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A semiempirical molecular-orbital calculation is developed for describing the energy levels
of KCI: Tl. This approach is conceptually more satisfactory than the ionic one, as the nature
of a Tl-Cl bond is largely covalent. The computations are first carried out in the one-electron
approximation, and then the Coulomb and spin-orbit interactions are taken into account. No

attempt is made at an exact calculation, but it is demonstrated that the covalent calculation
gives a consistent interpretation of the absorption spectrum.

i. iNTRODUCTION

The absorption spectrum characteristic of Tl'
in alkali halide crystals consists of four bands
labeled A, B, C, and D. The A, C, and D bands
are strong and rather temperature independent,
whereas the strength of the weaker B band is tem-
perature dependent. The A, B, and C bands arise
from transitions to excited states of the activator,

whereas the D band is due to excited states of the
host crystal (perturbed excitons). "~ The A, 8,
and C bands are qualitatively explained by the model

proposed by Seitz, and quantitative approaches to
the problem of determining them were taken by
Williams on the basis of the ionic model. How-

ever, it was suggested' that a purely ionic de-
scription of the luminescence center was erroneous,
and that modifications would have to be made to ob-
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tain accurate results. Subsequently, Sugano' pro-
posed the use of the molecular orbitals in order to
explain the A., 8, and C absorption bands. Starting
from this framework, he obtained the right value
for the ratio of the C-band dipole strength to the
A-band dipole strength. However, it is easily
shown that the Sugano formula is independent of the
representation and can be also derived using a
vacancy-centered model.

The positions of the A, 8, and C bands are de-
scribed by three parameters: S~, G, f. The
quantity S~ is the energy difference between the
first-excited-state and the ground-state configura-
tion, whereas G and & are the exchange and spin-
orbit energies, respectively. One of the salient
features of the alkali halide environment is the
considerable reduction in all of these quantities in
the solid with respect to the free-ion values. '

In this paper the absorption spectrum of Tl' in
alkali halides is discussed within a molecular-
orbital framework; this approach is conceptually
more satisfactory than the ionic one, as the nature
of the Tl-Cl bond is largely covalent.

In Sec. II the energy levels of the luminescence
center are evaluated in the one-electron approxi-
mation using an extended Huckel theory. In Sec.
III the Coulomb and spin-orbit interactions are
taken into account, and in Sec. IV a comparison
with the experimental data is presented.

Though no attempt is made at an exact calcula-
tion, it is demonstrated that the covalent calcula-
tion gives a consistent interpretation of the. absorp-
tion spectrum.

II. MOLECULAR-ORBITAL THEORY

As is well known, in KCl: Tl the Tl' ions consti-
tute the luminescence centers, each of these being
surrounded by six Cl ions disposed according to O„
symmetry. ' In the purely ionic picture' one studies
the external electrons of the central atom under
the influence of the crystal potential created by the
neighboring chlorines (and also by iona further
removed) The mo. lecular-orbital (MO) model
treats the (TICI3) complex as a single molecule.
Moreover, the effect arising because the complex
is embedded in a crystal must be taken into ac-
count.

The molecular-orbital. method in its linear com-
bination of atomic orbitals (I CAO) form is em-
ployed. ' We assume that the nonvalence shell
electrons of thallium and chlorines are unaffected
by the bonding and that the Tl and Cl nuclei plus
these inner-shell electrons form an effective core
into the field of which the valence electrons are to
be placed. Thus, we consider only the Gs and Gp
atomic orbitals of the central atom and only the SP
atomic orbitals of the chlorine atoms" in construc-
ting the molecular orbitals. We do not consider

the effect of higher-lying metal orbitals (6d, etc. )

as their energies are not suitable for bonding. In
the case of the complex here discussed, 36 elec-
trons from the ligands and 2 electrons from Tl'
are to be placed in the molecular orbitals, the
ground state being constructed by placing 38 elec-
trons in the lowest-lying molecular orbitals.

The Hamiltonian of the system can be written as
follows:

eI6=+ h, +Q +H„+ V, ,
a&r &at

where h, is the Hamiltonian for the 0th valence
electron moving in the field of atomic cores con-
sidered in fixed positions (adiabatic approxima-
tion), the second and third term on the right-hand
side represent the Coulomb and spin-orbit inter-
actions and V, represents the effect arising because
the molecule is embedded in a crystal.

The computation of the molecular parameters
may be carried out by the self-consistent field
method. ' Because of the great complexity of this
method, we have used the extended Huckel
theory 10,11,13

Here, the true Hamiltonian is replaced by a sum
of one-electron Hamiltonians H that contains both
the kinetic energy of the electron and its electro-
static interaction with the field of the atomic cores
and the averaged field of the remaining valence
electrons.

