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in Fig. 7, yields

A. =2.40x10-" and B=1.55x10-" (10)

or

A = —0. 87x 10 and B= 6. 85&& 10

The present analysis does not specify the correct
pair of solutions. This ambiguity is similar to that
encountered by Bloembergen and Rowland3 in their
analysis of thallium in the magnetic regime. As

they point out, however, the relative strengths of

the pseudo-exchange-coupling and the classical
dipolar coupling increases from a ratio of 0.01 in
the light elements such as the HD molecule to a

ratio of 10 to 20 in the heavier metallic elements
such as thallium. On this basis, the values
g=2. 40x10-' and B=1.55x10 eergcm are favored
for indium. This results in A/8 = 6. 8.

The NQR for dilute alloys of tin in indium have

also been measured. The problem of very broad
alloy resonances precluded accurate reduction of
the measured data since the Zeeman-modulated
distribution exceeded the maximum scan width of
the spectrometer (for a given marginal oscillator
setting). However, the gross asymmetry of the

alloy resonances was apparent from the as-recorded
data, as seen in Fig. 8, and is in qualitative agree-
ment with the results predicted by Thatcher from
his NMR data.
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This paper presents a simple reformulation of the expression for the density effect correc-
tion t5, i.e. , the reduction in the ionization loss of fast charged particles due to the dielectric
polarization of the medium. The general expression for & thus obtained is applicable to both
condensed materials and gases. Its accuracy is such that the resulting values of the ionization
loss dE/dx are expected to have a maximum error of less than 2% throughout the range of mo-
menta where the density effect is important.

I. INTRODUCTION

The density effect correction for the ionization
loss of charged particles at high energies' ' has
been previously evaluated for a large number of
substances. ' ' With the advent of the high-energy
accelerators in the past decade, the need has
arisen for the calculation of the density effect in
a variety of additional materials (with various
compositions and densities), which were not in-
cluded in the previous work (Refs. 4-7}. In these
references, an appropriate dispersion oscillator
model was constructed for each new material, and
the resulting values of the density effect correc-

tion 5 as a function of momentum p were then fitted
with a four-parameter formula which was first in-
troduced by Sternheimer in 1952. In this formula,
5 is actually expressed as a function of X, defined
by X—= Iog~o(P/mac), where mo is the mass of the
incident charged particle.

It was recently suggested by Berger' that in view
of the growing demand for data on 6(X}for new

materials, it would be of interest to obtain a gen-
eral expression for 6(X), which would not require
a detailed fitting procedure for each substance, if
this is possible. After trying several possible
fits, we have found such a general expression for
the density effect correction 6(X). The expression
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is applicable to both condensed materials and
gases. Its accuracy is such that the resulting val-
ues of the ionization loss dE/dx are expected to
have a maximum error of & Kf), with the most likely
errors being of the order of 19~ or less, which is,
in any case, of the order of the expected accuracy
of the Bethe-Bloch formula.

In Sec. II, we derive the simplified expression
for 5(X), and we give the prescription for obtaining
the constants which enter into S(x) for each of the
four cases of interest, namely: (a) condensed
materials (solids and liquids) with low atomic num-
ber Z (Z&8) and (b) those with medium or high Z
(Z &8); (c) gases having relatively low Z (Z & 20)
and (d) gases having medium or high Z (Z &20).

In Sec. III, the general expression for 5(x) of
Sec. II is used to simplify the expressions for the
ionization loss [dE/dx, (dE/dx)~, and e„,~] in the
region where the density effect correction is im-
portant.

Section IV gives the details of the calculation of
0 for two illustrative examples. Finally, in Sec. V,
we present a brief summary and discussion of the
results obtained in the present paper.

C = —21n(I/h v~) —1,
where I is the mean excitation potential for the
electrons of the substance, and hv~ is the corre-
sponding plasma energy, with v~ defined by

vv = (ne'/vm, )'",
where n is the electron density (number of electrons
per cm'), and m, is the electron mass. From Eq.
(4}, one obtains'

hvar=28. 8(poZ/Ao)" eV

for the value of hI ~ in electron volts; here p, is the
density of the material (in g/cm ), and Z and Ao are
the atomic number and atomic weight, respectively.
In the case of a compound or mixture, the ratio
Z/A, is to be replaced by the ratio of the total num-
ber of electrons to the effective molecular weight
or sum of atomic weights: 5';Z;/P;A;.

Referring to Eq. (1}, the condition that 5(XO}=0
actually determines the constant a, so that there
are only three independent parameters, namely,
Xo, X„and m. In order to obtain the equation
for a in terms of Xo, X„and m, we write

II. GENERAL EXPRESSION FOR THE
DENSITY EFFECT CORRECTION

5(x ) =0=4. 606X +C+a(X, —X,)

whence

(6)

The expression for S(x) which was used in the
previous work of Refs. 4-7 is as follows:

6 =4. 6O6X+C+a(X, -X) (X,&X&X,),
5 =4. 606X+C (X &X,),

where Xo and X& are particular values of X=—logfQ

X (p/moc), such that 5 = 0 for X& Xo, and for X& X„
5 has reached its asymptotic form given by Eq. (2).
Note that because of the definition of X, 4. 606X is
simply 2ln(P/moc). In Eqs. (1) and (2), the con-
stent C depends only on the mean excitation poten-
tial I and the density po of the substance considered,
where I is the average potential which enters into
the Bethe-Bloch formula for dE/dx. Thus C can
be calculated at once if the composition and the
density of the substance (or the pressure and tem-
perature in case of a gas) are known. The expres-
sion for C will be given below [see Eq. (3)]. In
contrast to C, the constants a and m, which appear
in Eq. (1), together with X, and X„are adjustable
parameters whose values depend on the spectrum
of dispersion frequencies v; and oscillator strengths
f; of the atoms of the material considered. In the
present paper, we will give a simple prescription
for obtaining a, m, Xo, and X, for any material
(condensed substance or gas), provided only that
the composition and density of the substance are
known.

In connection with Eqs. (1) and (2), the constant
C is given by

a = ( —C —4. 606X )/(X, —X )" .

