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A quantum-mechanical treatment of the problem of the charged-particle emission from crys-
tals has been presented. In addition to the mass and potential dependence established by the

previous wave-mechanical calculations, we have illustrated the energy and the temperature
dependence by assuming the crystal to be initially in a low-lying state and calculating the

renormalization of the particle wave function using the Debye model for the lattice vibrations.
The attenuation is shown to be a natural consequence of the inelastic processes, and its mag-

nitude is found to be small compared to previous conjectures,

I. INTRODUCTION

Ever since Lindhard' proposed the theoretical
basis for the channeling of particles in perfect
crystals based on the ideas of the strings of atoms
and the critical angle, a good deal of experimental
work has been done, ' mostly on the channeling of
heavy ions in perfect crystals. There has been
excellent agreement between experimental and
theoretical values of the critical angle, the range
of the ions in the crystal, and the other parameters.
However, for light particles such as electrons and
positrons, Lindhard's classical treatment has been

shown" ~ to give only the gross features of the
phonomena, and it has been found in a quantum-
mechanical treatment that the phenomena must
show a mass dependence, in contradiction to the
classical predictions. Actually, similar deviations
from classical results had been pointed out by
Lervig et a/. , who showed that for electrons and
positrons the penetration into the classically for-
bidden region will be significant and the quantum
effects must be taken into account. A similar quan-
tum-mechanical treatment of the electron and
positron channeling has been proposed by Howie.

The experimental situation for light-particle
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channeling seems to be poor. A recent communica-
tion'Q gives some information of electron channeling
at high energies. However, the charged-particle
emission problem, which are governed by the
same physical mechanism a,s the channeling prob-
lems, have attracted experimental interest. A
significant work in this connection is that of
Uggerhgfj" on the electron and positron emission
from 6 Cu embedded in a copper crystal. Very
recently %alker et g/. ' have studied the effects of
bremsstrahlung radiations on the channeling of
relativistic electrons and positrons.

In order to make some comparison with the ex-
periments of Uggerhf(j, DeWames ef a/. ' have quan-
tum mechanically treated the emission of electrons
and positrons from crystals. Using the periodic
potential field U(x) of the classical model in an
approximate form'3 of the many-pa, rticle Schrodinger
equation, they have shown how the quantum-mechan-
ical treatment displays ma, ss and potential depen-
dence of the charged-particle emission from crys-
tals. Their results completely dispose, once and
for all, of the notion that the emitted intensity pat-
tern for charged particles, regardless of mass, con-
sists of a broad dominant envelope on top of which
is superposed small detailed structure due to the
(quantum-mechanical) Bragg resonances. How ever,
the inelastic processes such as emission and ab-
sorption of the phonons by the emitted particle have
been ignored in this formalism. These inelastic
processes have been found' to lead to the renormal-
ization of the particle wave function which is of
basic importance in the theory of anomalous trans-
mission of particles through perfect crystals. '

In this paper we consider the propagation of par-
ticles through crystals. Starting with the Schro-
dinger equation for the whole system (crystal and
particle), we utilize the standard Born approxima-
tion'~ to solve coupled particle-crystal equations
for the amplitude of the transmitted wave. Then
the reciprocity relation"" is used to relate the
problems of emission and penetration of particles.
Assuming the crystal to be initially in a low-lying
state, the formulation has been given in See. II
and the Debye model for the lattice vibrations has
been used to evaluate the renormalization matrix
elements in See. III. The conclusions regarding
the temperature and energy dependence of the pro-
cess, in addition to those of mass and potential de-
pendence, have been summarized in Sec. IV. The
numerical values of the absorption parameter cal-
culated from the present formalism differ appreci-
ably from those obtained in earlier diffraction
theories.

II. FORMULATION AND RENORMALIZATION MATRIX
ELEMENTS

%'e consider the emission of particles from a
source embedded in a perfect crystal. The crystal

is assumed to be initially in a low-lying state In)
at low temperature. Leaving aside the actual
mechanism of emission, we shall be concerned
only with the propagation of the emitted particle
through the crystal and its subsequent escape from
the crystal. %e shall also neglect the interactions
(if any) of the emitted particle with the emitter it-
self, and thus we are ignoring the processes that
might bccur in the immediate vicinity of the emitter.
Under these simplifying assumptions we are faced
with the problem of propagation of particles through
the periodic potential field of the crystal.