The one-electron molecular orbitals are of the
form 4(I ) = c1/1(+ esp(a p where p1( ls a wave
function of the central atom, transforming in the
molecular point group as the irreducible repre-
sentation I', and g,a;p, is a linear combination of
ligand wave functions transforming as the same
irreducible representation. In the case of O„sym-
metry, the proper set of ligand basis functions and
their metal ion counterparts are given in Ref. 10.
The coordinate system used is shown in Fig. 1.
The one-electron molecular orbitals to be consid-
ered here are

t' c&@.(a(,) = cs(6~)+
~ 6 Z

6A2

()1,*) c (6) )+( ' ' (8 84)
2

+ C3
(~3+$2 —&3-5()) )

2%.3

e, , (&,„„)=c,(()P„)+(
—

) (z, —zs)

Cs+
2A.g

(+&+73 @6 y4) )
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I)f
'lL y)

FIG. 1. Coordinate system and numbering used in the
MO calculation.

(~l, ( +l(8('.)+ ( z'~ ) (*3 *6(

Rs~(r)=r (4. 96e ' "+0.156e "),

R,(r) = 0. 699r e

R6~(r) = 0. 256r e ' " .

(2)

The overlap integrals G,&
were then evaluated in

cs
+ (&8+Xi &4 35) ~

2A.s
(1)

where x, y, z refer to 3p„, 3p„3p, chlorine or-
bitals, respectively. The effect of the overlap of
the ligands with themselves has been taken into ac-
count by the inclusion of constants A. in Eqs. (1)."
In our case the t2, t3„, t&„and e~ are nonbonding
orbitals and their energy levels are equal to those
of 3p, , and 3p, chlorine orbitals, respectively.

For each molecular orbital the averaged energy
(H)„ is calculated and the coefficients c, are varied
so that 5(H)„=0. This leads to a system of linear
equations g,c,(HO —G,&E) = 0 from which the c& are
evaluated. The condition that these equations are
soluble provides the secular equation I H;& -G&&E I

= 0 from which the energy levels E are obtained.
In our case we have to solve only a second- and a
third-degree equation for a«and I&„ levels, respec-
tively. In order to solve for the energy levels,
three quantities must be evaluated: 60, 0«, and H&&.

Hartree's numerical values' of Cl and Tl' radial
functions were used for our computations. The
numerical values of R{r) were fitted with analytical
functions as follows:

the usual way. "
For 6s and 6p orbitals the diagonal H« terms are

estimated as the sum of ionization potentials V,
plus the Madelung energy E„, that is, -H;, = V&

+E„. In calculating E~ we have taken into account
the effective charges of Tl and Cl ions. ' (The
quantity E„ in KCl is Aea/R= 8 eV, where '~A=1.75
and 8=5. 95 a. u. is the internuclear distance. ' j

Since single-electron ionization potentials and
Madelung energy are functions of the metal charge
q it was necessary to iterate the computation until
the II„ terms taken were appropriate for the final
charge distribution and the electronic configuration
calculated for the complex. The quantities V, for
various electronic configurations of integral charge
were obtained from Moore's table of atomic spec-
tra. ' They are obtained as a difference of the
weighted mean of the energies of the terms arising
from the final and starting electronic configura-
tions. The weighting factor is equal to the total
degeneracy of the term. Curves of ionization
energy as a, function of charge on Tl for various
electronic configurations were interpolated for
fractional charge on Tl (Fig. 2). The charge q is
allowed to vary from 0 to 1 a. u.

To evaluate V; for an arbitrary charge configura-
tion, the configuration is represented as a linear
combination of the configurations for which the V,
curves have been set up; V, is then taken as the
same linear combination of the respective V&'s.

(V;)6, and (V;) 6~ were then evaluated starting from
the formulas

(V,)„=V, (6s'6p' '),
(V,)„=(1+q) V, (6s' '6p) —q V, (6s' '6p').

Similarly, the ligand Il«'s are made self-consistent
taking into account their effective charge which is
allowed to vary from —0. 833 to -1 (see Fig. 3).
Moreover, in evaluating the H« terms, the cor-
rections due to ligand-ligand overlap has been taken
into account. The quantity V, for the ligands is
interpolated between the electron affinity A, of Cl
(A, =3. 82 eV ~3) and V; of Clo (V, =13.01 eV '~).