For simplicity of notation, since C is always nega-
tive [see Eq. (3)], we define C.'—= —C. Furthermore,
it is useful to introduce the value of X correspond-
ing to C' or P, namely, X„defined as follows:

—C C Je'" (1 64'
4 606 4 606 '

hv~ 'ii hv

(s)
Thus Eq. (7) becomes

d5—= 4. SO6- ma(X, -X)
dX

(lo)

For physical reasons, this derivative must be posi-
tive, since the density effect correction 6 always
increases with increasing X (increasing momentum).
Equation (10) shows that d5/dx is smallest for
X=Xo, since m and a are both positive (and m & 1),
and hence ma & 0. From the requirement that
dS/dx& 0 at X=X„we find that m must be less
than a maximum value m, which is determined
by

a =4.6OS(X. -X,)/(X, -x,) .
Aside from this equation for a (which was im-

plicitly used in the previous fits of Refs. 4-1),
there is also a condition on m, which must be sat-
isfied for any given values of X„X„andX,. To
obtain this condition, we differentiate Eq. (1), which

gives
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The sum of the first two terms of 6 in Eq. (1),
namely,

6, =-4. sosx+c =4. Gos(x-x.), (14)

4. 606 X, -X,
a(xi-Xo) ' X.-Xo

In Eq. (11), X, is, of course, determined by C
[Eq. (8)], whereas Xo and X, are still adjustable
parameters. The value of (X, —Xo)/(X, —X,) will
be denoted by m,„ in the following discussion, and
we must have m~m

Before proceeding to a determination of the pa-
rameters m, X» and X» we note that upon insert-
ing Eqs. (8) and (9) into Eq. (1), we obtain the alter-
native expression for 5

6 =4.sos(x-x.)+4.sos(x. -x,)[(x,-x)/(x, -x,)]" .

(i2)
This form of Eq. (1}, of course, shows at once that
6(x,) = o.

In order to proceed with the determination of m,
Xp and X, for the various physical cases (condensed
materials and gases}, we consider the detailed fits
which have been previously obtained, particularly
those of Refs. 6 and V. In these latter two refer-
ences and also in the present work, we use the ex-
pression for the mean excitation potential I (divided
by Z}, which was proposed by Sternheimer, on the
basis of measurements for Z ) 13 (in particular,
aluminum, copper, and lead). We have

I/Z =9.76+58. 8Z ' eV .

We note that in Eq. (17) the symbol X, is not barred,
since it is directly related to C [Eq. (8)], and this
does not depend on the parameters of the approxi-
mation used for 5» and hence for 5 = 50+ 5g.

The calculations of &(X) were carried out on a
computer. For each substance, we calculated
6,(X) and the approximating functions K,(x) for a
variety of choices of X» X» and m. Of course,
in each case, a was determined from Eq. (17).
(C and hence X, was included in the input. ) For
each case, 5, and the approximations 6& were cal-
culated for a variety of X values ranging from Xo
to X, at intervals of 0. 1 or 0. 2 in X. The resulting
differences b,(X) [Eq. (18)] were also tabulated.

Even in the preliminary trial runs of the calcula-
tion, it was noticed that the value m = 3.0 gives a
very good approximation to 5& throughout the range
of Z values and both for condensed media and for
gases. (The only exceptions are gaseous and liq-
uid hydrogen and helium, for which the appropriate
direct fits have been calculated and can be used.
These exceptional cases will be discussed below. }

In order to obtain reliable values for the approx-
imating parameters X» X» and m, it was essen-
tial to have exact fits available for a wide range of
substances, using the present values of I, as given
by Eq. (13). This is in contrast to the fits obtained
in Refs. 4 and 5, which pertained to I values which
are, respectively, smaller and larger than the
present values of I .

In connection with these exact fits, we note that
the density effect correction 5 is obtained from the
following equations which were derived in Ref. 4:

corresponds to the asymptotic expression for 5,
also given by Eq. (2). The last term of Eq. (1),
which will be approximated in the present work,
will be denoted by 5,. Thus,

6=+,.f,. In[(f', +I')/I', ]-I'(I- P'),

where t is the solution of the equation

1/P'-i=2, f,/(I", I') .

(i9)

s, =a(x, -x)". (15)

a =4. 606(x,-x,)/(x, -x,) (i7)

where a, X» X» and rn are the parameters per-
taining to the approximation 5, for 6&. The error
&(X) is given by

The problem is that if we approximate the power
function (monomial) 6, [Eq. (15)] by a different
monomial of the same type, a certain error will
be introduced as a function of X, and we want to
make this error as small as possible. If the ap-
proximating function has parameters distinguished
by being barred quantities, we have

E, =a(x, -x), (16)

where, of course, a is determined by an equation
similar to (9), namely,

In Eqs. (19) and (20), P is the velocity of the par-
ticle (in units c), f; is the oscillator strength per-
taining to the i th shell of the atom, and l, is a di-
mensionless frequency pertaining to i. The deter-
mination of l; has been discussed in detail in Ref. 6.
Here we will merely give the expression for /, .
We have

l; = h v;/h vp
——h v;p/h vq,

where hv; is the atomic ionization potential per-
taining to the ith shell, A;I, is an effective excita-
tion potential pertaining to i, which is given by
hv; =AI;p, where p is a multiplicative factor
(p) 1), which takes into account the possibility of
excitation to continuum states. The value of p is
determined by the condition that the geometric
mean of the excitation energies hv,. be equal to I.
Thus

~(x) =K,(x) —6,(x) . (18) Q,f, ln(hv, ) =Q,f; ln(hv, p) =Inl . (22)
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TA.BLK I. Data used to calculate the density effect for the substances listed in Table II. The values of hv; are in Ry.

Material

29.4 64. 0 235. 3

3.0

Cu

72. 1

3.0

35.4

Xe

370

2, 0

306

2. 0

(hv, „) (eV)

1.558 l.729 l. 382 l. 617 1.497 l.499 1.470 l.484 1.458 1.365

130 210 323 372

In Eq. (21), the denominator hv~ is the plasma en-
ergy for the stopping medium, as given by Eq. (5).

In the present work, we have obtained very ac-
curate fits to 5 [Eq. (19)] for 12 substances (with

the aid of a desk computer), using the Eqs. (1) and

(2) with freely adjustable a, m, Xo, and X,. The
effective ionization potentials At „which were used
in the calculations, were obtained by means of
standard tabulations. "'" The values of hv;, f;, and

the resulting mean value

(hvar

are given in Table l.
We note that (Ave is given by

L;f; In(h~, ) =In(hvar .

