no relaxation
enhancement was observed for Sh,Te; and the data
appear to be consistent with the model for this
liquid.

Of the three models we have considered, the
pseudogap model is most capable of explaining the
essential features of our experimental results.
Estimates of g from the observed Knight shifts in-
dicate a relatively deep pseudogap (g~ 0.1) just
above T,, in In,Te; and Ga,Te; while g is probably
at least 0.5 at T, in Sb,Te;. According to this in-
terpretation, the temperature dependence of X'
and %%'™ in In,Te; and Ga,Te, indicates that the
pseudogap “fills in” at higher temperatures as a
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result of collapse of the local “molecular” arrange-
ment, increase of the coordination number, and
mixing of the In (Ga) “sublattices.” This notion is
supported both by the temperature dependence of

the densities and by the behavior of the quadrupolar
relaxation rates. For Sb,Te; the pseudogap is much
less pronounced at T, and changes only modestly
with temperature.

The observed enhancement of the magnetic re-
laxation rates in In,Te; and Ga,Te; is in good
agreement with what might be expected from the
formation of localized states when the pseudogap
is deep. The data show that as the density of states
decreases, the electrons increasingly tend to re-
main on a particular nuclear site. In the following
sections we extend these qualitative conclusions
and make some quantitative comparisons among the
observed NMR results, dc conductivity, and pre-
dictions made by Mott on the basis of the pseudo-
gap model.

D. Relationship of NMR Results to dc Conductivity

The electrical conductivity?® and magnetic re-
laxation-rate enhancements for In,Te; and Ga,Teg
are shown in Fig. 10 plotted vs g with temperature
as an intrinsic parameter. When plotted in this
manner the data for the two liquids are strikingly
similar in spite of possible quadrupolar contribu-
tions to o for In,Tez. A rather abrupt change in the
slopes of these curves occurs at a value g,, where

2,=0.18+0.03 .

As g decreases below g,, sharply rising values of
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FIG. 10. Magnetic relaxation enhancemeént 7 and elec-
trical conductivity o versus density-of-states reduction
factor g for In,Tes and Ga,Te;. Temperature is the
implicit parameter.
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7 indicate that the electrons rapidly become more
localized while, in the same range, the conductivity
drops sharply. Above g., on the other hand, ¢ in-
creases with g¢ much more slowly and 7 approaches
the NFE value (n=1).

We caution that the present experiments do not
demonstrate that the electronic states below g, are
localized in the rigorous sense. That is, we have
not shown that the wave functions of these states
are damped exponentially at distances far from a
particular site or that the dc conductivity vanishes
at 0 K. On the other hand, we have established
that just above T,, the mobility of an electron with
respect to a given nucleus has dropped by more
than two orders of magnitude below the expectation
for NFE. Furthermore, this effect is clearly re-
flected in the macroscopic transport by the drop in
o below g,. Such behavior is exactly what one
might expect for a transition from extended states
to weakly localized states at finite temperatures.
There is no hint in the data that the trend towards
increasingly strong localization does not continue
to values of g smaller than the minimum values ob-
tainable in these liquids. From the operational
point of view of describing electronic transport at
finite temperatures, therefore, the states in the
pseudogap can be identified by their “residence
times” as effectively localized when g<g,, re-
gardless of the exact quantum-mechanical nature
of the eigenstates.

Theoretical estimates made by Mott for the on-
set of localization in the pseudogap are in quite
good agreement with the transition we observe at
g.. His predicted value of g, = 0. 285 is approxi-
mately 50% higher than our observed value. This
cannot be regarded as a serious discrepancy given
both the uncertainty in the absolute value of the
measured g and the approximate nature of the
arguments invoked in Mott’s estimate of g,. As a
second point of contact between theory and experi-
ment we note that the value of ¢ at the localization
onset

0,=200%70 (Rcm)™!

compares favorably with various values in the
range 100~300 (R2cm)™! given by Mott® 1218 55 the
minimum possible value for conductivity by ex-
tended states.

The high-temperature region of our experiments
corresponding to values of g for In,Tey and Ga,Te,
in the range g,<g<0.5 represents a transitional
regime linking the localized state regime with the
metallic regime in which the Korringa relation
should be valid. In terms of the relaxation enhance-
ment observed for In,Te; and Ga,Te,, the tran-
sitional range corresponds to values of 1 between
1 and 20. Cohen®® has suggested the existence of
such a transitional region in which electron trans-

3721

port proceeds by a kind of diffusion or “Brownian
motion” involving very rapid jumps between neigh-
boring lattice sites. As compared with the local-
ized regime the electron states in the Brownian
motion regime are extended and electronic trans-
port does not rely on phonon assistance.

