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Based on a simple spherical energy-band model for the conduction and valence bands in
cubic crystal, the transition probability for four-photon absorption is calculated theoretically
by use of the Hartree-Fock and Hartree approximations for wave functions. These results
are compared with those by KeMysh's high-frequency-limit time-dependent tunneling theory
in a numerical example by applying the calculations to a ZnS crystal.

INTRODUCTION

Calculation of the multiple-photon transition
probability in solids is approached in one of two
ways: by perturbation theory' or by Keldysh's
high-frequency-limit time-dependent tunneling
theory. 3'~ When a static magnetic field is not in-
fluencing the crystals, the magnitude of transition
probability and the absorption coefficient calculated
by perturbation theory agree very well with the
experimental result. This is confirmed by the
work of Basov et a/. with two-photon excitation
in GaAs crystals and that of otherse with three-
photon excitation in GaP and CdS. In the absence
of a static field, Keldysh's theory sometimes
gives a smaller value for the transition probability
than perturbation theory. ' However, wher. a mag-
netic field is applied to the crystals (as in the re-
cent two-photon magnetoabsorption experiment
by Weiler et »»l. ), calculations by the Keldysh
approach are more accurate than those by the
perturbation theory.

The question of why the two approaches differ

so in describing different experimental situations
is not yet resolved.

To date, no detailed calculation has been made
of the four-photon transition probability in semi-
conductors by the perturbation theory. The pur-
pose of this paper is to present such a calculation,
using the Hartree-Fock approximation for the
wave functions. We include in our calculation the
usually neglected term (2m) '(e/c)~A A. In this
paper we also derive the four-photon transition
probability by the Hartree approximation (see
Appendix), comparing results by our original cal-
culation, the Hartree approximation, and the
Keldysh theory in a numerical example. The
chosen example is application of the calculations
to a ZnS crystal.

When the previously neglected term is included
in the perturbed Hamiltonian, the sum of all ma-
trix elements making up the transition probability
proportional to the fourth power of the excitation
intensity consists of second- and third-order
terms, as well as the fourth-order-term matrix
element.

CALCULATIONS

The Hamiltonian for the N-particle system, when the particles are interacting with the radiation field
of frequency ~, can be written as

N, ~ g2g2
H=g +eV(r») +Q A»r ~ P»+ — A» A»r, H=HO+H, =HO+ (H,'+H, ')

2m C 2R'L C

where
8 1 2r. e -r. -r rH~+H, =Q A» ~ P»+ —

A» A», A» =A»+A» .mc 2m c

According to the time-dependent perturbation theory, the total transition probability for the four-photon
absorption between a group of initial and a group of final states can be written as

H H II I I I II I I I II
2w kn rr5 H» H„„H„» Hanna H. i

t»», »»
+ Ez» 2k(o z z (E„» —jf&d) (E„» 25»»») n n (E~ »

—a'(d) (E„» —35»d) n. n» (Ez» —28»d) (Ez» —38(d)ngf
1
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where

H„„= — n, A~A) n,
N

H„'~ = nc QAq Pq s&
mc

In semiconductor materials, the ground-state wave function (in the independent-particle approximation) is
that when a11 one-electron states in the valence bands are occupied. This ground-state wave function, in
the Hartree-Fock approximation, can be expressed' as

&I&,
= &t, = (N) ) "P&I&- (r, )y~(~3)&r& (~c)~ ~ ~ &)„,(r&)&), , (~&.&)~ ~

&I& „(~„).

The subscript m appearing in the wave function of Eq. (3}designates the quantum states of the electrons
in the valence band; e. g. , »&, = (v, k, ) = k", .

