
1103 (1969).
4D. Schoemaker and J. L. Kolopus, Phys. Hev. B 2,

1148 (1970).
~G. Ouiliani, Phys. Bev. B 2, 464 (1970).
N. Itoh and M. Saidoh, Phys. Status Solidi 33, 649

(1969); M. Saidoh and ¹ Itoh, Phys. Letters 31A, 68
0.970).

76. J. Dienes, B. D. Hatcher, and H. Smoluchowski,
Phys. Hev. 157, 692 (1967); H. D. Hatcher, W. D.
Wilson, H. Smoluchowski, and G. J. Dienes, Bull. Am.
Ihys. Soc. 14, 324 (19e9).8¹E. Byer and H. S. Sack, J. Phys. Chem. Solids
29, 677 0.968).

~T. G. Castner and W. Kanzig, J. Phys. Chem.
Solids 3, 178 (1957); T. O. Woodruff and %. Ka.nzig,
s-bid. 5, 2es (1958).

~DC. J. Delbecq, B. Smaller, and P. H. Yuster,
Phys. Bev. 111, 1235 (1958); C. J. Delbecq, W. Hayes,
and P. H. Yuster, iNd. 121, 1043 (1961).

D. Schoemaker, in Proceedings of the International
Symposium on Color Centers in Alkali Halides, Univer-
sity of Illinois, Urbana, 1965, Abstract No. 167 (un-
published).

~21. L. Bass and R. L. Mieher, Phys. Rev. 175, 421
(1968).

~SF. W. Patten and F. J. Keller, Phys. Hev. 187,
1120 (19e9).

~4In a recent attempt to test the Pooley-Hersh mech-
anism of color-center formation by F. J. Kellex and
p. W. Patten [(Solid S~ate Commun. 7, 1603 (1969)) it
was concluded that recombination of an electron with
a V~-type center (C12 or C1Br ) may result in inter-
stitial Cl atom foxmation. However, at the high tem-
peratures we are working at, we observe only the decay
of C12, without a detectable increase in the concentra-
tion of the interstitial centers.

~57he interstitial Cl ions Cl& are not paramagnetic,
and their behavior cannot be studied directly with EPH.
The trapped Cl~, called the & center, is unstable at
77 K in KC1, but there is evidence from the optical-

absorption measurements (Hefs. 6 and 7) that a mobile
interstitial halogen ion, just like a mobile interstitial
halogen atom, may be trapped by Na' or Li' ions forming
what one could call 1~(Na') or I~(Li') centers. It seems
reasonable to expect that Cl~" may also be stabilized up
to an even higher tempexature by pairs of Na' or Li'
tons ~ producing 1~ and/or I~~~ centers.

~8W. Hayes and J. W. Hodby, Proc. Hoy. Soc. (London)
294A, 359 (19ee).

«7D. Schoemaker, Bull. Am. Phys. Soc. 12, 410
(19e7).

~SW. Hayes and G. M. Nichols, Phys. Bev. 117, 993
(19eo).

~~C. J. Delbecq, D. Schoemakex, and P. H. Yuster,
Phys. Bev. B 3, 473 (1971).

OHowever, it is quite possible that such a center
might be produced by x or 7 irradiation at temperatures
below 77 K.

2~K. Bachmann and H. Peisl, J. Phys. Chem. Solids

31, 1525 (1970).
22If the distribution of the Li' or Na ions were random,

and if the cross section for trapping interstitial Cl

atoms were the same fox both the nn and nnn pairs,
then the H~ ~/H~ concentration ratio should be exactly
2. The large difference in appearance and relaxation
behavior of these centers does not allow one to deter-
mine this ratio accurately. One can only say that H~
and Hgsg have comparable concentrations,

3H. M. McConnell, J. Chem. Phys. 25, 709 (1956).
24G. E, Pake, Paramagnetic Resonance (Ben]amin,

New York, 1962).
~SA recent paper in the field of motional effects in

EPR which, apart from treating a simple case in detail,
gives some representative references in this field is
H, C. Hughes and Z. G. Soos, J. Chem. Phys. 52,
6302 (1970).

