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sumption that the recoilless fractions of ThO~ and
Th metal were approximately equal. A summary
of the results can be found in Table III.

The natural linewidth determined for the first
excited state, after corrections were made for
broadening due to the geometry of the experimental
configuration and for self-absorption in the source,
agreed with previous Mossbauer measurements but
was slightly broader than would be expected from

previous electronic half-life measurements. Ex-
periments made at about 40 and 78 'K were consis-
tent with the Mossbauer results at 30 'K.

No significant isomer shift was measured; no
hyperfine structure was observed. RACE observa-
tions carried out on a ThN absorber at 78 'K indi-
cated a linewidth at least as broad as with a Th02
absorber.
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A detailed experimental study is made of the behavior of the F~ nuclear-resonance linewidth
in the paramagnetic state of the uniaxial anisotropic antiferromagnet FeF2. It is concluded that
the observed linewidths are due to nuclear-electronic hyperfine interaction modulated by elec-
tron-spin motion. The portion &PJ'S of the linewidth due to the longitudinal component of the local
field fluctuation is determined. The critical behavior of &&it is found to be described by a power

&v~( cr- (Z' Z'N) '6'~ ' for 0 ~ 04& &'- Z'~ & 1.5 'K. This is in good agreement, with predictions
based on the extension by Riedel and Wegner of the dynamical-scaling theory to anisotropic
systems.

I. INTRODUCTION

We have made detailed measurements of the F
nuclear magnetic resonance (NMR) linewidth in the
paramagnetic state of the anisotropic antiferromag-
net FeF3. A pronounced anomaly is observed near
the critical temperature TN = 78. 366 K. Our data
provide information on the statics and dynamics of

the critical fluctuation behavior.
Over the past few years, there has been consider-

able interest in the broad range of phenomena taking
place near critical points. ' Let us now briefly
summarize these facts in a qualitative way, with
reference to an antiferromagnet such as FeFz. The
order parameter, i.e. , the sublattice magnetiza-
tion, approaches zero as the critical point T, = T„
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is approached from below, and remains zero for
T & T, . While long-range antiferromagnetic order
is absent above T„short-range order is present.
We may discuss this physically by imagining that a
snapshot picture of the spin system was taken. We
would observe clusters of alternatingly oriented
spins. The average cluster size, i.e. , the corre-
lation length $ = x, increases as T, is approached
from above. Also, the mean-squared amplitude of
the staggered (alternating) Fourier component of the
magnetic-moment distribution increases; it follows
that the staggered susceptibility increases as
T Tc'

The properties just discussed are static proper-
ties, i. e. , they are fully described by the wave-
length-dependent static susceptibilities g(R). Of

equal interest are the dynamical aspects of the
critical fluctuations. Thus, in our physical picture
we should consider the average lifetime of the
"clusters"; we may expect this time to increase as
T, is approached. The analogous phenomena in
fluids have been investigated by means of light-
scattering experiments. ' In magnetic systems, the
simplest theory of this critical slowing-down, the
so-called "conventional theory, " predicts that for
the staggered mode (R=Rp) the relaxation rate
1'(Kp) should be inversely proportional to the stag-
gered susceptibility X(Rp). The slowing of the

staggered-mode fluctuation was first demonstrated
qualitatively by Nathans, Menzinger, and Pickarte
for the isotropic antiferromagnet RbMnF3, using
inelastic neutron scattering. Subsequent accurate
work by Lau et al. sho~ed that the conventional
theory is quantitatively incorrect. A much better
description of the observed slowing-down is pro-
vided by the theory of dynamical scaling. '~'2 In

this theory, proposed originally for the case of

liquid helium by Ferrel and coworkers, "and ex-
tended and applied to magnetic systems by Halperin
and Hphenberg ia it is assumed that tl.e ratio
1(q+ Kp, T)/1"(Kp, T) depends only on the ratio
q/e(T) in the critical region. This theory ' is in

remarkably good accord with the data on RbMnF3,
an isotropic antiferromagnet.