The Schrodinger equation describing our system
(the crystal and the particle) is

where the total Hamiltonian II is given by II = HQ+ 8~
+ V, HQ being the crystal Hamiltonian, H& the free-
particle Hamiltonian, and V the interaction potential
between the particle and the crystal. The total en-
ergy of the system E is given by Z = E„+Z~, E„being
the energy of the crystal when it is in the nth phonon
state (Holn) = Z„l n) ), and E~ is the particle energy
at emission. The total wave function of the system
4' can be expanded' in terms of the crystal eigen-
funetions tn) corresponding to energy F.„.

e(r, (R,})=Z„~n}y„(r),

where r is the position of the particle and R, is the
actual position of oth nucleus in the crystal. Using
(2) in (l), we may write the equations coupling the
particle and the crystal wave functions in the
form

(
2 2

+(ni Vtn) —K~ p„(r)=-Z (ni Vim) p„(r),
2ppl Q mug

where mQ is the mass of the particle. The right-
hand side of Eq. (3) represents the renormalization
of the particle wave function (due to inelastic pro-
cesses) which is missing in the calculations of De-
Wames et al. 6' The intensity at a point r outside
the crystal due to emission at a point r, inside the
crystal is obtained by calculating the intensity at
the emitter has been placed at the observation
point r. This ean be done in view of the recipro-
city relation'3

V„(r, r, ) = q „(r„r),
which holds as long as one neglects the reflections
at the crystal surfa, ce. Thus the problem is re-
duced to tllat of fllldlllg tile intensity at tile e1111ttel'
site, when the particles are coming from a far-
away point r.

The problem of penetration of particles has been
treated in detail in an earlier work' (hereafter re-
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(25+ t', ) f(„(n) +Z, (J)„,u, (n) = o,

where the expansions"" '"

and

q „(r)=Z„f(„(n)e""&'g "

ferred to as I). Using the Born approximation' for
y„(r) appearing on right-hand side of (3), we write
(3) as in I.

where

+2m(l —x) exp(- t/$0') cos[(1+y)'~ flh)I],

(o)

final equation for the intensity in two-beam theory
(single Bragg reflection), when the emitter is lo-
cated at a lattice sites:

ijcp„(t)i'=x'exp(- [1 —e„(I+y') ' ']f/&(')'f

+(1 —)f)'exp(- [I+t„(1+y') '~ ]f/(Q']'

V„„(r)= Z„V„(n) e'~~ '
have been used. In Eq. (5),

mZ, =(@'/2m, )k,'-Z, ,

g=-,'[1+ (y —1) (I+y') '~'],

y=4/2t& (Re(h 4h [Vh+Rec„o]/Z, ),
') =(I))'Ao' (im(I'r =Pa/I =™co/zo»

4 (ko 4) ~ 1l (koch

(1O)

(k'/2m, ) (Z„'+ 2K„ i„)= L„Z, ,

y„,= [v„,+ c„,(n)]/z, ,

(7)

()f) — 0 dr dr~ e- ((if)+)Q) ' r" +(([if+I„)~ ))'

y@Q
~

e

efh~zl$ -P ]

xQ V„(r)

with the renormalization matrix elements given by

and t is the distance of the emitting atom from the
crystal surface. In deriving (9), the assumption
of gI,

' = Imc„o/E~ being small compared to g„' is es-
sential and this assumption will be justified when

we calculate the renormalization matrix elements.
The imaginary part of the renormalization matrix

has been calculated in I. We follow exactly the same
method and similar approximations for evaluation
of the real part. From Eq. (8) we have

ReC„,(n)

where k„=2moZ~/k and k„ is approximately equal
to k„, with a small imaginary part (I). Equation

(5) is similar to Eq. (7) of De.Wames et a/. ' but the
renormalization of the wave function has been taken
into account which has the effect of adding C„f(n) to

V„,(n). The significance of this is that one need
not take a phenomenological attenuation parameter
in the form of the imaginary part of the potential.
The relevant quantity is supplied here by ImC„.

Using the proper boundary conditions on the wave

function at the surface of the crystal, we get the

f f f e-z„-iTh) ~ P- &(f-4„-iT ).P

where P(1/x) represents the principal value. Now

we take a general interaction potential V(r)
=P, V, (r —R, ), V, (r —R,) representing the interac-
tion of the particle with the oth atom of the crystal.
Calculating the matrix elements involved in the one-
phonon approximation' assuming the crystal to have

no isotopes and zero nuclear spin as in I, we get

ReC„f(n) =— mo df V(f +K„)V(f +K,) (, ,i, )[(ffit„)2 (f x p) „g 2m())

C

-1-
V(f Kg) V(f Ke) (I K ). (I K )

-D[(I-R(,) +(f-Rf) )P ye 2f. i 0& (12)+ eg/h&T y
h g

with

h2 ~ coth($, /2k)) T)
MN

where V(K) = V, (K) = f V, (r)e' ' ~ dr; t" and f are,
respectively, the energy and the wave vector of the

phonon exchanged. We have summed (in the sense
of averaging) over all possible values of f to include

the possibility of any phonon being exchanged. M

is the atomic mass of the crystal atoms, and e, is
the volume of the unit cell.