26K.
, Bachmann and W. Kanzig, Physik Kondensierten

Materie 7, 286 (1968).
~ D. Schoemaker and E. L. Yasaitis, BuO. Am.

Phys. Soc. 16, 440 (1971).

PHYSICAL REVIEW B VOLUME 3, NUMBER 10
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The generation of second-harmonic optical radiation with the sixnultaneous absorption or stimu-
lated emission of acoustical phonons is studied both theoretically and experimentally. A quan-
tum theory of the processes involved is developed on the basis of perturbation theory. The
analysis predicts that a multiple resonance in the output power shouM be observable as a func-
tion of the acoustical propagation angle for propagation close to normal to the fundamental
optical beam. Experimental results are presented in which a double resonance peak is observed
for l.06-p input optical radiation and 300-MHz longitudinal acoustical radiation in LiNbO3. The
observed angular separation between the two peaks agrees well with that expected for phonon-
absorption and -emission contributions from a pole in the scattering amplitude at twice the
fundamental optical frequency.

I. INTRODUCTION

The generation of optical harmonics by mixing

intense light beams in optically nonlinear crystals
has become a relatively common technique since
the original classic work of Franken et al. ' One
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recent development in this field is the introduction
of acoustic radiation to induce the nonlinear pro-
cess. ' In essence, the wave vector of the acoustic
phonon is added into the wave-vector conservation
(or "index-matching") requirements to allow index
matching to occur for optical radiation for which
the usual birefringent index matching is not possi-
ble. Then, for example, nonlinear optical pro-
cesses are possible in cubic crystals such as
GRAs, which are not biref ringent. Furthermore,
if phonon-assisted (or "acoustically induced" ) non-
linear processes can be made efficient enough,
rapid acoustical tuning of parametric oscillators
becomes possible.

In addition to the experimental results on GaA8,
Boyd et al. have given a classical description of
the effect, which has been considerably extended

by Nelson and Lax. In the present article, we
present (a) a quantum the-oretical treatment of
phonon-assisted second-harmonic generation (SHG)
and (b) experimental results obtained in LiNb03
which verify some of the theoretical results. Section
II contains a quantum-perturbation, theory of the
more important processes which contribute to
phonon-assisted SHG. Section III consists of a dis-
cussion of these theoretical results, with emphasis
on the resonances to be expected. In Sec. IV, we
present an account of an experimental study in
which a double resonance peak is observed,

II. THEORY

Classical theories of phonon-assisted (or acous-
tically induced) SHG have been given by Boyd et al.3

and Nelson and Lax. ID this section, we present
a quantum-theoretical approach to the effect which
provides additional results and insight. The ap-
proach utilizes time-dependent nonrelativistic per™
turbation theory up to second order and is based
to some extent on the work of She.

Nelson and Lax have considered a number of
classical processes which contribute to the phonon-
assisted effect and which have quantum equivalents.
Two of the processes are essentially the same and

occur in third order; they will not be included here.
A th rd process 'nvolves third- order optical on-
linearity and will also be excluded, on the grounds
that third-order nonlinear effects are generally of
lesser importance in crystals without inversion
symmetry. Although these exclusions are made in

oldel to Rvoid uDwleMy RDRlysls, the pleseDt theory
may readily be generalized to include them. In

their analysis, Nelson and Lax have considered
the anisotropy of the various classical tensors in

appreciable detail. No such attempt will be made
here to examine the anisotropy effects. Instead,
we shall emphasize the quantum approach and es-
pecially the contribution which arises in second-
order perturbation theory.

The interactions which are included in the Ham-

iltonian density, in addition to the free-field photon
and phonon terms, are

Xg X$ +Kg +Xs

3ci (x)

Sa3~ l 2 3
Ay Aakaq

(l)

is the direct term, and will give R contribution in
first order which is analogous to contribution (l) of
Nelson and Lax

&2(&)= ifaf2 ~ Ca a a ~t, (232saa&"" '" "+H c.
AgkaA3

133

is the second-order nonlinear interaction and gives,
for example, the usual SHG'; and

X3(x}= „, Q D , aaa'„a ha,
e""& '2"'"+H. c.