On the basis of these considerations we can
identify three distinct ranges of electrical conduc-
tivity for liquid semiconductors. The first is the
regime of metallic conduction in which the con-
ductivity may be characterized by a mean free
path and calculated according to scattering theory
as in the Faber-Ziman theory® for liquid alloys.
In this range the nuclear relaxation rate should be
independent of the conductivity and the Korringa
relation should be obeyed to the extent typical of
pure liquid metals (i.e., within about a factor of
2).

The second and third ranges are the Brownian
motion and localized state regimes. Here the con-
ductivity may not be described in terms of a mean
free path but rather by an equation of the form?!?:14:5°

0=2NE)Q ETep , (28)

where Q is the atomic volume and the mobility ©
is related to a jump time 7 by an Einstein relation

(29)

In the Brownian motion regime the jump distance

d should be the same as the interatomic spacing a
whereas, in the localized regime, d may be greater
than a. This increase ind is, of course, offset by
longer values of 7 leading to reduced mobilities in
the localized regime. Now, according to the
arguments developed in Sec. IIB, the jump time is
given by the NMR correlation time 7, for Brownian
motion or for weakly localized states. This cor-
respondence then leads to a simple relation con-
necting o and the relaxation enhancement 7 in these
two regimes. Thus, combining Egs. (28) and (29),

we obtain
1 ezdz) N(Ep)
21 NEF) 0
g 3( Q Te ’ (30)
which gives on substitution of Eq. (24)
on=0,=e2d?/3Q% . (31)

Since a?/Q varies little from liquid to liquid, o,
should be a universal constant in the Brownian
motion regime, whereas increases in d may lead
to larger values of o, for localized states. The
value of the conductivity at the transition from NFE
(metallic) behavior to Brownian motion should be
0021500 (Qcm)™! for typical values d=2.5 A and
Q=35 A3,

The foregoing ideas are tested in Fig. 11 where
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the relaxation-rate enhancement is plotted versus
the conductivity for those liquid metals and semi-
conductors for which data are available. Consider-
ing for the moment only liquids for which 7 includes
no quadrupolar contribution (open points), the

three ranges of conductivity are quite evident. For
liquids with o 22000 (R2cm)™}, 7 is independent of

o and, for most of the liquids, 7= 0.7. For Ga,Te,,
on the other hand, 7 is proportional to ¢~! in both
the Brownian motion and localized regions. The
proportionality constant oy in the Brownian motion
regime is 1800+ 200 (R2cm)™, in good agreement
with the value predicted by Eq. (31). In the range
of localization o, increases to 4000+ 400 (Qcm)™,

It is interesting to note that according to this
scheme Sb,Te; just spans the transition from NFE
to Brownian motion transport behavior.

Finally we remark on those cases for which 7
contains unknown contributions from quadrupolar
relaxation (In,Tes, InSb, Bi, etc.). The data for
these nuclei show the same qualitative behavior as
for the “magnetic only”’ cases except that 7 is
systematically larger. This, of course, is what
one expects since quadrupolar relaxation leads to
higher values of R relative to X and, hence, to a
larger apparent enhancement factor 7.

VI. SUMMARY

Knight shifts and nuclear relaxation rates have
been measured for three “liquid semiconductors”:
In,Te;, Ga,Tes, and SbpyTez. The strongly temper-
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ature-dependent shifts % '*® and %% in In,Te; and
Ga,yTe;, respectively, are attributed mainly to a
temperature-dependent density of states at the
Fermi level. The value of N(Ep) begins to increase
below T, in the vicinity of the order-disorder trans-
formation for In (Ga) vacancies. In the liquids,
N(Eg) rises from a value of about 75 of the free-
electron density of states near T, to about 3 the
free-electron value at 1400 K. The correlation of
this rise in N(Ey) with an increase in density and a
decrease in the quadrupolar relaxation rate suggests
that a minimum in the density of states (pseudogap)
gradually “fills in” as a result of collapse of the
local solidlike structure.

