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Far-Infrared Absorptivity of Metals
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(Received 21 December 1970)

A simple calculation of the far-infrared absorptivity of a strong-coupling metal in the nor-
mal state is presented which is valid in the anomalous-skin-effect (ASE) region. The form
of the results is compared with that derived by an alternate procedure in a recent letter by
the author. A discussion of electron-phonon renormalization effects in the ASE limit is then
considered and, in particular, at frequencies below threshold (v «co~), an effective mass
mp** is introduced which incorporates these effects.

In a recent letter, ' the author presented a cal-
culation of the far-infrared absorptivity of normal
lead. The calculation is based on an approximate
solution of the Holstein-Boltzmann (HB) equation, '
and the numerical results were compared to the
recent measurements of Joyce and Richards. ' The
agreement is satisfactory. ' The purpose of the
present note is not to improve on the numerical
calculation of the absorptivity but rather to amplify
and carry out a different approach to the calcula™
tion mentioned, as an aside, at the end of the
l.etter.

The original procedure. briefly is as follows:
(i) Tbe HB equation is solved approximately in the
local or q= 0 limit (q is the wave vector of a typical
important Fourier component of the applied elec-
tromagnetic field). (il) Using this solution, tbe

q v, term of the transport equation is reintroduced
and the final form for the distribution function is

@,(q, &o) = v~/ [sq ~ v„+ if' (~)],
where

«(e) =- - @to —(I —y'/y) 1M (e) —M (e + it&a)

+ t[I (6)+ I (6+ /t&o)]f

tt„„ is the electron velocity in the field direction,
M(e) (I'(e)) is the real (imaginary) part of tbe elec-
tron seU-energy [due to electron-phonon (EP) in-

teraction], and y'/y represents the effect of the

scattering-in term of the HB equation (cf. Ref. 1).

(iii) The surface impedance Z is then derived fol-
lowing the method of Heuter and Sondheimer. 4

(iv) For the threshold-frequency region (&o =&oD,

where &oD is a typical phonon frequency, e.g. ,
/story =8. 3 meV for Pb), Z is expanded in the Dingle
series appropriate to the anomalous skin effect
(ASE) or Pippard limit, and the final result (for
the absorptivity) is contained in Eq. (10), Ref. l.

As discussed in Ref. 1 the series parameter for
the Dingle series can be written as

h= -(t& /8 &o) [I+i/&or. (&o)] (2)

Since tbe rrtsrttrrtttrrt vallle of &07' tt(&o) ls close to unity
for an EP strong-coupling metal, the magnitude of
$ is essentially determined by vt, /6&&o. For Pb,
vt, /tiz&ot&= 3. 58, thus, the ASE limit is applicable
through the threshold region and moreover, the
same is probably true for most other strong-cou-
pling metals.

The main point now is that under the above con-
ditions the HB integral equation need not be solved
(as such). Only when t&z/st&oD ~ 1 need one solve
the integral equation. Instead, as an alternative
procedure, one can make an expansion in powers
of q

' of the conductivity o(q, &o) and more directly
generate the Dingle series in the ASK limit with
the advantage that each term in the sex ies will be
"exact. " Now, with increasing frequency, when
t&t, ///&&a & 1 for &o & &its, one can then iterate the HB
equation in powers of &o-' (in addition to the terms
treated in Sec. P 8, Ref. 2, one can have terms in-
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volvlng g ~ v~/4p).
The expansion of a(q, &u) in powers of q

' is facil-
itated by an examination of the contribution of the
ladder diagrams (Fig. 6, Ref. 2) to the conductivity.
Holstein has discussed these diagrams in consider-

able detail and using part of his analysis, it can be
shown that , if q v, », I'(e), each additional "rung"
yields a contribution -I'(e)/j ~ v„. Thus, to expand

o(q, &u) up to second order in q ', it suffices to con-
81del the zero- and one-rung dlagl" RmSy expl1cltly~

2e v f' '(6)-f' '(&+I&) v, m/k, lV„. I v v „(j
'U

~ @(0 &q vk+ ~~s & q v0+ ~~s 0' a gq v~'+ ~~s

( f = l5(c —&' + h(u». )[f'"(e'+h(u) +f"'(e')]

+(i/m)P(e —e'+k(u .) '[f "'(e'+km))-f '"(e ')P

and Q„Q', the same as Q(e), Q(e') with, however,
y'/y = 0. The expression for o' '(q, a&) in (3) can,
equivalently, be derived by an iteration in the HB
equation, with

C,"'=v,„/(q v, +in, ), etc.