Thus, from Eqs. (22) and (23), we see that p is
determined by the equation

At the bottom of Table I, we have listed the values
of p and I. We note that in the calculations of 0,
besides the data of Table I of the present paper,
values of k&q~ f)y py and I were also taken from
Tables I of Refs. 6 and V. For Z-13, we have
used Eq. (13}for I. For the two cases with lower
Z, namely, N and Ne, we have used values of I
close to I =13Z eV. The actual choices of I„=88
eV and I„,=130 eV were obtained from a considera-
tion of the compilations of Berger and Seltzer'
and of Turner et al. '

The substances for which accurate fits for 5
were obtained are as follows: (a) condensed ma-
terials: a liquid H~-Ne mixture used in a bubble-

8 =-In[m, c~(10' eV}/I ]. (26}

As noted above, the density p() for the gases cor-
responds to "normal temperature and pressure"
(0 'C, 1 atm}, for which the calculations were car-
ried out. The effect on 5 of changing the density po

for any material (especially for gases} will be dis-
cussed below. We note that for Hz, we used the

I value (I=18.V eV) given by Berger and Seltzer. '3

The cases of hydrogen and helium represent ex-

chamber experiment (with composition
83.05-at. % H, 16.95-at. %%uoNe) ";Cu, Agar, Pb,
and U; (b) gases (at O'C, normal pressure): H~,

He, N3, Ne, Ar, Kr, and Xe. The resulting values
of the parameters C, a, m, Xo, and X, are 1.isted in

Table II, For completeness, this table also in-
cludes the results for liquid hydrogen (p, = 0.060
g/cm'} obtained in Ref. V. The fit of Eq. (1) to the

values of 5 of Eq. (19) was within 0. 10 at all mo-

menta, the average absolute deviation at five or
six selected momenta being -0.05. (The same

type of accuracy was also previously obtained in
Refs. 6 and V. } For comparison, the square brack-
et of the formula for dE jdx is of the order of 20

(see Sec. III), so that a deviation of 0.10 corres-
ponds to -0.5% accuracy in dE/dx.

Table II also gives the values of po~ Iy A&pq and

the parameters A. and 8 for each substance, where

A and 8 are defined by

A. =-2vne'/m, c'p, =0. 1536(Z/A, ) MeV/gcm ', (25}
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X, =2.0 for I& 100 eV, (27)

X, =3.0 for I=100 eV; (28}

(b) for gases under normal conditions (0 'C;
1 atm):

ceptions, because the dispersion model consists of
a single type of dispersion oscillator (with frequen-
cy I/h). Since accurate fits are given in Table II,
these cases will not be considered in connection
with the search for an acceptable fit for 5 for the
other substances.

Considering Tabl II of this paper, and the
Tables II of Refs. 6 and 7, me note that for the
condensed materials, me have X, = 2.0 for the sub-
stances with I& 100 eV, and X, =3.0 for the sub-
stances with I) 100 eV. [The only exception is the
H2-Ne liquid mixture with low density (pa =0. 253
g/cm ) for which X, = 3.0, even though I = 68. 7 eV
is less than 100 eV. However, this is probably an
unusual case, because of the low density and the
large percentage of hydrogen atoms (83/0}. ]

For the gases N2, Ne, and Ar, me have X, =4. 0,
whereas for the tmo "heavier" gases Kr and Xe, we
find X& = 5.0. We also note in Table II of Ref. 5,
that for the "light" gases CH4, (CHz)2, (CH)2, and

CO~, all of which have C values below that of N„
me again have X& =4. 0.

In view of these results, me propose that in the
general expression for 6(X), the following values
of X, be used:

(a) for condensed materials (solids and liquids):

Xi=4.0 for C& 12.25,

X, =5.0 for C=12.25 .
(29)

(30)

The dividing value of C =12.25 was chosen be-
cause argon, for which C = 12.098 (see Table II),
is actually a limiting case, with X, = 5. 0 giving al-
most as good a fit as X, =4.0.

Concerning the value of m, as has been men-
tioned above, the use of m =3.0 gives a very good
fit to the actual 5(X), for all cases (condensed
materials and gases), except for hydrogen and
helium. The possibility of a good fit using nz= 3.0
is suggested by the actual values of m for the de-
tailed fits in Tables II of Refs. 6 and 7, and the
present paper. Thus the values of m range from
2. 539 for CsI to 4.615 for Al&03, with most of the
m values lying between - 2. 5 and 3.5.

The actual maximum deviations & [see Eq.
(18)] were obtained by computing h(X} with m=3. 0
for a total of 22 condensed materials (17 solids
and 5 liquids) and for 9 gases at normal conditions.
Besides m = 3.0, and the X, values given by Eqs.
(27)-(30), we used values of Xo which will be dis-
cussed below. The corresponding values of a mere
calculated from Eq. (17).

The average absolute maximum deviation
(t A,„l), i.e. , the average of the I 6 „I values,
is 0. 178 for the solids and liquids and 0. 175 for
the gases. The largest of the ~ values occurs
for the H2-Ne mixture withdensity po

——0. 8 g/cm,
and it is only 0.381. When this is compared to the
value of the square bracket in the Bethe-Bloch

TABLE II. Values of the constants which enter into the expression for the ionization loss [Eq. (55)] and the density
effect correction & f Eqs. (1) and (2)]. The mean excitation potential I and the plasma energy hv& are in eV, and A is in
units MeV/gem . The values of C, g, m, Xo, and X~ enter into Eqs. (1) and (2).