Aiaae

18 the lDteractloD which gives rise to BlllloulD
scattering, for example, Rnd corresponds classical-
ly to th6 Rcousto-optic effect. ID these expressions~
4', q, and x are four-vectors in Lorentz space with

contravariant components given by k = (k, &af'c),
q" = (q, 0;/e), x" = (x, ct), and )'2 x is the usual scalar
product 4"x„--(dt-k x of Lorentz space. The a~,

b, are the field amplitudes for photons and acoustic
phonons, respectively, and satisfy the usual boson
commutation relations. The three-vectors k and

q are the wave vectors in the crystal and &y, Q~

are the solutions of the dispersion equations
&@=u&„(k) and Q=. Q& (q). The volume V is the nor-
malization volume.

The scattering operator is a function of the inte-
gral

+[ (+) dx if372 yl/2 + Bagaaaa(( ~a~ ~a2 ~a3 ba f~~f ( k)1 ~k(yak(ask(3+0

+Z (lk, ~ k[ k~ k~ [IV ( k'([5k, ,kk +ED..., k[ k~ k, [k(f(kk"[[(( ~, ,k), (k)
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where (d& represents +g, and 0 represents O~.

In this expression, v is the interaction volume,
f/c, and L/c, are the transit times for light through
the acousto-optic interaction region and the crystal,
respectively, and f (v), E (2) are the dimensionless
"spread functions" corresponding to incomplete
"index matching" within the interaction and normal-
ization volumes, respectively. The arguments are

hk = kg —(k2+ ks + q)

4k' = ki —(k2+ ks) (5)

&k"= kg —(kg + g)

In order to relate the present analysis more readily
to conventional processes, we shall carry out a
brief treatment of the usual SHG and Brillouin scat-
tering, as well as analyzing first- and second-order
contributions to phonon-assisted SHG.

A. First+rder Processes

Assuming an initial state of n~ photons in one

mode, the state which is generated by the interaction
1S

S
I
i &

= exp [- (i/K) f dx K, (x)] I n~ ) (6)

in the interaction representation. The operator S
is the scattering operator U (~, —~). For the unas-
sisted SHG, the final-state amplitude of interest
is, from Eg. (4),

x t}„,~„E (k)-2k)a~~, In„-2)

in lowest order. The expected number of final
photons in mode 4'& is

&na, &=&f lagan, f&

L 2

IC n„(n —1) E (k, —2') 5„„„.@Vc

(8}

We can relate this to the power density (i. e. , power
per unit area) P generated in the classical limit
n~» 1 via the relation

x f (&v) 6„,„,„a~ In, —1, m, —1)
(11)

x f(rG') 6„.„„a~.In~ 1, m-, +1)

(where ar( represents &up, etc. , and &u represents
lr.

g

vt) for absorption and (stimulated) emission of

phonons, respectively, where

4K =k& —k- q

hK'= kg —k+q
(12}

In the classical limit g„» 1, m, » 1, we obtain

xP,P, ID,,„I'If(k, —k —q}I'f„. „.,„., (13)

and a very similar result for the power density
I' ~, corresponding to phonon emission.

A') t

Under the conditions when phonon-assisted SHG

is possible, both of the processes discussed above
(i. e. , via +, X,}also occur and the result of their
consecutive occurrence is essentially the same as
that of the phonon-assisted process of interest,
except in magnitude. The power density generated
(via phonon absorption) by the consecutive events
ls

1 ('d~& 8 40f, Q~&C iC V

~a = —& ~a, a aDa +c) a'

where the two terms corresponding to the two cases
of (i) Brillouin scattering first and (ii} SHGfirst
are given by

Pa = @~Nc dna/1'

Thus

(9)
x, E (kg —k' —k) f (k' —k —q) 5„~„„,„.

Pa, = I 3 I&a,mal'I'Pa IE(ki-2k)I'~ -„,, 2 -„

(10)
in the classical limit, which is in agreement with
the previous work.

Similarly, for Brillouin scattering, the fina1-state
amplitudes of interest generated from an initial
state ln„, m, & are

I
A» = —Q Ca qq Dq q. ,ci a'

x E (k'- 2k) f (k, —k' —q) 5„. ,„.
In addition, there is an expression simi'lar to Eq.
(14) for the case of stimulated phonon emission.