Recently, the dynamical-scaling theory has been
extended to the case of anisotropic systems by
Riedel and Wegner. " For FeF2, they predict that
for the range of temperatures closest to T„, the
conventional behavior 1;,(Kp) ~ y„(Kp) should be
seen for the longitudinal fluctuation. Their theory
can also be used to predict the temperature depen-
dence of the NMR linewidth in FeF2, we shall see
in Sec. V that this prediction is in remarkably good
accord with our experiments. A preliminary ac-
count of this was given earlier. "

Inelastic neutron scattering provides the primary
experimental tool for investigating the wavelength-

dependent relaxation behavior. Such a study on

FeF& has recently been reported by Schulhof,
Hutchings, and Guggenheim. 6 This experiment fol-
lowed an earlier study of MnF2, a weakly aniso-
tropic antiferromagnet. The limiting factor in such
an experiment is the instrumental resolution. This
becomes more and more important when, as T, is
approached, the energy spread of the scattered neu-
tron beam becomes smaller and smaller. This is
particularly true in FeF& where the near-critical
fluctuations are unusually slow. There is thus a
region of the (x„,q) plane surrounding the origin
which is inaccessible to neutrons.

Measuring the width of an NMR absorption line
provides both an alternate and a complementary ap-
proach. "' We will see how it is possible to de-
termine the portion of the NMR linewidth 6v„(T)
which is due to the longitudinal spin fluctuations.
Physically, the critical anomaly in 5v„(T) is due to
the increased fluctuation amplitudes, as expressed
by the reduced longitudinal static susceptibilities
X„(K), together with the slowing-down, as ex-
pressed by the decreased longitudinal relaxation
rates 1„(K, T). This may be writtenP'P'PP as

where A(K) and the constant C may be calculated
from the known nuclear-electronic hyperfine inter-
actions and other known parameters. As long as
5p,

~
is small enough to provide a measurable NMR

line, the information on the right side of (1) may
be obtained. In practice, lines of width up to 10'
Hz can be studied using present signal-processing
techniques.

It is important to note that the nuclei sense the
fluctuations at a single spacial location. This is
expressed in (1) where we note that only an integral
over wave vectors is obtained. We shall see, how-

ever, that in cases where supplementary informa-
tion on the wavelength dependence of the integrand
is available, either from a theory (such as dynam-

ical scaling) or from scattering experiments, that
data for 5v„are very valuable. Thus we will see
that the present NMR data support the conclusions
of the Riedel-Wegner theory down to within 0.04'K
of the critical point. At this temperature 5p~, ls
dominated by modes whose spectral widths are well
inside the resolution available in the scattering ex-
periments.

In principle, given properly resolution-corrected
and absolutely calibrated neutron scattering data at
all wave vectors R, it should be possible to calcu-
late 5v~ from (1). We have, in fact, made such a
quantitative comparison of the MnF~ scattering data
of Ref. 13 with the NMR measurements ' in that
material. This comparison has been described in
detail by one of us (A. M. G. ) and will be published
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T~ = (78. 366+ 0. 003) 'K. (2)

Standard field-modulation and derivative detection
techniques were used, with a digital signal averager
(used for up to 20 h) following the phase-sensitive
detector. Magnetic field sweep was used through-
out, with field-swept linewidths converted into fre-
quency units through a knowledge of the effective
temperature-dependent magnetogyric ratio for the
F resonance. In analyzing the magnetic field
sweeps, we fitted the signal-versus-field data to
the derivative of a Lorentzian shape function using
a least-squares procedure. A term corresponding

separately. %e feel that such a quantitative com-
parison between the NMR and neutron scattering
techniques may also serve as a useful check.

II. EXPERIMENTAL TECHNIQUES

All measurements were made on a high-quality
oriented single crystal of FeF2 grown by Dr. Stanle
Reed and kindly supplied to us by Professor J. W.
Stout. This is the same sample used by Kulpa in
his NMR measurement of the temperature depen-
dence of the sublattice magnetization below T„.

Temperatures, controlled to within - 0. 001 'K by
feedback techniques, were measured with a cali-
brated platinum resistance thermometer corrected
for magnetoresistance effects. The slight effect of
the applied field in shifting the critical temperature
was also considered with the aid of the data of
Shapira. ' All our linewidth data are given as a
function of T —T„(R). The zero-field critical tem-
perature was obtained experimentally (using exactly
the same thermometer and low-temperature geo-
metry as in the linewidth measurements) by observ-
ing the F resonance behavior just below T&. This
gave

to a linear base-line drift (whose origin was the

vibrations induced by the eddy currents set up by
the field modulation) was also included. This was
important very close to TN.