Material

82-Ne

CU

AgBr

Pb

Liq. 82

Gas H2

He

Ar

xo

68.70 11.160.253

8, 96 323. 0

434. 0

826. 0

923. 0

6.473

11.35

19.05

18.70. 060

0. 08988 x10 18.7

0. 177 xlO 3 42. 0

88. 01.2506 x10

0.8999 x10-' 130.0

l.7837 xl0 3 209. 6

4. 636 0. 06240 3. 971 0.4420.09110 18.500

0. 07010 15.404

0.06708 14.814

0. 06079 13.527

0. 05937 13.304

4.427 0. 1004 3.450 0. 20758. 23

48.42

61.04

78. 15

5.387 0. 06708 2. 929 0.333

2. 520 0.317

2. 515 0. 077

5.949 0, 425

4.754 l.837

3.297 2. 191

3.311 1.769

2. 956 2. 112

2.730 2. 010

6. 211 0. 3951

5.939 0.3763

2. 96 0. 0669

9.463 0.4887

7.03 0. 1524 21.103

0. 2720 0. 1524 21.103

0.2708 0. 07675 19.484 11.090 2. 008

0.720 0. 07676 18.005 10.614 0. 1730

0. 6083 0. 07611 17.225 11.731 0.3061

0.8165 0.06921 16.269 12.098 0.4338

Xg

3.0

3. 0

3. 0

3. 0

3. 0

2. 0

3.0

3. 0

4. 0

4. 0

4. 0

Kr

Xe

3.733 x10 3

5.887 x10 3

381.0

555. 0 l.417 0. 06317 14.322 12.943 0. 1158 3 ~ 175 l. 837

l. 153 0. 06599 15.074 12.603 0. 05895 3.686 2. 020 5. 0

5. 0
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formula for dE/dx [see Eq. (52)], which is usually
larger than 20, the corresponding error in dE/dx
is seen to be less than 2%, whereas the average
error corresponding to (~ & l) -0. 177 is less
than 1W(). These errors are probably within the
limits of error of the Bethe-Bloch formula, due to
the uncertainty in the value of the mean excitation
potential I.

In connection with the average maximum devia-
tion (I b, „l)=0. 177, we note that if we lump the
data from all of the substances (22+9= 31) together,
we find that in only three cases is ) ~ ~) between
0. 3 and 0.4. In all other cases (28 altogether),

I lies below 0. 3.
Upon setting m =3 in Eq. (11), we obtain an equa-

tion which can be solved for Xp The resulting Xp,
to be denoted by Xp,„, is the smallest value of Xp
such that m =3, i. e. , for still smaller values
of Xo (Xo & Xp g ) m, „would be & 3, and a fit with
rn = 3 would not be possible.

We thus find

(x, -x, ,„)/(x, -x, ,„)=s,
whence,

Xp» ——
2 X, —p X) ——0. 326C —0.5X(,

(31)

(32)

where we have used Eq. (8) for X,.
We will now discuss the values of Xp, which we

shall propose in connection with the general expres-
sion for 6(x).

We consider first the condensed materials. We
note from Tables II of Refs. 6 and 7 and of the
present paper, that the values of Xp for these sub-
stances are all in the general vicinity of Xp =0. 2,
with an effective spread from Xp-0 to Xp-0. 4.
We will therefore assume Xp =0. 2 for all solids
and liquids, unless the value of Xp,„as deter-
mined from Eq. (32) exceeds 0.2, in which case
Xp =Xp g will be used. It should be pointed out
that this prescription for Xp was used in obtaining
the fits 6,(X), using m =3.0, which were discussed
above.

Since Xp ~» is a function of Xg and C& the pre-
scription that Xp,„=0.2 takes the following form:
values of parameters for solids and liquids:

(1) for I & 100 eV: X, = 2. 0, m= 3.0;

so that Eq. (34) applies only in exceptional cases,
i.e. , in general, Xp=0. 2 for substances with I& 100
eV. On the other hand, for I~100 eV, since C in-
creases with increasing I, there exist cases for
which Eq. (36} must be used rather than Eq. (35}
(X, =0.2). In particular, in Table II of the present
paper, we have C& 5. 215 for AgBr (C =5. 387), Pb
(C =6. 211), and U (C =5.939). The corresponding
values of X, [Eq. (36}]are Xo = 0. 256, 0. 525, and
0.436, respectively. Similarly, from Table II of
Ref. 7, we note that C = 5.95 for NaI and C = 6. 29
for CsI, which gives Xp=0. 440 and 0. 551, respec-
tively. We may note that the preceding values of
Xp for AgBr, Pb, U, and CsI were used in obtaining
the functions K,(x} and the resulting n(x) [Eq. (18)].

Before proceeding to a discussion of the param-
eters Xp and X, recommended for gases, we wish
to comment on a minor point. In Refs. 5 and 6, one
of us (R. M. S. ) has used small but finite values of

6(x,) for the case of metals, to take into account
the small density effect provided by the conduction
electrons at low energies. However, the values
of 5(X,) were always & 0.06 (see Ref. 5, p. 514 and
Ref. 6, p. 249}. These values are so small that
they can be safely neglected in the present work,
and we have therefore chosen 6(xo) =0 for all sub-
stances [see Eq. (6)].

The values of X, and nz for gases have already
been determined [Eqs. (29) and (30)]. In order to
obtain the values of Xp appropriate for the various
regions of C, we note from Table II of the present
paper that for the gases above Nz (i. e. , Ne, Ar,
Kr, and Xe), Xo is generally close to 2. 0, so that
the choice X, = 2. 0 appears to be reasonable. For
N3, we have Xp =1.769, and for the "lighter" gases,
namely, CH4, (CHz)~, (CH)z, and CO~, Table II of
Ref. 5 (see p. 514) indicates that Xo is appreciably
smaller than 2. 0; in fact Xp is of the order of 1.5
to 1.V. We note that the calculations of Ref. 5 for
gases with low Z were carried out with essentially
the same I values as those used in the present work.
Thus in Ref. 5, we usedI„=19. 0 eV for H, and
I =13Z eV for light elements (2 &10). From the
values of —C =C in Table II of Ref. 5 (and also for
N2 and Ne in Table II of the present work), we ar-
rive at the following prescription for X, for gases
with Z&10:

(a) x, =0. 2 for C& 3.681, (ss)

(b) Xo = 0. 326C —1.0 for C -3.681;

(2) for Z='100 eV: X,=3.0, m=3. 0;

(s4)

(a) X, =0. 2 for C& 5. 215, (35)

(b) X0=0.326C —1.5 for C 5. 215 . (36)

X, =1.6

Xp=1. 7

X, =1.8

Xp =1

Xp=2. 0

for C&10.0,
for 10.0 = C & 10.5,
for 10.5 = C & 11.0,
for 11.0 = C& 11.5,
for 11.5 & C & 12.25 .