This will now be calculated in the Debye model

choosing screened Coulomb potential as the inter-
action between the particle and the crystal.
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III. RESULTS FOR DEBYE MODEL AND SCREENED
COULOMB POTENTIAL

An important approximation for the phonon dis-
persion is to use the Debye model which correponds
to the low-frequency part of any actual dispersion.
Thus we set $ =Ref, where c is the velocity of the
acoustic vibrations in the crystal and the maxi-
mum value of f can be fo

For charged particles, one can choose the inter-
action as in I,

~- A 1%- K~ 1

R ) z)z~e ~Ir-m,
where A is the screening parameter, z, is the
charge of the incident particle in units of e, and z2
is the atomic number of the crystal atoms. For
this interaction we have

4&@ se
v(K) = v. (K) =

so that Eq. (12) becomes

2mo(z)z2e')' I df (I+K„)~ (I+K,), - - 2m~cf
[A'+(f+ )'][A' (f+R)']

(f K ) . (f K ) 2 f -1 - D((f-)fg) + (I-)fg) 3

e""'""-1 " k [a'+ (f - R )'] [A'+ (f - K )'] (14)

Since the upper limit of the f integration, fo, is always small compared to a reciprocal-lattice vector, we
can neglect f compared to K„as in I, to get

2mo(z, zze ) e op t
df f (f+K„) - 2mocf ' 1

h0 ~~c(+2 ~K2) J f 1 + e-ncf P()&r
'

& @ A2+f 2

2m

where p = I/v, is the number density of atoms in the crystal. The angular integration involved in Eq. (15)
may be done by choosing k„as Z axis as in I. The results under the approximation of neglecting moc com-
pared to h k„(which is justified for electrons with energy of the order keV or higher) yields

m()(z, z,e ) p e )
I

0 fdf I K„cosn t„ Ifcf mocK„cosn 2k„+f

0

—2K„coen coth 2, (16)
cf'
B

where n is complementary to. the Bragg angle. The integration in Eq. (16) may be carried out numerically.
In order to get an estimate, we simplify the situation by taking ln(l+ f/2k„) =f/2k„, since fo is small com-
pared to k„, restricting to low temperatures so that cot h( Icf /2 kzT) =1+2e "'ii'z . Thus we get

gz F21 I f0 m0cKhcos z gt -)~f

KP cos& 2 -- /2' T T pz+2 i+ 0 1- 8 — ——. e "D -+~k„cosnln ~+2A„ 0 0 A

+ 2 1+ " A + 2K„k„cosa ci cos +» sin

Now from the Bragg condition, K„cosn/2k„= —(K„/2k„), so that if one neglects (K„/2k„) com-

pared to unity (for high-energy particles) then one gets finally

kp(z, z,e ) e 1 )), , A2 2 -D)K 2 2

ReC)gQ z z /f0 I-~ln 1+ ",
, +2f, (I-e )-—ef„2 T 8 /z T 0 /T

Mc(A +K )Ep 0 f(, A
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AAC ASC . AAC . ABC

Using the same approximations, Eq. (39) of I gives

vrP(2m, )'~'(z, z, e')~e "a
(A T)ImCgo =—

~C Z,'~' (X'+Z')
(19)

(20)

The Fourier transform of the initial state expec-
tation value of the interaction potential (n I V(r) In)

is given by

~ jP r j~ e-tKp' P

", Z&s~e-*"'". ~n&.
V(Z„)

8'

Evaluating the matrix elements and averaging over
the initial states as in Kothari and Singwi, "one
gets the temperature dependence of V~ (and hence
of intensity) through the Debye-Wailer factor

4~ z$ zae ega
3

ll (Aa

,+ cot (q,./2I, T)
4MN

8k~oHD M o~z)

(in the low-temperature limit). (22)