If one of the electrons in the valence band makes a transition to the conduction band under the influence
of H, , the excited state, in the Hartree-Fock approximation, ' is

&t'„, = (M) "
P&t&„,(rx)g z(r~)&)&,(r,)~ ~ ~ |t„,(r, )g «(r, ,&)

~ ~ ~
&)& „(r~) (4)

where s, designates the quantum states of the electron in the conduction band; e. g. , ac=(c, k,}=k', .
The wave functions &)& and g„occurring in Eqs. (3) and (4} are the Bloch wave functions for the electrons

in the conduction and valence bands, respectively.
The matrix element of H,' between functions, given in Eqs. (3} and (4), can be written as

(5)

Similarly, the matrix element of H» between two different excited states' is

A&'P& f„d r= „a~ P „dr, =H~&=H'&,

where a is the polarization vector of the radiation field and V is the volume of the crystal. In terms of
the notation for the matrix elements given in Eqs. (5) and (6), (2) takes the form

(6)

Hccg H&'&ccc Hcc~v Hcpcc Hc cc H&&ccv

~ (Ecccv —2k~) ~ .(Ecccv —2)f~)(Ecccv —tf~) cc.~ (Eq""—3)I&(Ec'c"—tf~)Ask A» » f yC yC
a f a'1 f a f

I I II
PCS +yC QCQ flI1 »a

EgCI v 3@CO Eg,cyv 2k(da'1 a f

( I )Hcccc Hcccc H&&ccc Kcccv a
f» a as sf

~ Z 5(E~-E,.-4I~) . (V)
cc,cc,cc (Ecccv —Ird) (Ecccv —2ii(g) (Ecccv —3)f&g) t'a' s a f 1 f

Based on our assumption for the ground state of the many-body system given in Eq. (I), we obtain s, = m,
= (v, k, ), when t 0 i implies that two electrons are occupying the same electron state in the valence band.
Hence, deducing from the property of the Hartree-Fock wave function, Eq. (4) automatically equals zero.
Thus the summation of the intermediate states in Eq. (I) contains only the conduction-band states.

When the wave vector k of the electrons takes on discrete values in the Brillioun zone, the matrix ele-
ments given in (5) and (6) can be written as'0

~N q eA
Eg V s 't ~ ~ SPIC 8

(8)

I N~&g„q, i, , eA - . - - - ~~ .Z, rHcccc ' -&ccrc o'p u &I .g&dr +a (k+q& ' '
gQ gs t V s0 0 0

C(k~+g)

Similarly, we can ~rite the matrix element HI" as
Jhg4$

a

H~qc= ~ — A'm '-' "c~ uc(g, ~) dr,
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where N, is the number of the unit cell in the crys-
tal, 0 is the volume of the unit cell, and q is the
wave vector of the electromagnetic wave.

In the limit as q - 0, we can write the matrix
elements of Eqs. (8)-(10)"as

H&~Ag
—5ks+qvkt Hk~k

For continuous values of k, the matrix elements
given in Eq. (12) for k, = k, can be written in the
spherical energy-band approximation' as

eA
H,'c~c= (a kk, ).

m, c

I l
clifc 51f, +q h HAc~cst s 't tt

2

Hycyc =~k ~q k ~ A'A~

H~g~c=0 for all k, and 0t.

(12)

(13)

(14)

If we substitute the matrix elements given in
(8)-(14) into Eq. (7) and then carry out the sum-
mations for the initial and intermediate states of
the resulting equation, we obtain the following
after changing the final summation into an integral:

W 2 1
d k O'E c -E —4g~'

H&ckcg&h&c Hk kf f

1P g p

~f ff ffH~c~c H~c~c HI r+o

(I k&/2m, „+E -2jico) (ff k&/2m +E —K&@}

2ff ff( 1) Hycgc Hycic Hycic Hyci v

(K k&/2m, „+E -Ku}(k kf/2m, „+E —2Ifu&)(K k~&/2m +E -3K&v)
(16)

where m„ is the effective mass of the electrons in the valence band and 1/m, „=1/m, + 1/m„.
Now if we substitute Eq. (12) into (13) and make the approximation that (c,k I H( I v, k) = (c, 0 I H&'iv, 0), ' we

obtain the following final result after carrying out the integrations with respect to the final and initial
states:

I a ~ p

Notice that when (4hcu —E }-0, or when (m m/m, )(4lw —E )-0, the most important term in Eq. (1V) is
the first one. This term comes from the third term of Eq. (2), and this in turn comes from third-order
perturbation theory when the term H," is included. On the other hand, when (m, „m/m, )(hu& —E ) & 1, the
third term is the important one. This term comes from the last term of Eq. (2) and does not contain the
matrix element H„"„. Hence, under this condition, we can ignore all except the last term in Eq. (2) when
calculating the transition probability.