(37)

(s8)

(39)

(4o)

(41)

We note that, with only one exception, for the
cases with I & 100 eV, C was always less than 3.68,

For the above regions of C, we propose to use
m =3, 0, X, =4. 0, as given above [Eq. (29)]. On
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for values of Xp for the various regions of C, see
Eqs. (37)-(41),

(b) X, =5.0, m=3. 0, X, =2.0

for 12.25=C & 13.804,

(c) X, =5.0, m =3.0, Xo —-0.326C —2. 5

for C =13.804 (42}

In order to obtain the corresponding values of the
constants C, Xp X~ and m when the gas is not at
normal temperature and pressure (NTP), we make
use of Eq. (11) of Ref. 4, namely,

6.(p '"e') = 5,(p'), (43)

where 6~, (X) denotes the density effect correction
5 for a pressure P and momentum &. In this equa-
tion, it was assumed that the temperature of the
gas is the same at pressure P as at pressure 1
atm. In general, if the density of the gas is q
times that at NTP and we put p=q ' p, we obtain

6„(p) = 6,(pn'"), (44)

where now 5„ is the value of 0 at a density qp„
where po is the density at NTI? [see also Eq. (18)
of Ref. 6].

Thus we must evaluate 5~ at a momentum pq'/

or at a value of X„-=X+2 log, pq. We have

5,(X+ ologsoq}=4 606X+2. 3031ogioq+C

+a(X, —X- & loge}" . (45)

In the following, we will denote the parameters
C X] and Xp by the additional subscript g, i.e. ,
C„, X, „, and Xo „. (In this same notation, the
previous parameters pertaining to q = 1 could be

the other hand, for C =12.25, with X, =5.0, rn,

=3.0, the value X, =2.0 will generally be adequate
(see results for Ne, Ar, Kr, and Xe in Table II)
unless X, ~,„& 2. 0, as given by Eq. (32). This will
occur only for C & 13.804, which is essentially an

academic case, since for Xe, C =12.943, and even
for radon gas (Rn) with a density" po = 9.73&& 10 'g/
cm3, C is only 13.3S'7, i. e., appreciably smaller than
the limit of 13.804. It should be emphasized
again that the above-mentioned values of Xp Xy,
and C all pertain to the gas at normal temperature
(0 'C) and pressure (1 atm). The extension to
other gas conditions is very simple and will be
made below.

Summarizing the preceding discussion, we have
obtained the following results for values of pa.ram-
eters for gases at normal conditions (7 =0'C,
P= 1 atm):

(a) X, = 4. 0, m = 3.0 for C & 12. 25;

written as C„X, ~, and Xo q. )
Thus we shall define

C„=—C + 2. 303log&pq,
1

Xq „=X(—g log)op
1

Xp, „——Xp —2 logjp

(46)

(4V}

(48)

Upon using Eqs. (46) and (47), Eq. (45) becomes

5„(P)= 5,(X+ 2 log, oq) =4. 606X+C„+a(X, „—X)

(49)

and it is obvious that this expression applies for X
between Xo,q and X, „, i.e. , Xo,g~X X, „.

Since C is negative, and we have defined C =- —C,
we may also define C„=—C„. Equation (46) thus
gives

C„=C —2. 3031og„q . (50)

III. EXPRESSIONS FOR THE IONIZATION LOSS dE/dg

In this section, we will give simplified expres-
sions for the energy loss dE/dx for various phys-
ical cases, in the region where the density effect
is appreciable, i.e. , for X&Xp. In obtaining these
expressions, we will make use of the general ex-
pression for 5 obtained in Sec. II.

We shall consider three cases of physical inter-
est: (a) the average energy loss dE/dx, including
all energy transfers W, i. e. , up to W= W „; (b)
the restricted ionization loss (dE/dx}~, i.e. , re-
stricted to energy transfers less than some pre-
assigned value W„' (c) the most probably energy
loss e„,b in a thin absorber, as obtained from a
slight modification of the Landau formula. "

(a) The average energy loss —(1/p, )(dE/dx) is
given by the Bethe-Bloch formula, ' '~ modified
for the existence of the density effect

It is obvious from Eqs. (45) and (49), that the values
of m and a are unchanged in going to a different
density qpo; thus, m = 3.0 independent of q. It may
also be noted that Eqs. (46)—(49) obviously also ap-
ply to a condensed substance (solid or liquid) whose
density has been changed (e.g. , by compression)
from the normal density pp, which was assumed in
obtaining the values of Eqs. (33)-(36).

Finally, we note that in all cases [Eqs. (33)-
(49)], since m =3.0, the value of a is obtained
from [cf. Eq. (9)]

a =4. 606(X, -X,}/(X, -X,)', (51}

where X, is given by Eq. (8) (and for qW 1, X,
= C„/4. 606).

In Sec. IV, we will give two illustrative examples
of the calculation of 6, using Eqs. (33)-(51).
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where the maximum energy transfer 5' from the
incident particle (mass mo) to an atomic electron
(mass m, ) is given by"

p'
mo(mo/2m, +m, /2mo+ E/moe') (53)

+lnW „-2P~—5

where 8' ~ is in MeV, and the formula gives the
energy loss in units MeV/gem '.

Vfe now consider the x egion Xo =X=X„where
the density effect 5 has not yet reached saturation.
Since 21n(p/mac) =4.606X, the square bracket of
Eq. (55), to be denoted by I', can be written as
follows in view of Eq. (1):

E =Eg -Eg

where E and p are the total energy and momentum
of the incident particle. We note that Eq. (53) re-
duces to

W „-2m, v'/(I —p') for E«(m,'/2m, )e'. (54)

As was shown in Ref. 4, iri terms of the con-
stants A and 8 [Eqs. (25) and (26)], Eq. (52) can
be rewritten as

1dE A p———=—3 8+0.693+2ln
po dx p S2OC

Eg, go
=8+0+0.693- Pa+ lnW0 (61)

(Wo in MeV). Of course, pz is again given by Fq.
(58}for X&xg, and it is zero for X~xg.