Corrections were made for the effect of finite-
field modulation amplitude. The orientation of

the applied field Ho relative to the crystal axes was
also considered very carefully to make sure that the
observed linewidths correspond accurately to the

cases Rollc or Holla.

III. RESULTS

In Fig. 1 we show our results for the F' line-
width above T&. These data were taken in an ap-
plied field Ao=- 3. 8 kG oriented either along the c
axis (squares) or a axis (circles), and will be re-
ferred to as 5v, or 6v„respectively. The indi-
cated error limits were assigned on the following
basis: To the statistical error in fitting the lines
to a Lorentzian shape we have added an allowance
of l or 2% of the linewidth for the uncertainty in our
field-sweep calibration, together with an allowance
of 20% of the field-modulation correction, and an
additional allowance for possible slight sample mis-
alignment. The statistical error, which was usual-
ly by far the largest contribution, corresponds to
two standard deviations (95% confidence level).

In all cases the measured linewidths refer to the

spacing in frequency between absorption derivative
extrema. This corresponds to the transverse re-
laxation time T~ through the relation

These results are discussed in Secs. IV and V.
Some additional data, taken in higher applied

fields, H0-15kG, are presented in Fig. 2. The
squares and circles again correspond to measure-
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F&G. 1. Measured F ~ linewidths in FeF2 for 78.38«&&300'K. These data were taken in an applied field &0=3.8 kG
oriented either along the c axis (upper sr,;uares) or u axis Oower circles).
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FIG. 2. F~' linewidths measured in
a relatively high applied field &0 =15
kG directed either along the c axis
(upper squares) or c axis (lower cir-
cles). The dashed lines correspond to
the smoothed low-field data of Fig. 1.
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ments made with 60 along c or along s, respective-
ly. The dashed lines correspond to the smoothed
data taken at 3. 8 kG. The basis for the assignment
of the error limits is the same as for the 3.8-kG
data, although the 1.5-kG data are less accurate
since a number of technical improvements were made
in the apparatus for the 3.8-kG experiment. The

importance of 15-kG data is to see whether the
3.8-kG data really constitute a measurement of the

NMR linewidth with zero field acting on the Fe
spin system. In Fig. 2 we do see a slight field ef-
fect, tending to lower 5p, and raise 5p, as Ho is de-
creased from 15 to 3. SkG, especially near TN.
However, if the effect were linear in Ho (or, more
likely, quadratic at low fields), it is clear that a
further decrease of JIO from 3.8kG to = 0 should

produce an insignificant change. Thus we conclude
that the effect on the Fe spin system of the 3.8-kG
field used in obtaining the data of Fig. 1 is quite
small.

IV. RELATION OF LINEWIDTH TO FLUCTUATING

LOCAL FIELD

A. Linewidth Broadening Mechanisms

The physical mechanisms that have been dis-
cussed in connection with the critical anomaly in the

NMR linewidth include (a) the effect of the hyperfine

interaction modulated by electron-spin motion,

(b) the indirect nuclear-nuclear coupling via the hy-

perfine interaction, ~0 and (c) spacial inhomogeneity

of the time-averaged local field. ' We believe the

first of these mechanisms, which is expressed by

the Kubo- Tomita formula, ' to be by far the dom-

inant cause of the anomaly we observe in FeF2.
In Sec. IVB we will review the formulas describing
mechanism (a) in detail, and show how the part of

the observed linewidth 5 p, due to the c component

6v, /5v, = 2. 00 . (4)

This prediction is in good accord with our low-ap-
plied-field data: Note in Fig. 1 that the spacing be-
tween the drawn lines corresponds exactly to a fac-
tor of 2 for ) 7 —T& ),& 1.5 'K. We should stress
that this linewidth anisotropy has nothing to do with

the effect of the field on the Fe ' spin system. It is
precisely the anisotropy that would occur if some-
how the field could be applied to the F"nuclei
alone.

