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area of a boundary plane and each line l ~ passing
from nucleus n on, say, the left-hand side of the
boundary to P on the right-hand side through that
area. The sum of the forces (I',e}, one for each
line l, e, gives the value (Q —Q }/L . The value
WMS find for Q /L, viz. , 0.03e'/a, is quite rea-
sonable for this quantity.

In a paper published after the submission of
these comments, Wannier and Meissner' have
argued that the surface contribution for a finite

crystal is unlikely to be important. In fact, of
course, provided the crystal is large enough so
that its density is no longer size dependent,
(Q —Q }/L' must be the same for the finite crystal
and for PBC.

In conclusion, we find that the result of %MS is
invalid because they used the sum Q instead of Q.

I have benefited from discussions with C. M.
Varma and C, Herring's criticism of the manu-
script.
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Recent numerical computations of the phonon spectrum of quantum crystals have demon-
strated the existence of an anomalous extra phonon branch which lies above the usual acoustic
modes. The purpose of the present note is to explain the physical origin of the anomalous
branch in terms of two-phonon resonances, and to discuss briefly the possibility of observing
these resonances in quantum crystals by neutron-scattering and Raman-scattering experi-
ments.

It has recently been proposed that the anharmonic
interactions between phonons in crystals can give
rise to a two-phonon bound state whose energy lies
above the two-phonon continuum. Bound phonon
pairs exhibit sharp structure in the second-order
phonon spectrum as observed in the Raman data on
diamond, "and, in addition, may substantially mod-
ify the single-phonon spectrum as observed in the
first-order Raman scattering from quartz. '

Hound states of two phonons are split off above
the two-phonon continuum by the repulsive fourth-
order anharmonic term in the phonon Hamiltonian
providing that the anharmonicity is larger than a
critical strength. '6 The critical value of the anhar-
monic strength is related to the nature of the single-
phonon dispersion and involves parameters such
as the curvature of the phonon spectrum near the
top of the single-phonon continuum, and the "band-
width" of the phonon branch. '6 If the anharmonic
coupling is weaker than the critical strength, it is
still possible to create two-phonon resonances
which give rise to considerable modifications in
the spectrum within the two-phonon continuum.

The above considerations suggest that the highly
anharmonie quantum crystals provide ideal sys-
tems for the formation of bound phonon pairs. How-

ever, another consequence of large anharmonieity
is substantial broadening'of the phonon modes which
would, in general, obscure the bound-state struc-
ture. Nevertheless, if the energy widths of the
two-phonon resonances are comparable to the sin-
gle-phonon widths, it may be possible to observe
these resonances experimentally.

Numerical calculations ' of the phonon spectrum
of some quantum crystals using the self-consistent
harmoriic approximation have recently been pub-
lished. In particular, the ealeulations for solid
neon~ and solid He in the bcc phase find a peculiar
extra branch in the phonon spectrum which lies
above the usual acoustic-phonon modes. Since these
crystals are Bravais, the extra branch cannot be
attributed to an optical phonon. In the case of He,
as shown in Fig. 1 of Ref. 8, the extra branch is
situated at roughly twice the maximal single-acous-
tic-phonon energies. Furthermore, the anomalous
peak has a width comparable to the single-phonon
widths, and displays a peculiar momentum depen-
dence.

I.eat and Watson" have suggested that the a om-
alous peak may be due to the mixing of one- and
two-phonon states via the third-order anharmonic
coupling. Using a one-dimensional linear chain
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model with nearest-neighbor forces, they were
able to demonstrate in analytic form the dramatic
changes in the single-phonon spectrum associated
with the singularity in the joint two-phonon density
of stRte8 %'hlch 18 R chR1Rcter1stlc of their one-di-
mensional model. It is important to-stress that the
I.eath-Watson theory neglects fourth-order anhar-
monic terms.

Unfortunately, however, since the unperturbed
joint density of states for two acoustic phonons is
relatively smooth in the case of three-dimensional
solids, the phonon anomaly in quantum crystals
cannot be explained simply in terms of structure
in the unremormalized two-phonon density of states.

The aim of the present note is to point out that
the formation of two-phonon resonances, and sub-
sequent hybridization of the resonance with single
phonons, provides an alternate explanation for the
physical origin of the anomalous phonon bx'anch in
quantum crystals.

As the theory of two-phonon bound states and reso-
nances has been presented elsewhere, '6 we shall
only outline the theoretical development with
emphasis on the physical RpproxlmRtlons Involved. .

A very simple model for the form of the anharmonic
interaction is to assume that the third- and fourth-
order anharmonic terms are described by coupling
parameters gs and g4, respectively, which are in-
dependent of momentum. In other words, the model
assumes a point interaction between phonons in real
space. The model is successful in explaining
several features of the Haman spectrum from sol-
ids. As a further approximation we assume that
near the Brillouin-zone edge (corresponding to the
energy region near the top of the acoustic modes)
the phonon dispersion is parabolic in nature. With
these simplifying assumptions, it is a straightfor-
ward matter to calculate analytically both the sec-
ond- and first-order phonon spectrum including
resonances. As discussed in Ref. 6, the calcula-
tion px'oceeds 1D two pRrts. Fix'st lt 18 iDstx'uctlve
to calculate the two-phonon spectrum by solving
the Bethe-Salpeter equation for the two-phonon
Green's function D2 as shown diagrammatically in

6 3+6 X 3+& X X:3+ ~ ~

FIG. 1. (a) Bethe-Salpeter equation for the two-phonon
propagator D~, (b) diagrammatic representation of the
Dyson equation for the single-phonon Green's function
D&, showing the hybridization of the single phonon with
the two-phonon resonance.