It is shown in the Appendix that if the transition probability is calculated by the wave functions of t~e
Hartree-Fock approximation, we obtain the following result:

where

zz m z & p ~z

&& (45&v -E~) ——m,„z (45&@ —E ) +
2 (m )~

28 I(a ~ p) l2 2&, I(a p) I'
m'

I( a P) I
= l(c, 0 i a ~ Pl v, 0) I (18)

Equations (1V) and (1&}are slightly different. The reason for this difference is that in the Hartree approxi-
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mation Pauli's exclusion principle was not taken into account. As a result, the summations of the inter-
mediate states over the valence-band states are not zero. As a comparison, we also write Keldysh's for-
mula heres:

2 X+1 —2g"', exp 2 g+1

z" z ~E eE
@(z)=e e" dy, )I-=1+ z» (19)

SOP 4m ('d E~
~» Q

where ( )I) means the integer part of )t; here,
(X+1) =4.

To apply Eq. (17), we now make an order-of-
magnitude calculation for the four-photon transi-
tion in a ZnS crystal.

Given the published values E~=3.8 eV, m, =0.3m,
m =0. 28m, where m is the mass of the electron,
and & =4. 95 for the intrinsic parameters of a ZnS
crystal" and using a neodymium laser (1.17 eV)
with an input intensity of 100 MW/cmz, we obtain
the value W =10' e/cm'sec. Assuming the aver-
age life r of the electrons to be 10 sec, we obtain
N = W, = 10 e/cm . In a photoconductivity experi-
ment, electron concentration of this magnitude is
measurable through the change of conductivity. "
It is interesting to note that in a four-photon exper-
iment on an alkalide-halide crystal at an input in-
tensity of 100 MW/cm', Aseyev et al." obtained the
same order of magnitude for electrons in the con-
duction band.

If we substitute the given parameter values for a
ZnS crystal into Eqs. (18) and (19), we obtain a
transition probability on the order of 10' and 10'
e/cm sec, respectively.

As evident from this example, Keldysh's formula
gives a smaller value for the transition probability
than does the perturbation calculation. This has
been noted also by Ba,sov et al. ~ for the two-photon
case. By Keldysh's theory, the four-photon absorp-
tion should be extremely difficult to observe through
a change of photoconductivity when the light inten-
sity is 100 MW/cm'.

In the above numerical example, we have made
the assumption that

In the Hartree approximation, the ground-state
wave function for the many-body Hamiltonian given
in Eq. (1) is

7», = »I„,(~,)»),(» &)»j (»z)

x 0., (~») &.., .«». » &.„«~) (20)

and that for the excited states is

q„, =(,(»,)II,(rz)»I»„, (»»)»I ...(~». »)
.

»I „(~,)
(21)

Since Pauli's principle is not taken into account in
the Hartree approximation, the quantum number nt
is not restricted to the quantum states of the elec-
trons in the conduction-band states. This means
that n» can be either (c, k, ) or (t», k, ).

It can be shown that the matrix elements of H',

and Hz' between the wave functions in (20) and (21)
are the same as those given in (8)-(14) when n» = k»

When nt = k"„ the matrix elements of H', and H~" be-
tween the wave functions (20) and (21) are

fourth power of the incident intensity. The present
result can be generalized easily to more than one
valence band by changing l(c, 0 I H'I v, 0) I to
l(c, OIH' Iv„O) I, changing m to m „and sum-
ming on the "i."

If the crystal is not pure and the experiment is
made at temperatures at which ionization of the
crystal's impurities by the phonons is important,
the formula in Eq. (18) may be just as good an ap-
proximation as that in Eq. (17).

The absorption coefficient for the four-photon
transition can be obtained from the formula
K = (4&»d W')/I.