Nuclear relaxation rates for In'’%, Ga®, and Ga™
near T, in liquid In,Te; and Ga,Te; are greatly
enhanced with respect to the normal Korringa rates
calculated from the Knight shifts. The enhance-
ment exceeds two orders of magnitude just above
T, but drops rapidly with increasing temperature.
Decomposition of Ga,Te; total relaxation rates into
magnetic and quadrupolar components shows the
enhanced relaxation to be magnetic in origin. It
was demonstrated from correlation function argu-
ments that such an enhancement may be expected
as the conduction electrons become localized on
individual nuclear sites.

The data for Sb,Te; contrast sharply with those
for In,Te; and Ga,Te;. A large Sb'?1"!% ghift below
T, is virtually unchanged on melting and only a
slight rise in X 31+18 gccurs as the temperature is
raised above T,. The magnitude of 52'# indi-
cates that N(Ey) is close to the free-electron value
at all temperatures in the liquid. No enhancement
of the Sb*?! magnetic relaxation rates was observed
and we conclude from this that there is no signifi-
cant localization of the conduction electrons in Sb,Tes.
The Te'® shift exhibited a premelting effect and
two resonance lines were observed over a 50-K
interval below T,,.

The experimental results in In,Te;, Ga,Tes and
Sb,Te; have been compared with three models for
the electronic structure of liquid semiconductors:
(a) conventional semiconductor theory, (b) pseudo-
gap model, and (c) pseudobinary alloy model. Of
these, only the pseudogap model invokes localiza-
tion of the electronic states and appears capable
of explaining the enhanced relaxation in In,Te; and
Ga,Te;. The data for Sb,Te; are consistent with
either the pseudogap model or the pseudobinary
alloy model.

A change in the variation of relaxation enhance-
ment 7 with changing values of the density-of-states
reduction factor g indicates the onset of localization
in In,Tey and Ga,yTeg occurs when g falls below
about 0.2. This onset coincides with sharp drops
in the conductivities of both liquids. We must re-
emphasize, however, the inexact nature of ourde-
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termination of the absolute value of g since we have
utilized rather crude estimates of the hyperfine
coupling strength. On the other hand, the tran-
sition to localized states is seen mainly from cor-
relation of the values of 7 and o with relative
changes in g. Thus, the existence of the localiza-
tion onset is more reliably established than is the
precise value of g at which it occurs.

Correlation of the conductivity o with the mag-
netic relaxation~rate enhancement 7 for a number
of liquid metals and semiconductors demonstrates
the existence of a second transition separating true
metallic behavior from a range of conduction by
diffusion or “Brownian motion.” We suggest there-
fore that electron conduction in liquids may be
classified according to the following three types:
(1) metallic conductivity: o =2000 (Rcm)™, n=~1;
(II) Brownian motion: 200=0=2000 (Rcm)™?, 1=
1= 20; (III) localized states: ¢=200 (Rcm)?!, n =
20. This classification corresponds quite closely
to a scheme proposed by Allgaier on the basis of
the magnitudes and temperature dependences of
various transport properties. In that case the in-
termediate region linking metallic and localized
behavior (denoted “Class B” in Ref. 1) is slightly
wider, encompassing liquids whose conductivities
lie in the range 100=0=5000 (R cm)!. Enderby
and Collings?® have suggested a somewhat different
classification involving two regions defined by con-
ductivities which are either less than or greater
than about 1000 (2 cm)™!. Their low-conductivity
region (denoted “Type 2”) corresponds roughly to
our regions II and IIL.
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Of the liquids studied in these experiments, In,Tey
and Ga,Te; range from region III to region II as the
temperature is raised. The properties of Sb,Te,
are only weakly dependent on temperature and this
liquid appears to fall right on the transition between
regions Iand II. Although all three liquids have
been called liquid semiconductors in the literature,
it would appear that if this appellation is appropriate
at all, it should be applied only to In,Te; and Ga,Te,
in region III. However, liquids in this range form
a unique class and their properties cannot be ade-
quately described with standard semiconductor con-
cepts.

We believe that future NMR studies will prove to
be of value in further investigation of microscopic
transport in electronically conducting liquids. Such
studies would benefit greatly from the availability
of a more precise theory of nuclear relaxation for
liquids in ranges I and III.