The k, k' sums are converted into integrals with
the q direction chosen as the polar axis for the k

integration and k direction as the polar axis for the
k' integration. The angular integration of the first
term (in the square bracket) is performed and the

result expanded to q

(r"'(q ~)= —~3 w' '~ d~ m 4n,
4 47/ 6 g~ K(d qvp 'l(qvp) (qvp)

+1 aff A

d~ g ~I'» ~ va.va"f) (4)
p, +(Q,/qv~) o „;iq'v, +(Q.'/qvz)

where &~ is suitably averaged over the Fermi sur-
face.

The third term (the contribution from the one-
rung ladder diagram) is of order q, how'ever,

Q,/qvz and Q,'/qvz are retained and considered as
small negative imaginary quantities in order to de-
fine the angular integrals and are set equal to zero
after the integration has been completed.

In order to carry out the integration, it is neces-
sary to assume that the EP matrix element V»
and the phonon frequenci&s (dyes depend only on
~k-k' j. After some messy, but straightforward
manipulation, the final result for the third term is

.
( )g ~ (

)3- Z dk'k' sin8'd6'.

«l &aa l I& P-g4laa)II,

1 cos tjJ~gt F:1l''
g(( )=-- . =- -- —— —-0 ~ +1» 2 sjn g 2 2»

and g» -=8', the angle between k, k .
The calculation for the absorptivity can now be

completed by inserting expression (6) for the con-
ductivity in the Fourier transform of Maxwell's
equation and solving for the surface impedance.
The integral in the expression. for Z is then appro-
priately expanded, and one has for the absorptivity

The k' sum in (5) is restored and combined with the
self-energy terms in Q„so that the final form for
0 to older g ls

o' '(q ur)= —~ —+
3 4) 7 40p
4 4w tfvp i (qvp)

8p 6p
dc — dc LF

Q~ -=—Qp(e) = —-(g ——Z
4 -htd @ & -%toE p

In comparing (9) with Eg. (10) in Ref. 1, one ob-
serves that the only difference appears in the re-
placement of Q by QJ, . The 1-y'/y factor in Q is
a result of an approximate treatment of the
1 —cos g». velocity transfer factor familiar to trans-
port theory. Thus, the upshot of the present approach
is to replace cosg», by g (t/r» ) in the scattering-in
contribution in the ASK limit. In addition, since
this second term of the Dingle series (9) is "exact, "
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one has further confirmation of the form of the
approximate solution to the HB equation obtained
both in Ref. 1 and, in an interesting way, by Allen. ~

At frequencies below threshold (v «ev), the
square brackets in the second term in (9) can be
replaced by —mz*/2m„, where

(10)

Although a mass does not explicitly appear in (9),
for a spherical Fermi surface the product of (10)
and v& can be'written as v~ ', a renormalized
Fermi velocity (the ratio v~/&u~ is independent of
EP renormalization).

To the extent that the two terms of the Dingle
series in (9) are an accurate expression of A, at
the lower frequencies [g in (2) is increasing as &u ],
all the EP effects are contained in mr, *, the effec-
tive mass appropriate to the ASE or Pippard limit.
In comparing m„* to m, derived in Sec. VC,
Ref. 2, the only difference is again the replacement
of cos(». byg(g» ). The mass m** is operative
in the London limit: e « ~» z v',«» 1., and»& v ~ q.
The region of applicability for m~* also has & «&D,
cov', «» 1 but the opposite of the last condition, i.e. ,
(d && v~q.

It has been asserted in the literature~'8 that there
are no EP renormalization effects in the ASE limit,
so that some clarification here is essential. The
first term of (9) represents the familiar extreme
ASE absorptivity and it contains no EP effects (cf.
Sec. VA, Ref. 2); the quantity ~~2/vz is simply
proportional to the area of the Fermi surface. The
EP effects occur in the frequency dependent cor-
rections to the extreme ASE result [the second term
or q term of (9)]. More to the point, it is not just
the retention of the q term in the conductivity (6)
but the frequency dependence of that term that leads
to EP renormalization. The statement of no EP
effects in the ASK limit does not merely refer to a
lack of higher q-dependent corrections to the con-
ductiyity but rather to conditions (e.g. , finite tem-
perature) such that &or «1 (r is the relaxation time
associated with higher-temperature resistivity).
%'hen ~7 «1, ~ can essentially be set equal to zero
in the transport equation (cf. footnote 89, Ref. 2),
and the second term in (6) would be —4/[(qvz) 7']
[of course, assuming here that r ' is not so larg'e
that it is greater than qv~ where q in this case is
-6,~ 6„=6z/(~r) ~a]. In the present physical
context, &ur, «(u&) & 1 so that the e-dependent term
in the conductivity is retained and leads to mea-
surable EP-renormalization effects to the extent
that the second term in (9) is a correction to the
first. In Pb this is the case and the extent of EP
renormalization can be seen by comparing the