(c) The equation for the most probably loss
Eyzsob in a thin absox be r was first derived by Landau
in 1944. It was recently shown by Maccabee and

Papworth that a term 0.373 in the original Landau

formula is in error and should be replaced by
0. 198. If f is the thickness of the absorber (in

g/cm ), we obtain

R~ne't, am. v'(2wne'tim. v'p, )

)~grab &2p 18(I P )

-p'+0. 198-5 . (62)

In terms of A and 8, Eq. (62) can be written as

«„.„=(af/p') [a+O. S91~2in(f /m, c)

+Inst/P') —P'-5], (63)

where 0.891 =ln2+0. 198.
In the region Xo ~X~X„ the square bracket of

Eq. (63) to be denoted by E~,„can be written as
Eg y~og

—Eaq where Ej y~oy ls given by

S,„...=B+C,"+0.891- p'+Inst/p') . (e4)

Fg=B+C+0.693 —2P +lnW „,
z, =a(x, —x)', (5s)

where W is in MeV, and a is given by Eq. (51).
Note that in Eq. (5V), for P-1, we obtain 0.693

2p'= —1.307.
Of course, for X X&, we have simply E =E„

corresponding to Eq. (2).
(b) The restricted ionization loss (- I/po)

&& (dE/dx)z for maximum energy transfer Wo is
given by~9

po dx ~ pH~ 8 po I 1—
(59)

In terms of the constants A and 8, we obtain

0 693 2l P

where Wo is in units of MeV.
In the region Xo~ X ~X„ the square bracket, to

be denoted by E~,, can be written as Ey g, Ea&

where Ej ~ is given by

E2 is again given by Eq. (58). For X&Xg, we have
Il ~

= 0, and 0. 891 —P = - 0. 109,
In connection with our earlier statement that the

values of the square bracket E of the formula for
dE/dx are of the order of 20 or more [see discus-
sion of & values following Eq. (30)], we may note

the following values of Efor three materials: Be, Al,
and Pb. These values were obtained by means of
the tables of Sternheimer ' for dE/dx of protons
in the relativistic region. Thus ' for Be, E=22. 06
at T~ = 3.0 BeV (T~ is the proton kinetic energy),
which corresponds to the minimum of dE/dx;
furthermore, E =24. 7V at T~=10 BeV, and

E =26. 26 at T&—- 20 BeV. For Al, the correspond-
ing valuesa' are E = 20. 15 at T~ = 2. 5 BeV,
E = 23. 59 at 10 BeV, and E = 25. 30 at 20 BeV.
Finally for the case of Pb, the corresponding
results are E=16.72, 21.34, and 23. 31 at T~ =2.0
(ionization minimum), 10, and 20 BeV, respec-
tively. Although the values of E involved for
(dE/dx}~ and e„,b will be slightly smaller than

the above values which pertain to the average en-

ergy loss dE/dx, nevertheless the average esti-
mate that E will be of the order of 20 is justified.
This result leads to an average error of -

1V() in

dE/dx, due to the use of m =3.0, as discussed
above in Sec. II.
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IV. TV(O ILLUSTRATIVE EXAMPLES

In order to illustrate the use of the equations
for 6 and dE/dx in Secs. II and III, we shall pre-
sent the details of the calculations for two ex-
amples, namely, (a} the calculation of 6 for meth-
ane (CH4) at a pressure P = 20 atm, T = 20 'C;
(b) the calculation of the most probable loss e„,b
in a sample of tungsten (W) of thickness t =10
g/cm, as a function of the energy E of the incident
particle.

(a) In order to obtain 6 for methane, using the
equations of Sec. II, we calculate the mean excita-
tion potential I for CH4, based onIC= 13Z=78 eV
for carbon, ' and I„=18.7 eV for hydrogen. '3 Since
there are six electrons per carbon atom and four
electrons for the hydrogen in CH„we have

logfc„, =~ logve++, logl8. 7,
whence Icn =44. 06 eV. The density of CH4 at NTP
is po=o. Vleexlo s g/cms. With gZ, =10, gg,
= 16.04 (molecular weight}, Eq. (5) gives (at NTP)

@v,= 28. 8(0. V168 x 10 'x 10/16. 04)"'=0.6088 ey .
(66)

Upon inserting the values of I and hv~ into Eq. (3),
we obtain —C=9.565. Similarly, Eqs. (25) and

(26) give A = 0.09575 Me V/g cm and 8 = 19.389.
%e first obtain the density effect 5 at NTP.

Note that C =9.565 also pertains to NTP. For this
value of C, Eq. (3V) gives X0=1.6. From the list
of parameters in Sec. II, we further obtain X,
=4.0 and m =3.0. (Note that we have omitted the
bar above each of these symbols, for simplicity,
except for C. )

»om C=e. ses, w«bt»n X, =e. ses/4. 606
=2. 077. Thus Eq. (51) gives

u =4. 6Oe(2. OVV -1.6}/(4-1.6)'=O. IS89 . (6V)

As noted in Sec. II, the values of a and I are in-
dependent of the density po.

For NTP, 6 would be given by

Finally, from Eq. (49), S„(q =18.63} is given by

6„=4.606X-6.640+0. Isee (3.3es-x)'

(o.ees=x=-3. 36s) . (v3)

Of course, 5„=0 for X&0.965, and for X& 3.365,
the last term in Eq. (V3) is to be omitted.

Thus Eq. (V3) is the desired equation for 6 of
methane at 20 atm.

In connection with the behavior of 5 as a function
of X= log, o(P/moc}, we have shown in Fig. 1 the
values for 6 for neon (at NTP), using m = 3.0.
With C = 11.731 for Ne (see Table II), this gives
X,= 2. 547 and X,= 2. 0 from Eq. (41}, and X, = 4. 0
(see Sec. II). The resulting value of a [Eq. (51)j
is a=0. 3149. Thus & is given by

& = 4. 606X —11.V31 + 0.3149 (4 —X)~

(2.o=-x-=4. o). (v4)

The curve of 6(X) vs X is shown in Fig. 1, together
with the "asymptotic" values 5 „„,obtained by
omitting the last term in Eq. (V4). The values of

Xo, X„and X, are also marked on this figure.
Obviously, the difference between 6 and 5~„m,t,

(broken line} is given by the cubic term of Eq. (V4),
6„,~, would obviously be negative at X=XO= 2. 0,
and the equation for a [Eq. (51)] is determined by
the condition that the total ~ shall be zero at X=Xo.