ACKNOWLEDGMENTS

The author expresses his gratitude to N. F. Mott
for a stimulating discussion and continuing corre-
spondence during the course of this work. He is
indebted to P. W. Anderson and J. Tauc for valu-
able discussions. R. W. Shaw kindly read the
manuscript and provided a number of helpful sug-
gestions. Expert technical assistance by G. F.
Brennert is gratefully acknowledged. Finally, he
wishes to thank A. L. Kerlin and W. G. Clark for
permission to include in Table I their unpublished
results for liquid Ga and GaSb.

IFor an excellent summary of the transport properties
of liquid metals and semiconductors see R. S. Allgaier,
Phys. Rev. 185, 227 (1969).

ZPreliminary reports of our work on InyTes and GayTeg
have been presented, respectively, in W. W, Warren,
Jr., J. Non-Cryst. Solids 4, 168 (1970) and Solid State
Commun. 8, 1269 (1970).

SA. F. Ioffe and A. R. Regel, Progr. Semicond. 4,
239 (1960).

M. Cutler and C. E. Mallon, J. Appl. Phys. 36,
201 (1965).

M. Cutler and C. F. Mallon, Phys. Rev. 144, 642
(1966).

M. Cutler and M. B. Field, Phys. Rev. 169, 632
(1968).

'J. M. Donally and M. Cutler, Phys. Rev. 176,

1003 (1968).

M. Cutler and R. L. Peterson, Phil. Mag. 21, 971
(1970).

’N. F. Mott and R, S. Allgaier, Phys. Status Solidi
21, 343 (1967).

10N, F. Mott, Phil. Mag. 17, 1259 (1968).

N. F, Mott and E. A, Davis, Phil. Mag. 17, 269
{1968).

2N, F, Mott, Phil. Mag. 19, 835 (1969).

SN. F. Mott, Contemp. Phys. 10, 125 (1969).

YN. F. Mott, Festkoerperprobleme 9, 22 (1969).

5N, F. Mott, Phil. Mag. 22, 7 (1970).

16N, F. Mott (unpublished).

Tp, W. Anderson, Phys. Rev. 109, 1492 (1958).

A, 1. Gubanov, Quantum Electvon Theory of
Amovphous Conductors (Consultants Bureau, New York,
1965).

19y, Banyai, Physique des Semiconducteurs (Dunod,
Paris, 1964), p. 400.

2\, H. Cohen, H. Fritzsche, and S. R, Ovshinslky,
Phys. Rev. Letters 22, 1065 (1969),

g, N. Economou, S. Kirkpatrick, M. H, Cohen, and
T. P. Eggarter, Phys. Rev. Letters 25, 520 (1970).

225, E. Enderby and C. J. Simmons, Phil. Mag, 20,
125 (1969).

%3, E. Enderby and E. W. Collings, J. Non-Cryst.
Solids 4, 161 (1970).

3, M. Ziman, Principles of the Theory of Solids
(Cambridge U, P., London, 1964), p. 202.

ZReference 24, pp. 183-185,

%c, P. Slichter, Principles of Magnetic Resonance
(Harper and Row, New York, 1963), p. 43.

2"'R. T. Schumacher and C. P. Slichter, Phys. Rev.
101, 58 (1956); R. T. Schumacher and W. E. Vehse,
J. Phys. Chem. Solids 24, 297 (1963).

%¢c, Ryter, Phys. Rev. Letters 5, 10 (1960).

®M. Gueron, Phys. Rev. 135, A200 (1964).

%W, D. Knight, in Solid State Physics, edited by



3724

F. Seitz and D. Turnbull (Academic, New York, 1956),
Vol. 2.

IE, T. Micah, G. M. Storks, and W. H. Young, J.
Phys. C 2, 1653 (1969).

52D, Pines, in Solid State Physics, edited by F. Seitz
and D, Turnbull (Academic, New York, 1955), Vol, 1.

B, Abragam, The Principles of Nuclear Magnetism
(Clarendon, Oxford, 1961), p. 273.

3Reference 33, p. 314.

%W, W. Warren, Jr. and W. G, Clark, Phys. Rev.
177, 600 (1969); 184, 606 (1969),

%€J. Korringa, Physica 16, 601 (1950).

STA. Narath and H, T, Weaver, Phys. Rev. 175, 373
(1968).

%R. W. Shaw, Jr. and W, W, Warren, Jr., Phys.
Rev. B 3, 1562 (1971).