The expressions {18)and {21)for ReC„O and V„
are to be employed for the calculation of the emitted
intensity from Eqs. (9) and (10). It has been found
on numerical evaluation that for A=4. 2&&10 cm ',
k„=2x10"cm ', I V„/&~I =10 (the values taken
by DeWames et al. ) corresponding to the copper
crystal, the magnitude of ReC„O/V„ is about 10 5

and the magnitude of ImC»/V„ is about 10 . Thus
the resulting angular distribution patterns of the
emitted intensity will be almost the same as those
of De%ames eI, ul. 6' without attenuation. How-
ever, their curves (Figs. 5 and 9 of Ref. 6) cor-
respond to an overestimation of the attenuation

(gf, '/gf, -0.1) in view of the fact that, from above,
ImC»/V„- 10 3, implying very little attenuation. In-
deed, gf,

' in our calculation is determined once the
parameters for g„' are fixed Thus the r. enormaliza-
tion of the particle wave function takes caxe of the

sln2 Hs
( 8)' =

(V, +Rec„,)/E,
(23)

It follows that the magnitude of y for 8-= 0 is slightly
increased for the positrons and slightly decreased
for the electrons (since ReC„O is always negative).
This shows qualitatively that the angular width of

the intensity pattern must be smaller in the case of

attenuation which is now proportional to (mo/E~)'
implying merely that for keV electrons and posi-

I

trons ImC„O/V„-10- . Since ReC„O is inversely
proportional to E~ (and is independent of the par-
ticle mass), for keV particles ReC„,/V„-10 '. We
note that the present results for the absorpt'ion pa-
rameter ImC„O/V„differ from the results for V„'/
V„(contribution from phonon excitations) in earlier
electron diffraction theories' ' (V'„ is the imagi-
nary part of the Fourier transform of the complex in-

teraction potential and plays the same role as ImC~O

in our calculations). One might doubt here that the

use of one-phonon processes with the Debye model

for lattice vibrations in the calculation of ReCM
and ImC„O is responsible for this difference. Then

it is natural to look for the contributi. on to ImC„o
from the multiphonon processes which, however,
has been shown ' 8 to be small compared to the

contribution from one-phonon process. Qn the
other hand, as Hall and Hirscha have pointed out,

the Einstein's model may be more appropriate than

the one-phonon Debye modela' in view of the ac-
curate results obtained from it for total inelastic
scattering cross section. To this end, we note
that if we use the expressions for ReC„O and ImC„O

in the Einstein model calculated by QeWames
et af. „1 the values of ReC„O/V„and ImC„O/V„come
out to be of the same order of magnitude as ob-
tained here in the Debye model.

Another interesting feature of the present for-
malism is that ReC„O and ImC&0 do not depend on the

sign of the charge of the particle. Therefore the
ratio tc= ImC, O/V„ is positive for electrons and neg-
ative for positrons. Then Eqs. (10) show that the

scale y is approximately given by



the electrons as compared to that of the positron.
This feature which arises from the renormalization
of the particle wave function is absent in the usual
hvo-beam theories. 'o'ao

Now from Eq. (22) we see that for no attenuation,
the thickness-averaged intensity of the two-beam
solution (9) has the outer wing in the intensity pat-
tern aty=+1:

1 @Kg I V„I + )ReC„oI 2mo

(for electrons) (24)

I Va~ —)ReCaol 2mo "'
2 (2m,E,)"' + @A"„E,

(for positrons). (25)

This shows that the condition hats/Hs« l for validity
of the two-beam theory is energy dependent (through
ReC&0) and is more favorable for the positrons than
for the electrons at lower energies where ReC„o
starts contributing. At these low energies, the
angular characteristics axe also expected to change
because the energy ls no longer simply a scaling
factor.

IV. CONCLUSION

From the present calculations and discussions,
some important conclusions regarding the charged-
particle emission from crystals emerge. The fact
that the magnitudes of ReC~o and ImC„o are small
compared to the Fourier transform of the potential,
shows that the renormalization of the wave function
does not change the intensity patterns appreciably
and it also indicates that at higher energies the in-
elastic processes such as phonon emission and ab-

sorption do not participate very significantly in
channeling of electrons and positrons into crystals.
At low energies (of the order of keV or below)
ReC„O starts increasing as l/E~ and then the impor-
tance of more accurate treatment such as presented
here becomes apparent. As far as the quantitative
results are concerned, we note that even when the
renormalization of the wave function is neglected,
the periodic crystal potential field U(~) of the clas-
sical model should be replaced by the expectation
value of the actual interaction potential in the initial
state of the crystal. This naturally takes account
of the lattice vibrations, and when one takes an

. average over initial states, one gets the tempera-
ture dependence of the process through the Debye-
%aller factor.