Mechansim (b) may be described physically by

noting that the static wavelength-dependent suscep-
tibilities for the electron-spin system become large
in the critical region. It follows that a field applied

to a single electron spin will produce an increas-
ingly stronger and longer-ranged disturbance as
1'- T&. In effect, , a given nucleus applies such a
field via the hyperfine interaction. The resulting
disturbance in the electron-spin system affects
other nuclei. Thus there is an effective nuclear-

of the local field fluctuation may be deduced from
the measured values of 5p, and 5p, . This is of in-
terest since it is the c component of the spin fluctu-
ation that undergoes an anomaly in the critical re-
gion.

We first sketch the nature of these three mecha-
nisms, and present the evidence indicative of the

dominance of mechanism (a). This mechanism may

be described physically by noting that fluctuations
in the local hyperfine field produce nuclear relaxa-
tion by disturbing the otherwise uniform nuclear
Larmor precession. An analysis of this effect
shows that if, as is surely the case in FeFz just
above Tz, the local field fluctuation is essentially
in the c direction, then the linewidth is doubled upon

rotating the Larmor precession axis from c to a.
In other words we have
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nuclear coupling 0 which is strongly enhanced as
the critical temperature is approached.

For the case of MnF2, Moriya considered this
critical enhancement in detail. He estimated how
both the effective F' -F' coupling and the effective
F' -Mn ' coupling contributed to the second moment
of the F' resonance. For Hollc, his results may
be written '

[((5v) )] gg yg= 1 5e kHz (5a)

[((5v)2)]l/2 20 ~-v/2 kHz (5b)

= 13 (T —T//)
'/ kHz. (8)

This is for Hollc. For Ho]la we may expect the line-
width to be smaller by about a factor of 2. ' On
comparison with the experimental linewidths of Fig.
1 we see that our estimate of mechanism (b) is
smaller by a factor of at least 50 for T„&T& T„
+ 10'K. Thus even allowing for substantial error
in the relatively crude calculations leading to (6),
it is clear that mechanism (b) is not important.

Now consider mechanism (c). This may be ex-
pected to be important below@ TN. Indeed, if the
local value of the critical temperature varied from
one part of the sample to another, the very large

Here t = (T —T„)/T// and p= —,
' is the critical index

for the inverse correlation length in this mean-field
calculation. Since only the static wavelength-depen-
dent susceptibilities entered Moriya's calculations,
it is not difficult to modify his results so as to be
in harmony with the experimentally observed crit-
ical susceptibility behavior. To do this it suffices
to observe that while the temperature dependence
of the inverse correlation length is poorly described
by mean-field theory, the Ornstein-Zernike form
for the wavelength dependence is still a quite good
approximation. Thus, for the value of the inverse
correlation length that entered the calculations lead-
ing to (5), we should put in the experimenta/ value

~„(T)= /t:p".

Here v=-„while the coefficient w, is still roughly
that obtained in mean-field theory.

To describe FeF2, we note that the Fe '-F' in-
teraction is only slightly larger than the Mn -F'
interaction in MnFz, but that the Fe '-Fe interac-
tion is well over an order of magnitude smaller than
the Mn '-Mn" interaction in MnF2. In addition we
note that Fe' —the only iron isotope with a nonzero
nuclear moment —is only 2. 2% abundant. From
this it is clear that the effective F' -Fe ~ coupling
will not be significant. An estimate of mechanism
(b) in FeF~ can thus be obtained simply by modifying
(5a) to read

[&(5~)')]",',„.„, &, &

& 3~ "' kHz

time-averaged local field would also vary. The
magnitude of this effect should be proportional to
the slope of the sublattice-magnetization-versus-
temperature curve. Observations on MnF~ just be-
low T& were consistent with this picture. ' Above

TN, on the other hand, the contribution of the hy-
perfine interaction to the time-averaged local field
amounts to no more than about 7% of the applied
field. For HO=3. 8 kG, this is about 270 G. It is
conceivable that this amount might be a function of
position, at least near impurities. The resulting
effect on the linewidth would depend on the applied
field, vanishing as Ho-0. But we have seen in Sec.
IG that the effect of the 3.8-kG field used in taking
the data of Fig. 1 is insignificant. Accordingly we
will interpret our 3.8-kG data on the basis of mech-
anism (a) which we now discuss in detail.