APPENDIX

l(c Ola plv 0)I 3 E,
m' 4 m, „

CONCLUSIONS

t
HyOt40=01 +g j Htp' t t&t

H'ytlv-&„-
g ~ A. A

(22)

(23)

Equation (17) shows that the four-photon transition
probability contains three terms. The first and
second terms arise from the inclusion of the term
(2m) '(e/c) A A in the calculation. As expected,
the transition probability is proportional to the

(24)

For continuous values of k, the matrix elements
given in Eq. (22) for k, = k, can be written in the
spherical energy-band approximation' as

eA
H,'„,„=— (a kk) .

t t myC
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Considering that H~~v -0 for all k, and k, andt,f
writing Eq. (2) in terms of the quantum number
k', and k"„we obtain the total transition probability
in the Hartree approximation as follows:

2r kk
W =—Z Z 2 M( 5 (E~ —Esy —4)s(u), (25)

ic yv f1
f

where

H~ »5g Huaca, c Hff a H~

savoy(E2((sy —3%v) (Ence(, —2)f(o) (Er«u« tf(u) -'
1' 2' 3 2» 5 j

(26}
—Hsoso Ho(sy Hsv~a Hoj~

sc, vy oe (Es sv —Stf(u) (Esv v —2tf(u) (E~„—K(u}

(27)

Hooey Hvvve Hsioj Hso~v

vc 2o 2. (Esvsv —3%u) (Esosv —2if(o) (Eve v lf(u—)
2 f S f

(2s)

O ff »fc flay Hfivgv

(«c, («c, vv (E«csv —Sk(u) (Eve u —28(u) (Eov v —tf(u )
2 f S"» (»)

I I
a"a' ace" Ha)av

&v vc, vy (E&c««v —3%o}(Esc+v —2if(u) (Eely
—K(o)

1' 2' 3
(SO)

I I I I
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I

I I I I
HIsc~v Hjlvyv Hyvfsc Hgcf v
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a~ e &" +'~"e-»~~~~ee-»~~@'ac V-+~~ '
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4 4 4 4 ft~s'
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oes 2(22

sc«vc (Evosy —2g(u)(Escs —k(u) '
1' 2 2 f

rrt I I
l12$2] Hsesu House12 2»
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H~c cH~S cHc v
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1 f 2»
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k12 jfV V
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If we substitute the matrix elements in (S)-(14)
and (22)-(24) into Eq. (25) and then carry out the
summations for the intermediate and the initial
states, we can simplify the transition probability to
the following form:

W = (2) — d Is 5(E —4+(u)
i giH2 2 (a ~ @a&) + ([Hzp, i gs+ gs)H' ((2 ~ Skt) [

where

(40)

H =&c, }t,
~

a p~. , u,},
eA41" (m. )~ (m.)-'(m„)-'

(E„c~y —Sif(o)(E,o.y —2lf(o)(E,~y —tf(u) (tf(u)(Esasy —Sf()o( ,Ecv —St(u)
+

f f f f f f f f

(m, ms)-' (m )-2 q

2(tf(u)'(E,
y„)

—SR(u) S(tf(o)s

eA 4 (m. )
' (m. }-( (m„) '

c m (2t((u}(E2&~y —Stf(u}(Esosy —if(u) (Stf(u)(Esc v —2tf(u)(Evcoy K(o) 3(K(u) (E, , 2E(u)f f 1~f f f

(41)

(m„) '
6(tf(u)'(E, c,v —tf(u)f f

(42)

1 eA (m, )
' (m, )-' (m„) '

2m c (Eve v —&(u)(Esc v 2tf(u ) (Esctov tf(u)(Esavy Stf(u) (tf(o)(Escvv —K(u)tf «« f f

(m. }-' (m )-(
(5f(u ) (Evcov 38(u ) (21f(u ) (tf(u ) (43}
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where

In deriving Eqs. (16) and (36), we have used the

property of the Kronecker 6, (6,&) =6,&. If we as-
sume that the polarization vector a of the electro-
magnetic wave points in the z axis and make the
approximation that the matrix element H,'~~~ is in-ff
dependent of the vector k&, we obtain, after carrying
out the integration, the result given in Eq. (18).