®F, A, Rossini and W, D. Knight, Phys. Rev. 178,
641 (1969).

40Reference 24, p. 116.

41See, for example, Ref. 33, Chap. VIII for a discus-
sion of quadrupolar relaxation via rotational modes; for
diffusional relaxation, see C. A, Sholl, Proc., Phys.
Soc. (London) 91, 130 (1967).

4y, M. Glazov, 8. N. Chizhevskaya, and N. N.
Glagoleva, Liquid Semiconductors (Plenum, New York,
1969).

Materials Research Corp., Orangeburg, N. Y.

4Reference 33, p. 292,

R, P, Elliot, Constitution of Binary Alloys, First
Suppl ement (McGraw-Hill, New York, 1965).

A, 1, Zaslavski and V. M, Sergeeva, Fiz., Tverd.
Tela 2, 2872 (1960) [Sov. Phys. Solid State 2, 2556
(1961)]1.

WILLIAM W. WARREN, JR. 3

4p, J. Holmes, I. C. Jennings, and J. E. Parrott,
J. Phys. Chem, Solids 23, 1 (1962).

#p, E. Newman and J. A, Cundall, Nature 200, 876
(1963).

¥y, P, Zhuze and A, I. Shelykh, Fiz. Tverd. Tela
7, 2430 (1965) [Sov. Phys. Solid State 7, 942 (1965)].

%J. R, Drabble and C. H. L. Goodman, J. Phys.
Chem. Solids 5, 142 (1958).

53, Black, E. M. Conwell, L. Seigle, and C. W.
Spencer, J. Phys. Chem. Solids 2, 240 (1957).

2w, D. Knight, R, R. Hewitt, and M. Pomerantz,
Phys. Rev. 104, 271 (1956).

%H, G. Dehmelt, Phys. Rev. 92, 1240 (1953).

R, Blakeway, Phil. Mag. 20, 965 (1969).

%M. D. Banus, R. E. Hanneman, M, Strongin, and
K. Gooen, Science 192, 662 (1963).

%K. C. Brog, W. H. Jones, Jr., and F. J. Milford,
Phys. Rev. 144, 245 (1966),

“"The choice of one s electron per Ga ion is based on
the assumption that the bonding in “metallic” Ga,Tey
should have a high degree of ionicity as in InTeII (Ref.
56). In this case the configuration of the Ga ion is
approximately Ga™ (4s!). However, because of the cube-
root dependence of the free-electron density of states
on the electron concentration, the estimated values of
g are not highly sensitive to this assumption.

%1.. 8. Palatnik, L. V. Atroshchenko, L. P,

Gol’chinetskii, and V. M. Koshkin, Dokl. Akad. Nauk. SSSR

165, 539 (1965) [Sov. Phys. Doklady 10, 1215 (1966)].
%M, H. Cohen, J. Non-Cryst. Solids 4, 391 (1970).
80T, E. Faber and J, M. Ziman, Phil. Mag. 11, 153

(1965).

PHYSICAL REVIEW B

VOLUME 3, NUMBER 11

1 JUNE 1971

Doppler-Shifted Ultrasonic Spin Resonance in Metals*

Harold N. Spector
Physics Department, Illinois Institute of Technology, Chicago, Illinois 60616

and

J. B. Ketterson
Avgonne National Labovatory, Avgonne, Illinois 60439

(Received 11 December 1970)

A new method of measuring the conduction-electron g factor by ultrasonic Doppler-shifted
spin resonance is presented. A Boltzmann-equation approach is used to obtain the attenuation
arising from both the self-consistent-field and the Yafet mechanisms. The magnitude of the
spin-dependent part of the attenuation is too small at the usual ultrasonic frequencies to be ob-
served directly but the derivative of the attenuation should be observable.

I. INTRODUCTION

There now exist well-developed experimental
techniques such as the de Haas-van Alphen (dHvA)
effect, ultrasonic geometric resonance, microwave

sociated with conduction electrons is their g factor.
If the g factor is isotropic, the conduction-electron
spin-resonance (CESR) technique may be used.! If
the g factor is anisotropic, this technique is less
useful, and other experimental techniques should

be explored. The harmonic content of the amplitude
of the dHVA oscillations contains information on the
g factor associated with extremal orbits, but precise

cyclotron resonance, etc., by which the shape of
the Fermi surface and the Fermi velocity may be
explored. Another interesting physical quantity as-