B. I.inewidth Due to Fluctuating Hyperfine Interaction

Condition for Lorentzian Line ShaPe:
Linenndth Formulas

Let the interaction of a nucleus I with the elec-
tron-spin system be of the form

Z„,=[(V)+57] i (7)

Thus, for example, for coupling to a single electron
spin S through an isotropic interaction A.„,I S, we
would have (V) =A„,5, VV=A„,5S. (Here Dirac
brackets denote a thermal average, and 5A =A —(A)
for any dynamical variable A. ) More generally, we
can think of (V)/(-y„I) as the average local field at
a nucleus with 5V/(-y„h) as the fluctuating part of
the local field. Here y„=~o/~H, „„Iis the nuclear
magnetogyric ratio.

Using the Kubo- Tomita formalism, Moriya ob-
tained a general expression for the NMR line shape
in terms of the correlation functions for the com-
ponents of 5V. In particular it was shown that a
Lorentzia, n shape is obtained provided that the nu-
clear relaxation still remains slow in comparison
with both the local field fluctuations and the Larmor
precession. If these conditions are satisfied, the
transverse nuclear relaxation time T, and the
NMR linewidth 5v between derivative extrema are
given by

@~3 5v=—=
2@3 dt [(f5Vg(t) 5Vg(0)])

T2 2k

+—' e'"o' ((5V,(t) 6V (0)])]. (8)

Here &uo is the I armor (angular) frequency, z is
along the direction of the average local field, and
6V, = 5V„+i5V„. The curly brackets stand for a
symmetrized product, i. e. , (AB/= ,'(AB+ BA)—

Using (8) we would like to discuss how the ob-
served linewidth 5p should depend on the direction
of the time-averaged local field. In practice, of
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course, it is impossible to apply a field to the nuclei
without also putting a field on the electron-spin sys-
tem. Here we will simply assume that the field
used in the experiments had practically no effect on
the electron-spin system. If this is correct, then
the electron-spin correlation functions, and hence
the local field correlation functions, are unaffected
by the field and may be set equal to their zero-field
forms. More precisely we assume that the effect
of the field is expressed only by the very slight
shift in the critical temperature. This is the situa, —

tion expected for the static susceptibilities X(K),
at least, in mean-field theories of antiferromag-
nets. ' ' As discussed in Sec. III, this is apparent-
ly the case in FeF& for Ho:-3. 8kG, at least at the
level of accuracy of our linewidth data. It may not
be the case for Ho:-15 kG, however.

It is convenient to express the linewidth in terms
of the quantities

6v= (21'W3) ' [Z„(0)+-,' J„„(O)+-,' ~„(0)]. (16)

In this case the ratio of linewidths for any two ori-
entations of the Larmor precession axis cannot ex-
ceed 2. If only one Cartesian component of the local
field fluctuation is large, the effect of changing the
Larmor precession axis from that direction to a
transverse direction will be to decrease 5v by a fac-
tor of 2. This is evidently the situation near and
above T„ in FeFz, as noted in (4).

We now consider the case of tetragonal crystals
such as MnF& and FeF&. Taking a coordinate sys-
tem along the crystalline axes a, a', and c, we note
that the symmetry at each F' site is such that

It follows that the linewidths with the Larmor pre-
cession axis, respectively along c and a, can be
mritten

J, (~) = (I/v) J" ((6V, (t) 5V (0)])cosset dt, (9)

where n, P denote Cartesian components. Also
write

5v, = (2h'v 3) ' [J'„(0)+J„(0)],

6v, =(25 v3) ' [-', J„(0)+-,' J„(0)].
If now we define

(i6)

&((u) = (1/v) J" ((60(t) 6V(0)]) cosa&tdt. (io)

Physically J (v)/(y„K ) is the spectral density of
the a component of the fluctua, ting local field. Then
(8) becomes essentially '

we have

6v„= (2h~&3) ' Z„(0). (is)

vW35v= —= 2~, [J„(0)+-,' &„,(~0)+-,' &„(~o)],
2

(iia)

or equivalently

v~~6v =—=
2@a [~„(0)—2 ~..(~0)+ 2 ~(~o)].