(b) The second example considered in this sec-
tion concerns the density effect in metallic tung-
sten, and the most probable energy loss ~„,b in a

fo
f

s v
f

sea(f

6 =4.eoex-9. ses+o. Isee(4-x}' (1.e «=x=-4. o) .
(68) Xo ~~Xo X$

For P= 20 atm and T = 20 'C, g (the factor by
which the density po is multiplied) is given by

q = 2o(2v3/293) =18.63, (ee)

C„=—9.565+ 2. 925 = —6.640,

and from Eqs. (47) and (48)

Xq „=4—0. 635=3.365,

X() „=1.6 —0.635 = 0.965 . (72)

whence —,'log, og = 0.635, and 2. 303 log, p = 2. 925.
Thus from Eq. (46)

l ~ s l cissl I i s Iliad I s s lsssd I i e lclill l i i l

2 5 lO 20 50 lOO f000
p/ffioc

f04

FIG. 1. The density effect correction 6 for neon gas
(at normal temperature and pressure) as a function of
p jmpc of the incident particle. The solid curve gives 6
t Eq. (1)], while the broken straight line represents the
asymptotic relation 6~~t of Eq. (2), which has been ex-
tended down to X=X0. The cubic term of Eq. (1) (rvith
m = 3.0) represents the difference between 6 and 4~~t
)denoted by &~ in Eq, (15)]. %'e have X0=2. 0, X~=2. 547,
and X~ = 4. 0, corresponding to p/moo = 100, 352, and 10,
respectively.
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sample of thickness t = 10 g/cm .
In order to obtain the mean excitation potential

I, we use Eq. (13) with Z = V4. This gives 1=748
eV. With a density" po = 19.35 g/cm3 and atomic
weight Ao = 183.85, Eq. (5) yields hv~ = 80. 38 eV,
and hence [from Eq. (3}], C = —C = 5.462, so that
X, = 1.186.

From Eq. (36), we find X, = 3. 0, rn = 3. 0, and
(since C & 5. 215)

= 18.597 + (1 —P ) —lnP ' . (v9)

Thus at very high energies, i. e. , X&X,=3.0, we
find

In the region 0. 281~X~3.0, the square bracket
F„,b of Eq. (78) can be written as F, „„—F2,
where F, is the cubic term of Eq. (77), and F»„b
is given by

F, „,„=8+C—0. 109+(1—P ) —0.481 —InP

Xo = (0. 326) (5.462) —1.5 = 0. 281 . (v5) e„„(x& 3.0) = 0. 6182 x 18.597 = 11.497 Me V. (80)
The resulting value of a is

4. 606(X, —Xo) (4. 606) (l. 186 —0. 281)
(X, -X,)' (3- 0. 281)'

Thus we obtain for 5

5 = 4. 606X —5. 462+ 0. 2074 (3 —X)'

(0. 281=X=3}. (VV)

From Eqs. (25) and (26), we obtain A. =0. 06182
Me V/g cm 2 and 8 = 13.725. Note that Xo = 0. 281
corresponds to p/rnoc = 10O' "= 1.910, and E/m, c'
= 2. 156 (E is the total energy including rest mass).
Similarly, X, = 1.186 gives p/m, r. = 10'"6=15.35,
and E/mac =15.38.

With f = 10 g/cm, we find A f = 0. 6182 MeV,
lnAt = —0.4810. Thus we obtain

0.6182 MeV P

Note that when P' is very close to 1, so that P'
=1 —c, where c«1, the term (1 —P ) —lnP in
Eq. (79) approaches simply 2e.

For 0. 281=X=3.0, e„,„was obtained from Eqs.
(78) and (79). We note that the minimum of e„,~
occurs at P=0. 980 (y =5.0), the resulting value
being e„„(min) = 10.381 MeV. Thus the relativistic
rise is only a factor of ll. 497/10. 381 = l. 108. The
smallness of the relativistic rise of e„,b for con-
densed materials has been previously discussed in
Hefs. 4 and 5. It is obviously due to the great im-
portance of the density effect, which results from
the large electronic density ~.

For X&0.281, we have 5=0, and e„., was cal-
culated directly from Eq. (V8). Altogether, 20
calculations of e„,„were carried out throughout
the range of momenta. The resulting curve of
e„„asa function of y =E/m, r. is shown in Fig. 2.
The values of y corresponding to X„X„andX,
are also shown in this figure.

—0. 481 —lnP —P
~ —5

16 I I
I l

15—

prob

13—

12—

10—

9'
Xo Xo

I i s I ls«l I i s I &till I

5 10 20 50 100
y= E/mac

X,

I

1000 10'

FIG. 2. The most probable energy loss c~,b [Eq. (62) j
in a sample of tungsten of thickness t= 10 g/cm, as a
function of y = E/mop of the incident particle. The values
of X» X„and X~ correspond to values of y= 2. 156,
15.38, and 10, respectively. The minimum of e~ob
occurs at y=5. 0, and the relativistic rise is from 10.38
MeV (at minimum) to 11.50 MeV (plateau value, attained
for y &10 ).

V. SUMMARY AND DISCUSSION

%e have obtained a simple reformulation of the
density effect correction 5, starting from Eqs. (1)
and (2), and from the previous fits for 5 obtained
in Befs. 4-7 for a large number of substances.
Thus it was found that in the term a(X, -X}"'of 5

[Eq. (1)], it is adequate to use m = 3. 0 for all sub-
stances. %ith a proper choice of Xo and X„ this
value of m gives an accuracy of better than 2% in
dE/dx throughout the range of momenta. We note
that the factor a in the above expression is not a
free parameter, but is determined uniquely by Xo,
X„and X, (which is directly related to C) [see
Eqs. (8) and (51)]. The values of Xo and X, depend

upon the type of substance considered, i.e. , essen-
tially on the density po and the atomic number Z.
Prescrlptlons for obtalnlng Xo and X& for the vari-
ous regions of p, and Z have been given in Eqs.
(2V}-(30) and (33)-(42). Thus it is possible to ob-
tain 5 by a simple procedure for any material
(e. g. , nuclear emulsion or biological materials,
such as muscle and bone} if the density and the
composition are known. The latter determines
the mean excitation potential I. In the present
work, we have used the I values given by Eq. (13},
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which was proposed by one of us (R. M. S. ) in Ref. 6
This equation fits the experimentally determined
I values in the region of Z =13. For smaller Z,
the I values suggested by Berger and Seltzer' can
be used. We note that as an alternative to the pre-
ceding I values, the values of Turner et al. ' can
also be employed. The latter values tend to be
slightly smaller (by &10/p) than those of Stern-
heimer. 6 The equations of the present paper are
obviously valid for any reasonable choice of I val-
ues. By means of the density p„one obtains the
plasma energy hv~ [Eq. (5)]. From the values of I
and h v~, the parameter C [Eq. (6)], and hence the
resulting X, [Eq. (6)] are determined.