The attenuation of the emitted particle in the
crystal has usually beene'~ treated by assuming an
imaginary part of the interaction potential as in
electron diffraction theories. ' '3o Although De%ames
et aE. have chosen the value for the ratio of imagi-
nary to real part as approximately 0. I, the detailed
variation of this quantity with the magnitude of the re-
ciprocal-lattice vector and the temperature have
been given by Humphreys and Hirsch. ' In the pres-
ent formalism, the corresponding quantity is sup-
plied by lmC„O/V„and is a natural consequence of
renormalization of the particle wave function due
to inelastic processes. The value of lmC„O/V, has
been found to disagree with V„'/Vl, obtained in the
above-mentioned diffraction theories and is small,
showing that absorption is small in the present
formalism. The dependence of ImC~O/Vo on the
mass and energy of the incident particle as (mo/E~)'
shows that attenuation for heavy particles at lower
energies will be larger. Finally, it is interesting
to note that the present formalism qualitatively
shows a difference bebveen the widths of electron
and positron emission patterns even in the two-
beam theory.
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Measurements of the Knight shifts of In, Ga, Ga, Sb, Sb, and Te in solid and

liquid In2Te3, Ga2Te3, and Sb2Te3 are reported for temperatures ranging from roughly 150 K
below the melting points to 1400-1500 K. Measurements of the nuclear spin-spin relaxation
rates of In ~, Gaao, Ga", Sb~2', and Sb' 3 are reported for the liquids from the melting points
to 1400-1500 K. The data are discussed in terms of various theoretical models for the elec-
tronic structure of liquid semiconductors. It is shown that nuclear relaxation-rate measure-
ments provide a means for characterization of the microscopic electronic transport mechanism.
In the case of In2Te3 and Ga2Te3 an unusual enhancement of the nuclear relaxation rate relative
to the predicted Korringa rate is shown to be consistent with the existence of localized elec-
tronic states at the Fermi level. Sb&Te3, on the other hand, exhibits no appreciable enhance-
ment and is characterized as a metallic liquid. A general scheme is proposed for classifica-
tion of the electron dynamics in electronically conducting liquids by the correlation of the
nuclear relaxation rate and the dc conductivity.

I. INTRODUCTION

A number of electronically conducting liquids
have been described as "liquid semiconductors"
because their transport properties are reminiscent
of those found for ordinary crystalline semicon-
ductors. Although the properties of these liquids
are widely varied, some general characteristics
may be said to be typical of the group. For ex-
ample, most of the known liquid semiconductors
are biriary alloys or compounds consisting of a
metallic component and a chalcogenide (0, S, Te,
or Se) and they are invariably semiconducting in
the solid phase. The liquids exhibit electrical
conductivities o less than about 103 (Ocm) ', and
the conductivity increases with increasing tempera-
ture. In some cases, the temperature dependence
of 0' for the liquid is essentially a continuation of
that of the corresponding solid, while in. others
(notably those with higher values of o) the tempera, —

ture variation changes markedly at the melting point
T . The Hall coefficients have been measured for
a few liquid semiconductors and have been found to
be negative and significantly larger than free-elec-
tron values calculated for the total number of va-
lence electrons. The Seebeck coefficients exhibit
complex behavior in that they may be either positive
or negative and, in fact, they often change sign with
variations in temperature or alloy composition.

Theoretical understanding of the properties of

liquid semiconductors in terms of their electronic
structure is still at an early stage. The transport
properties show clearly that these liquids are very
different from ordinary liquid metals and metallic
"molten semiconductors, " such as Si or InSb. On

the other hand, it is by no means evident that con-
ventional semiconductor concepts derived for crys-
tals may be extended to liquids without major mod-
ifications. This situation has led to new and, in
some respects, conflicting speculations concerning
the electronic structure of liquid and amorphous-
solid semiconductors. The models differ partic-
ularly in their assumptions concerning the localized
nature of the electronic eigenstates and details of
electronic transport. These assumptions concern
phenomena which are microscopic in that they oc-
cur over distances comparable to the interatomic
spacing and, unfortunately, they are difficult to
test directly by measurements of bulk transport
properties at elevated temperatures.

Ig this paper we describe the application of nu-

clear magnetic resonance (NMR) to the study of
liquid semiconductors. %e show that the sensitivity
of NMR experiments to details of the microscopic
electronic and molecular dynamics yields important
information not available from transport measure-
ments. Specifically, we will report and discuss
measurements of the Knight shifts and nuclear re-
laxation rates for In in liquid InaTe3, Gas and

Ga ' in liquid Ga&Tes, and Sb' and Sb' in liquid