(lib)

Thus we have related the observed linewidth to the

power spectrum of the local field fluctuations.
With this notation the conditions for obtaining a
Lorentzian line shape described by these formulas
may be stated compactly as

I
~- (o) —&-.(T.')

I
"&-.(0) (12)

(uoT, = (2/v 3) v/6v»1.

2. Behavior for Low Larmor Frequencies:
Case of Tetragonal Symmetry:

Derivation of Longitudinal Fluctuation
Contribution 5p, )

Thus 6p„ is the contribution to 5v, from the longitu-
dinal (Itc) local field fluctuations. In other words
5v„ is the linewidth that would be observed with HoIIc
if the effect of the transverse fluctuations could be
suppressed.

V, DISCUSSION OF RESULTS

A. Temperature Dependence of 6

Using the data of Fig. 1, we have calculated
6v„(T) from Eq. (17) over the temperature range
0. 04& T —T&&220 K. For the range 0. 04& T —T~
&10'K the results are shown in Fig. 3. Since the
data points for Bv, and 5v, were not taken at exactly
the same set of temperatures, we computed 6v), by
combining the data for 5v, with the smoothed data
for 5p, , giving the points denoted by the squares.
Alternatively we combined the data for 5v, with the
smoothed (but not extrapolated) data for 5v, , giving
the circles.

The critical behavior of Gv„ is evidently well de-
scribed by a power law. We made least- squares
fits to the relation

5 v „(T)=A [(T—T„)/T„]".
Suppose that the Larmor frequency is high enough

to satisfy (13) but low enough so that we can write

IJ,(0) —J,(u) ) I
«8 (0). (14)

For the range 0. 04& T —T&&10 K we found

n = 0. 675 a 0. 01, & = (36.1+ 1.5) kHz, (2Oa)

Then (lia) can be written while for the range 0. 04& T —T&&1.3 K we found
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FIG. 3. Temperature dependence of
the quantity ~&i( defined in Eq. (17) for
0.04& &- 2'@&10'K. These values
were computed from the data of Fig. 1
as discussed in the the text. The
quantity &&l( corxesponds through Eq.
(18) to the low-frequency spectral
density of the longitudinal component
of the local field.
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n=0. 6VO+0. 02, A =(SV. 1y4) kHz. (20b)

The error limits here correspond to two starward
deviations. In these fits TN was fixed at the value
determined by the independent method discussed in
Sec. II.

The behavior of 5v„(T) over a more extended
range of temperature is plotted in Fig. 4, showing
the breakdown of the power law further from T&.

B. Dynamical-Scaling Theory for 5viI(T)

1. Outline of Relation to Scattenng Function

Through Eq* (18) '5 v~~ corresponds to the fluctua-
tions in the longitudinal component of the local
field. If the nuclear-electronic couplings were iso-
tropic, 5v„would then be a measure of the longitu-
dinal spin fluctuations. Thus, if each F nucleus

were isotropically coupled to the three near-neigh-
bor Fe ' spins we would have '

g „(T) yd'Z ~A(K)
~

'S„(R,0),

with
3

A(K) = Z A„e' ' '~,

where A„ is the coupling constant between a F' nu-
cleus and one of the neighboring electron spins situ-
ated relative to the nucleus at position r„. Here
&„(K,&u) is the diffuse part of the Van Hove scatter-
ing function for the longitudinal spin fluctuation. It
is clear physically that if the individual coupling
tensors X„are not isotropic, the expression (21)
should be modified to include a term containing the
transverse scattering function, i.e. , a contribution
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Jd K ~B(K)
~

S (K, O), (22)

where B(K) is essentially a Fourier transform of
the nondiagonal part of the hyperfine coupling.
While one may estimate that iB(K)I maybe as
much as 10 or 20% of (A(R) ( for suitable R, the
arrangement of Fe ' spins about each F' site is
such that B(K) vanishes exactly at K= Ko= the anti-
ferromagnetic mode. Since in the critical region
most of the linewidth integral is due to modes near
Ko (which we designate as q= 0), the additional term
(22) will be very small. In fact, for T near TN we
may adequately obtain the temperature dependence
of 5v„by replacing A(K) by A(R,) in (21). If in ad-
dition we relate ' ' S„(j,0) to the reduced longitu-
dinal static susceptibility g, , (q T):X(q T)/Xc, (T)
and to the relaxation rate 1'„(q, T), we have simply

(23)

Ffl(qy ~ll) xll ~(q/xll) (24)

For the uniaxial anisotropic antiferromagnet Q(x)
is a function tending to a nonzero value for x-0 and
behaving asymptotically as x' for large x, and

z=2.