For the off-diagonal terms B;;, we have made
use of the Rolfsberg-Helmholtz approximation
which is H(& ——2k (H, ;+ H&&)G&&, where, the value of
1.V5 for the constant 0 was assumed.

The secular equations I II,~
-G,&E I

= 0 are solved
as follows: For a given cycle an input electron con-
figuration 6s 6p' ' and charge qare assumed for
thallium and the B;; terms are computed. For
each of the MO's calculated, a Mulliken population
analysis is performed, in which each overlap pop-
ulation is divided equally between the two wave
functions involved '; the fractional positive output
charge on thallium is thus

q= 3 —~g(cg+ c(c2Ggg+ cyc3Gg);,2
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—Mc,c, t„ , (3)

where g» and (c, are the spin-orbit constants for
the central atom and the ligands corrected by tak-
ing into account their effective charges, and f T",

are the spin-orbit constants in the overlap regions.
As in the excited state, the electron population

on Tl is found to be-6s"6p', the value of f»
= 6689 cm ' was obtained by interpolating the values'
)Tg0= 5195 cm ' and &Tg

'= 8&83 cm ' corresponding
to the configuration Gs 6p and 6sGp of Tl and Tl',
respectively.

The value of (c& for the chlorine ion was obtained
by extrapolation of the sequence Cl ', Cl ', Cl', Cl
with data obtained by Moore. ' We obtain in this
fashion fc, = 400 cm ', hence, the contributions
from ligands can be neglected.

An estimation of f T", was carried out by assum-
ing that r varies roughly as 1/r, thus we have

&r ')...
~ Tl ~T1

( -3)

(3p, , l r' lGp, ,) l
(3p„, I Gp„,) (6p I r '

I Gp)

Substituting numerical values we find &» = 3665
cm ' and LTD = 2366 cm '. Substituting in (3) we
obtain f,«=0. 8 eV which is in good agreement with
the experimental value of g,«= 0. 69 eV, observed
in KC1:Tl. Another estimation of f,«has been
carried out by neglecting the contributions from
the overlap regions and using, accordingly, molec-
ular orbitals normalized neglecting the overlap.
We obtain, in this fashion, f,« = c, g» -—0. V eV.
Thus, the two different evaluations of f,«are in
good agreement and confirm the reduction of spin-
orbit coupling effects in the solids.

IV. COMPARISON OF THEORETICAL RESULTS
WITH EXPERIMENTS

In Table III a comparison is shown between the
theoretical values for the parameters 8'0, G, g
and the values determined from observed A. -, 8-,
and C-band positions. The values corresponding
to the free Tl'ion' are also reported. It is seen
that the molecular-orbital calculation provides an

TABLE III. Comparison between the values of param-
eters Sp, G, and 0 experimentally derived and the theo-
retical ones.

TABLE IV, Comparison between the experimental
absorption energies and the theoretical ones.

Transition Expt band max MO computation
(ev) (ev)

fA 3y

A~

5.03
5.S4
6.36

4.8
5.8
6.6

explanation of the reduction of the quantities 8'0,
G, f in going from the free-ion case to the solid
state.

The energy levels, relative to the 'A«ground
state, are then evaluated by the formulass

8'(A, „)= WO —G —r,

8'( Tgg) = li'0 —~ g —[(G + gr ) + 2$ j I

e('Z„, 'r, „)= W, -G+ —,'g

5'('T, „)= Wo —,'f+ [(G—+-'t') + gg']'

It has been shown that a semiempirical MO cal-
culation provides a consistent interpretation of the
A., 8, C absorption bands of KCl: Tl. The results
here obtained suggest that the covalent bonding ef-
fects are of great importance in understanding the
properties of luminescence centers in alkali halide
phosphors activated by heavy metals.
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Coupling Coefficients for the Indirect Nuclear Dipole Interaction in Indium by
Nuclear Quadrupole Resonance
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Moment analysis of the NQR spectrum of indium metal is used to measure its isotropic and
anisotropic dipolar interactions. The coupling coefficients + and B are measured to be 2.46
x10 and 1.55&&10" ergcm, respectively. The measurement of the NQR in In-Sn alloys
is described and found to be in qualitative agreement with earlier NMR results.

I. INTRODUCTION

The dipolar interaction between conduction elec-
trons and atomic nuclei provides valuable means
for experimental verification of theories concern-

ing conduction electrons. Knight shifts have been
the subject of much investigation in this regard. ~

Evaluation of the Knight-shift parameters from the
observed data is most easily achieved for systems
with cubic crystal structure, or with nuclear spin