Fig. 1(a). The solution involves summing a simple
geometric sex'168 and 18 given by

Dp(K ~) = 4&fl(I —g4f) (1)

wh616 the constRQt X= Q~& 5 includes R cutoff en-
ergy parameter 2, the maximum acoustic-phonon
energy ~0, and a constant n which describes the
unrenormalized single-phonon density of states
p,'0'(~): n(~0 —+)'~2. The fourth-order anharmonic
coupling is descr'ibed by the dimensionless param-
eter g4 = A, ggy RQd

I( i)&la
f=

Q) —2(QPO —. Q7 ) +.lI

The f function in Eq. (2) contains a single-phonon .

width I" which is considered to be a pheIlomenological
parameter. It is apparent from Eq. (1) how the
formation of a resonance can strongly modify the
two-phonon density of states which is proporti. onal
to the imaginary part Gf D, . Namely, a sharp peak
corresponding to a resonance will appear at an en-
ergy such that 1-g4 Ref= 0. For details of the
second-order spectrum we refer the reader to
Ref. 6"

Turning now to the single-phonon spectrum, we
shall relate the resonance structure to the anoma-
lous branch in quantum crystals. In this case the
third-order anharmonic terms. Cause a hybridization
of the resonance with single phonons as illustrated
diagrammatically in Fig. 1(b). The main point is
that in the absence of two-phonon resonances (i. e. ,
g4= 0) the solution of the Dyson equation in Fig.
1(b) exhibits only a single peak corresponding to the
broadened single acoustic phonon. If on the other
hand, one includes the fourth-order coupling (g4 0 0),
a secondary (resonance) peak will appear in the
feet-order sPectrum To illust. rate the hybridiza-
tion effects we write the results of Ref. 6 for the
single-phonon density of states;

& —n(K) [I+(g')'f(1 -g'f)-'] '

where gs= (2X)'~ g3 is a dimensionless coupling con-
stant and Q(K) denotes the energy of the single
acoustic phonon which is hybridized with the reso-
nance. The p, (K, ~) spectrum for various values
of the coupling is plotted in Fig. 2, and shows vivid-
ly the appearance of an extra peak progressively
stronger with increased fourth-order (g4) anhar-
monlc coupling. Thus the formation Gf R two-phGDGQ

resonance exhibits structure in the first-order pho-
non spectrum in a manner quite consistent with the
anomalous branch in quantum crystals.

Since the resonance structure appears in the first-
Ordn phonon spectrum, there is a strong possibil-
ity of observing the anomalous peaks experimentally.
A similar case of phonon hybridization has already
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FIG. 2. Single- acoustic-phonon spectrum plotted as
a function of energy for various values of the fourth-
order anharmonic g4 coupling. Although the single-pho-
non width was taken to be rather large (& = 0. lap), the
secondary peak near 2&0 becomes comparable in intensity
to the single-phonon peak as the anharmonic interaction
pushed the two-phonon resonance higher than twice the
single-phonon energy. Hybridiz ation of the single phonon
with the resonance is determined by the third-order
coupling which was taken as constant (g&=0. 4) for all
three curves.

been observed in quartz ' by means of Raman scat-
tering. Thus the hcp phase of solid helium, which
exhibits a Raman-active optical mode, ' could dis-
play a similar hybridization of the two-acoustic- .

phonon resonance with the optic mode. Ho%ever,
in the case of quantum crystals with no optic-phonon
modes, the light would scatter from the two-phonon
resonance by means of a second-order process.

Although the resonance can be expected to be fairly
broad (of the order of twice the single-phonon
width), the light-scattering experiments may be able
to discern the form of the line shape as well as
polarization properties. Werthamer's calculation'
of the light-scattering cross section from solid he-
lium suggests that both one- and tmo-phonon scat-
tering processes should be observable by Raman
scattering. The latter estimates are supported by
the recent successful observation of two-roton pro-
cesses in superfluid helium by Raman-scattering
experiments. '3

Neutron studies of quantum crystals, in particu-
lar neon, "have provided very accurate determina-
tion of the single-phonon spectrum. The latter
studies have shown that anharmonic effects are
even more pronounced than previous theoretical
estimates. Because the two-phonon resonance ap-
pears in the first-order spectrum at various mo-
mentum values, neutron-scattering experiments
would provide an ideal probe of the structure and
momentum dependence of the resonance.

Finally, it is worth mentioning that measurements
of the phonon spectrum for various pressures would

determine how the position and width of the anoma-
lous peak varies with anharmonicity and thereby
provide very useful information about phonon inter-
actions in quantum solids.

It is a pleasure to acknowledge stimulating dis-
cussions with Professor V. Celli and Dr. P. Lazay.
We are indebted to Dr. G. Shirane for sending us
a report prior to publication of the very recent neu-
tron studies of neon.
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