Using (24) and adopting the Ornstein-Zernike ap-
proximation for the static behavior,

X (q)/X, (0) = [1+(q/x„)'] ',
the contribution to the linewidth integral (23) from
all q values inside the sphere lq ( &qo may be writ-
ten

5v,", 0'(T) Z„(0)x'„' J," " (1+x') ' [Q(x)] ' x'dx.

(28)

Writing the behavior of the reduced staggered sus-
ceptibility and inverse correlation range as
X„(0)~e "and x„o- e ', we then obtain the power law
(19) with

2. Interpretation of Power Lax for 8v„

In the dynamical-scaling theory for an anisotropic
system, ' there will be a region of the (v„, q) plane
near the origin for which the effects of anisotropy
are dominant. There we can write

ditions should hold for a suitably small temperature
range above T&. Actually we are a bit surprised
that the power law exhibited in Fig. 3 holds over
as wide a range as it does. We are currently mak-
ing a more detailed comparison with the neutron
scattering data' in order to understand this, and
to investigate the effect of the approximation (28).

Adopting (27) and taking y = 3 and v= —,
' for the ex-

ponents expressing the static properties, our ex-
perimental result (20b) leads to e = 2. 00+ 0. 03.
Alternatively, if we base our values of the static
exponents on the scattering data, ' our result im-
plies that

z = 2. 0+0. 25. (29)

I'ii(q, T) = I'i(0, T)+D(T) q'

This supports the theoretical result (25) and over-
laps with the results obtained in the scattering ex-
periments, ' i.e. , z=2. 1+0.2 from the q depen-
dence of I"„at TN and z=2. 3+0.4 from the v depen-
dence of I"„(q= 0) above T„.

In this connection we note that our experiment
probes regions of the (x„,q) plane which, on ac-
count of resolution limitations, were inaccessible
in the neutron scattering work. We were able to
take linewidth data to within 40 mdeg of T» at
which point &„was 0. 0036 A '. The inaccessible
region in the scattering work was a roughly ellipti-
cal portion of the (tc, , q) plane centered on (0, 0) and

of semiaxes = 0. 04 A ' along K„and = 0. 06 A ' along
q. Our power law (20b) was obtained entirely from
data for which 0. 0036&~„&0.04 A . Also, our
near-critical linewidths are dominated by modes

q & 0. 02 A, well inside the inaccessible region in
the scattering experiment.

C. Discussion of Inequalities in Sec. IV

In this section we examine the inequalities which
underlie the interpretation of our data for 5v„(T)
through Eq. (18). Consider first a comparison of
the Larmor frequency with the local field fluctuation
rate. There is no doubt that (14) is very well satis-
fied far above TN, though it may break down close
to T&. We may obtain an approximate upper limit
on the value of K~, for which this can occur as fol-
lows: At each temperature we write the longitudinal
relaxation rate as

n =y —v(3 —e). (27)

This power law will be obtained only if the relation
(24) and the approximation

A(KO+q) =A(KO) (28)

are valid for all modes q that contribute apprecia-
bly to the linewidth. [In this case the dependence
of the integral in (26) on its upper limit will be
slight. ] If dynamical scaling is correct, these con-

for small q. Then clearly the only modes q which
can contribute to a discrepancy between J~,(0) and

J'„(~o) are those for which D(T) q «uo [although even
these will not thus contribute if I'„(0, T)» &uo]. Since
the effect of each mode in the linewidth integral is
weighted by X„(q), it is clear that a breakdown of