*Work performed under the auspices of the U. S. Atomic
Energy Commission.

R. Braunstein, Phys. Rev. 125, 475 (1962).
2W. Zawadzki, E. Hanamura, and B. Lax, Bull. Am.

Phys. Soc. 12, 100 (1967).
L. V. Keldysh, Zh. Eksperim i Teor. Fiz. 47, 1945

(1964)[Soviet Phys. JETP 20, 1307 (1965)].
4Margaret H. Weiler, M. Reine, and Benjamin Lax,

Phys. Rev. 171, 949 (1968).
'N. G. Basov, A. Z. Grasyuk, I. G. Zubarew, V. A.

Katulin, and O. N. Korkhin, Zh. Eksperim i Tear. Fiz.
50, 551 (1966)[Soviet Phys. JETP 23, 366 (1966)].

6A. I. Bobrysheva and S. A. Moskalenko, Fiz. Tekhn.
Poluprov. 3, 1601 (1969)[Soviet Phys. Semicond. 3, 1347
(1970)].

B. M. Askhinadze, I. P. Kretsu, S. L. Pyshkin, and

I. D. Yaroshetskii, Fiz. Tekhn. Poluprov. 2, 1511 (1968)
[Soviet Phys. Semicond. 2, 1261 (1969)].

B. M. Ashkinadze, S. M. Ryvkin, and I. D. Yaroshet-
skii, Fiz. Tekhn. Poluprov. 2, 1540 (1968)[Soviet Phys.
Semicond. 2, 1285 (1969)].

IIMargaret H. Weiler, R. W. Bierig, and Benjamin
Lax, Phys. Rev. 184, 709 (1969).

R. J. Elliott, in Polarons and Excitons, edited by
C. G. Kuper and G. D. Whitfield (Plenum, New York,
1962).

C. Kittel, Quantum Theory of Solids (Wiley, New

York, 1967).
' R. Karplus and J. M. Luttinger, Phys. Rev. 95,

1154 (1954).
3J. L. Birman, H. Samelson, and A. Lempicki, GTE

Res. Develop. J. 1, 2 (1961).
'46. I. Aseyev, M. L. Kata, and V. K. Nikol'sky, Zh.

Eksperim i Teor. Fiz. Pis'ma v Redaktsiyu 8, 174 (1968)
[Soviet Phys. JETP Letters 8, 103 (1968)].

PHYSICAL REVIEW B VOLUME 3, NUMBER 2 15 JANUARY 1971
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The magnitude of the Faraday rotation in Ge and Si under hot-electron conditions has been
estimated for different orientations of the magnetic and the hot-electron dc field. The possi-
bility of the evaluation of carrier repopulation from the analysis of Faraday-rotation data is
discussed. The conditions required for a successful experiment for the application of the
method are examined. It is found that the experiment is possible at room temperature, but
the conditions are more favorable at liquid-nitrogen or lower temperatures.

I' INTRODUCTION

The Faraday rotation of infrared signals is pro-
duced in semiconductors mainly by the free carri-
ers if the wavelength of the signal is beyond the ab-
sorption edge. The specific angle of rotation is de-
termined by the frequency of the signal, the dielec-
tric constant of the material, the free-carrier con-
centration, and the effective mass of the carriers.
It is independent of the momentum relaxation time
of the carriers if the frequency is such that the pro-
duct of the frequency and relaxation time is much
larger than unity. Therefore, one may determine
one of the above-mentioned three parameters of the

material, i. e. , the dielectric constant, the carrier
concentration, and the effective mass of carriers,
since we know two of them from other experiments.
This method has been applied to obtain the effective
mass of carriers in III-V compounds and in Ge. ' 3

The free carriers in a semiconductor, except in
a few cases, normally occupy one valley or equiva-
lent valleys in equal numbers in a many-valley
semiconductor. The carrier population in the dif-
ferent valleys may be altered when a high electric
field is applied to produce hot-electron conditions.
Such population transfer affects significantly the
conductivity and galvanomagnetic properties of
semiconductors under hot-electron conditions and