theoretical A. below 30 cm ' in Fig. 2, Ref. 1, to
the theoretical A below 30 cm ' in Fig. 1, Ref. 3.
The latter, multiplied by ~~ (to account for the dif-
ference in boundary condition assumptions) is
larger than the former above 10 cm ~. It is 20%
larger at 30 cm ' and 10% larger at 20 cm '. As
a result of its slower variation with frequency below
30 cm the former curve passes through the ex-
perimental points in this region, the latter does
not (the experimental points are normalized in both
comparisons to coincide with the theoretical curve
at threshold).

As a final consideration, an estimate (for Pb) is
made of the change due to the replacement of cos (».
by g(g»). In Fig. 1 both functions are plotted along
with Q vc (normalized to the peak value, where
v@ is the dressed electron-ion pseudopotential and

Q/2k+ = sin(-,'g», ). The function Q v& divided by the
phonon frequency ~ is proportional to the absolute
square of the EP matrix el@ment. It can be ob-
served that with g(P».) the contribution of the scat-
tering-in term is enhanced. ' By comparing the
integrals of sing» cosg», Q v@ and sing», g(p», ) Q vc
and in estimating the effect of +, the term y'/y is

I.O
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FIG. 1. The functions g(g@,~) and cosg». are the
upper and lower (solid) curves, respectively. The
dashed curve is the normalized Q v@ with Q/2k+ ——sin
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found to be approximately increased by =30%.
Therefore, the factors 1 —y'/y=0. 43 and m~*/m„
= 1.65. The change in 1 —y /y will, of course,
cause a modification in the numerical results for
the calculated absorptivity (Fig. 2, Ref. 1),however,
the change will be small (on the order of 7.0/o) as
the two parts of the second term in (9) have opposite
sign (the part proportional to 1' being positive).

As stated above the main consideration in the
present note zs to present an alternate and ssmpler

approach to the calculation of the far-infrared ab-
sorptivity of a metal in the ASK limit in the fre-
quency range of greatest interest (ro=~D). With
the present approach it may be feasible to consider,
more explicitly, the band structure and phonon
anisotropy of the metal.

The author wishes to thank Professor T. Hol-
stein, for a critical reading of the manuscript, and
Professor %. Streifer and Dr. G. L. Harpavat for
checking the angular integrations.
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Hellmann-Feynman Theorem and Uniform Expansion of Crystals
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The applicability of the Hellmann-Feynman theorem under periodic boundary conditions is
discussed. The recent result of Wannier, Misner, and Schay on the instability of metals toward
uniform expansion is shown to result not so much from the inapplicability of this theorem as from
the improper evaluation of a sum.

Wannier, Misner, and Schay' (WMS) recently
used the Hellmann-Feynman theorem (HFT) to
consider the stability of a metal against uniform
expansion. They claimed that their results showed
the inadequacy of recent electronic wave-function
calculations and of the nearly free-electron ap-
proa, ch to such calculations.

Kleinman' (K) criticized their procedure on the basis
that the HFT can be applied only to finite systems,
since uniform expansion would violate the periodic
boundary conditions (PBC) normally employed.
He then argued that in a finite metal the structure
near the surface would be distorted from the purely
periodic arrangement in the interi. or in such a way
as to provide the necessary confining force.

I believe that Kleinman has pointed out a signifi-
cant inadequacy in %MS's argument, but that to see
clearly where their error lies, it is more instruc-

tive to use PBC as far as possible.
I et us suppose that we have a Hamiltonian

H(P, r, R), where P, v stand for all the momenta and

coordinates which are treated dynamically {in this
case, those of the electrons: p&, r, ), and R stands
for all other coordinates which enter as parameters
(say the positions %„of the nuclei).

Now let us consider a, few independent changes
in the Hamiltonian: (i) Move the nuclei from 5,
to 8/g:

As Kleinman says, this cannot be done in PBC.
(ii) Transform the coordinates r;/q by a canonical
transformation:

This also cannot be done in PBC. (iii) Change the