(14) requires

B(T) ~it(T) & +0
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The scattering data, ' together with the assumption

g = 2. 0, suggest that D is of the order of a few meV
A over the temperature range of interest. Assum-

ing this, for our high-field data (&uo = 3. 7&& 10 sec '),
we then find x„&0.01 A ' (or T —T~&0. 2'K), while

for our low-field data (aro-= 9.4x10 sec ') we find

tc„&0 00.5 A ' (or T —T„&0.07'K) for our upper
limit estimates. Thus it is possible that the appar-
ent failure of Eq. (4) for the data of Fig. 2 in the

range T- TN &0. 2 K may be explicable through

J„(&uo) & J„(0). On the other hand, the data do not
force us to this conclusion: Indeed it is possible that
the 15-kG field used in obtaining these data affected
the Fe ' spin correlation functions. If this effect
changed upon rotating the field from c to a, a failure
of (4) could result.

For the low-field data of Fig. 1, Eq. (14) maybe-
gin to break down for the data points closest to crit-
ical [although we see no significant breakdown of (4)
at this level of accuracy]. Even if this happens, the

interpretation of our results for 5v„ through (18) is
not invalidated. Indeed in this temperature region
J„«J„. Then 5v, (which is experimentally equal
to 5v„) is clearly a measure of Z„(0).

Now consider the requirement (13). For the data
of Fig. 1, the minimum value of the left-hand side
of (13) was 3. 0. This occurred only for the Hollc
data closest to the critical point. [More generally
(13) was well satisified. ] We now consider the en-

suing systematic error. Just above T&, where

J,,»J„, and with Hollc, the nuclear relaxation cor-
responds classically to a fanning-out of the Larmor
precession angles in the transverse plane. In this
case it may be shown ' that the relaxation function

R„„(t)for a transverse component of the nuclear
magnetization is still given rigorously by the Kubo-
Tomita formula. We then write R (t)= goe 'i ~

& cos+ot, where Xo is the static nuclear susceptibility.
Employing the general Fourier transform relation
between the relaxation function and the nuclear ab-
sorption X", we find

1 1
x ( o) —

~ 4
( )Ts |+( ~sT y)'

Thus in our field-sweep technique we should obtain
a curve of nuclear absorption consisting of the sum
of two Lorentzians respectively centered at equal
positive and negative values of Ho. The distinction
between this situation and a single Lorentzian be-
comes academic for narrow lines. On refitting our

data on the basis of (31), rather than using a single
Lorentzian as done originally, we find practically
no change in our results.

Now we examine the condition (12) for a Lorent-
zian shape. This might possibly break down for the
longitudinal local field fluctuation very close to TN .
We may expect that J'„(&o) is a nonincreasing func-
tion of + for small +. Noting again that for our data
~DT& always exceeded the value 3.0, we have
J„(1/Tz)) J„(3/Tq)) J«(~oT2/Tq) =&„(&uo). Thus the
low-Larmor-frequency condition (14) will break
down before the Lorentzian condition (12) fails as
T- T~. From our previous discussion of (14) we
conclude that (12) is more than adequately satisfied
at the accuracy level of the data of Fig. 1. Thus
we can confidently interpret the data for 5v„(T)
(Figs. 3 and 4) through Eq. (18).

VI. CONCLUSIONS

We have made a detailed experimental study of
the F' nuclear-resonance linewidth in the paramag-
netic state of the anisotropic antiferromagnet FeF2.
A pronounced anomaly is observed near the critical
temperature. We conclude that the mechanism re-
sponsible for the observed linewidths is that of nu-

clear-electronic hyperfine coupling modulated by
electron-spin motion. On this basis we provide a
method for obtaining the portion of the linewidth

5ptt due to the flue tuation in the 1ongitudinal compo-
nent of the local field. We conclude that 6v„corre-
sponds to the low-frequency spectral density of the
longitudinal component of the local field throughout
the temperature range investigated. The critical
behavior of &vtl is found to be quite well described
by a power law. The data leading to this come
from a range of temperatures quite close to T&,
and thus probe a region of the (x„,q) plane which is
largely inaccessible in a neutron scattering experi-
ment. Subject to the approximations discussed in
Sec. VB 2, the experimentally observed critical ex-
ponent for 5v„ is in very good accord with predic-
tions based on the theory of Riedel and Wegner.
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