The use of the single exponent m = 3.0 and the
resulting equation for a [Eq. (51)] imply that the
cubic density effect term a(X, —X)' will be present
for all substances, and hence the energy-loss
formulas for dE/dx, (dE/dx)~, , and e„,„can be
written in a simple form, with the square bracket
F being expressed as F =E, —E, [Eq. (56)], where
F,=a(X, —X)'.

We have given the formulas for I", in Sec. III,
and Sec. IV of the paper contains a detailed dis-
cussion of two illustrative examples, which show
how the various parameters (I, h v~, A, 8, C, a, m,
X„X,) are determined. The first example, name-
ly, the calculation of 6 for methane (CH4) at I' = 20
atm and 7 =20 'C, illustrates the use of Eqs. (44)-
(50) to obtain 6„(p) pertaining to a density q po,
where po is the density of the gas at NTP. The
second example concerns the calculation of the
most probably energy loss e„„(asa function of
y =Z/moc') in a sample of tungsten of thickness
t=10 g/cm'.

In connection with the density effect, we note

that a very comprehensive review of the theory
and experiments on the density effect has been re-
cently presented by Crispin arid Fowler. 3 We also
note that a review of the expressions for the ioniza-
tion loss and of the experimental verification of the
density effect (up to 1960) has been given by Stern-
heimer.

Finally, we wish to mention three recent experi-
ments which were especially designed to test the
energy-loss formula (and hence the density effect)
at extremely high energies. These experiments
were carried out by Bellamy et al. ' [energy loss
and straggling of high-energy muons (up to y -100)
in a Nal(T1) crystal]; by Aitken et al. ~6 [energy
loss and straggling in silicon by high-energy elec-
trons, v' mesons, and protons (up to y -1500)];
and by McNulty and Congel (restricted energy
loss of e, e', p, and w' in nuclear emulsion). AII
three experiments gave an excellent confirmation
of the accuracy of the Bethe-Bloch formula, cor-
rected for the density effect, up to the highest en-
ergies investigated, i.e. , up to y-8000 for the
experiment of McNulty and Congel. These ex-
periments thus provide no evidence for the reduc-
tion in energy loss at very high energies due to
radiative corrections, which was predicted by
Tsytovich. ~' A theoretical explanation for the ab-
sence of any appreciable (&1%) reduction in energy
loss has been given in Ref. 23.
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The point-multipole model is used to calculate the electric-field-gradient tensors at the
eight nonequivalent aluminum sites of the three A12SiO& polymorphs, kyanite (four sites),
andalusite (two sites), and sillimanite (two sites). The contribution from induced dipole and

quadrupole moments of the oxygen ions is included. The oxygen-ion polarizabilities and the
Al

' Sternheimer factor are considered as variable parameters to fit NMR measurements of
the 34 independent field-gradient components. The best fit (average disagreement 21%) is
obtained with &s=0. 5 ~3, &@=0.1 ~5, andy = —4. 9. The disap'reement is roughly the same
at all eight sites. With the theoretical p„=—2. 4, and &D ——1.1 A3, &@——0. 1A, the disagree-
ment is 21% at the six octahedral sites but 82% at the five-coordinated site in andalusite, and
103% at the tetrahedral site in sillimanite. The oxygen-dipole contribution is very large;
the quadrupole contribution is generally small but not negligible. Two recent refinements of
the kyanite structure enable errors due to inaccuracy in the crystal structure parameters to
be estimated. The thermal vibrations of the ions determined by x rays are calculated, and
their contribution to the field gradients found to be quite small.

I, INTRODUCTION

The ionic, or point-ion model, has frequently
been used for the computation of electric field grad-
ients in predominantly ionic crystals. ' ' This
model represents the charge distribution of a crys-
tal by point multipoles fixed at the lattice sites.
Given the crystal structure and the multipole polar-
izabilities of the ions, the potential distribution can
be calculated by summation over the lattice. Field
gradients computed in this manner can be compared
with values derived from nuclear-quadrupole tensors
eQV";&/It at nuclear sites. Here Q is the nuclear-
quadrupole moment and V,"& is the field-gradient ten-
sor at the nucleus. V&& is usually related to the cal-
culated external field gradient V;, by the Sternhei-
mer antishielding factor" y„, i. e. , V";J = (1 —y„)V;&.
There often is considerable disagreement between
the calculated and measured electric field gradi-
ents. This disagreement is usually ascribed to ef-
fects of the finite charge distribution of the negative
ion, overlap, charge transfer, covalent bonding,
etc. In other words, the disagreement is due to the
approximations inherent in the ionic model. But in
order to make an estimate of the importance of non-
ionic effects, it is first necessary to minimize er-

rors in application of the ionic model. These are
due to uncertainties in the atomic coordinates and
the multipole polarizabilities of the ions. In com-
paring the theoretical field gradients with experi-
ment results, uncertainties in the nuclear-quadru-
pole moment and the Sternheimer antishielding fac-
tor must be considered. Thermal vibrations of the
ions must also be taken into account. '

Theoretical calculations are available for the
multipole polarizabilities and y„ for free ions, but
their values for ions in a crystal cannot be predicted
with any accuracy. The best approach is to study
a crystal of low symmetry, so that there are a num-

ber of field-gradient components. Then the polar-
izabilities and y„can be used as variable param-
eters to fit the observed nuclear-quadrupole cou-
plin. g data. It has been shown ' ' ' ' ' that the
multipole series must include at least the dipole
and quadrupole terms. The effects of induced quad-
rupoles are more often than not ignored. When they
have been considered, it has been for crys-
tals ' ' ' ' with too few field-gradient components
to use the variable-parameter approach unambigu-
ously. In only one case' (A1PO,) has there been
more than one parameter available for comparison.

The crystals with which this paper deals, kyanite,