The relationship between this uninteresting con-
secutive process and the more interesting phonon-
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assisted generation process will be discussed
further in Sec. III.

W'e have y'et to discuss any of the phonon-assisted
processes which are of direct interest here. Only
one such process occurs in first order, via the in-
teraction X&. In this ca,se,

x
I
f (ki- 2k- a) I' &~;,, s -„.o; (18)

for the absorption process, with R similar result
for stimulated phonon emission. Therefore, in the
classical limit, the power density generated via the
phonon-absorption process, is

ous process treated in second-order perturbation
theory below, the intermediate state is, of course,
a virtual- photon state.

In second-oxder, the final state is

,'(—i-/a)'f d'x d'x'z'Iz, (~)z, (x'))If&, (18)

where T is the Varick time™ordering operator. For
the moment, we shall confine ourselves only to pho-
non-absorption processes, so that the initial state
is In„m, & and the final state of interest is
&, In, —2, m, -1). Thus, we are interested in the

two different contributions to Eq. (18) which are
represented in Fig. 1. With the help of Wick's
theorem, the first of these gives

I",&, I f (k, —2k- q) I' 6„, ,,„&„„,, (17)

with a similar result for phonon emission.

B. Second-Order Processes

In Sec. IIA, two processes which must be taken
into account were considered: (i) the direct phonon-
assisted SHG process, via X„and (ii) the consec-
tive Brillouin scattering Rnd conventional SHG
events. The former is a process which is of direct
interest, whereas the latter is not a true phonon-
assisted process at all. It must, however, be con-
sidered because it can give a final photon. state
which is essentially the same as that given by the
phonon- assisted processes.

With the present Hamiltonian, the second-order
process of interest is that in which both + and 3C3

take part. In this respect, it is somewhat similar
to the consecutive Brillouin and SHG process de-
scribed in Sec. IIA. It differs from it, of course,
in an important way, i. e. , in the nature of the in-
termediate particle in the interaction. In the con-
secutive process discussed above, the intermediate
state is R real state, whereas in the contemporane-

d7 g~ 7 gt' O g&&&f+~")&g~ g g y
~ 19

~kq =kg —k2- k,
and where the pair of dots in the bracket denotes a
Wick product. Hence, the final-state amplitude of
interest is

—i@i
If.&= @pa, ~&a,a,aaa, a, &(»i)

' "2

2~b
(~ )8 (~ Q )3 kg I k 1 C )

(2o )

IQ Rddltlon we have Rnother phonon-Rbsorptlon con-
tribution, represented by the second diagram in

Fig. 1:

x f (6k')[m n~(n~-1)] ~ 6„~,2~,o

rq
r

k2

FIG. 1. Tycho diagrams
representing contributions
to phonon-a8sisted sec-
ond-harmonic generation
(phonon absorption) in
second-order perturba-
tion theory. The full lines
are photon lines and the
broken ones are phonon
lines.

x s"af, l~"a +~4" I' 8 (22)

where &k,'=k& —k,'- q, ~k2'=k2- 2k. The two con-
tributions, when taken together, give a classical
generated power density of
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M» = Z 2»' " »2»' ll (k1 —k2 —k) f (k2 —k- q),
» (~& }'-("2+"'}'

(23)
M'" —5 ' ' I" (k' 2k) f (k —k' — )»1, (& )2 (2~ }2 2 1 2 'q

Similarly, when m, »1, the power density generated
via the stimulated phonon-emission process is

kg ~ ~ Q~ 3

x P»P ~M~~+M»~
~

5„1~ 2~ (24)

Mat= Q ' »»2~- E (R —k —k) f (k —k+ )»1 (+ )2 (+ Q )2 1 2 2
k» ka k a

(25)

M'~ = Z " " 'Il (k' —2k) f (k'- k'+ )g((gg)2(2~~)2212+ l

III. DISCUSSION OF THEORETICAL RESULTS

2(df2c ) /L
M»1st(0»+O~ (~ )2 ((g + Q )2

The direct term X1 gives a result [Eq. (17)]which
contains an over-all energy-conservation require-
ment and a single index-matching factor. It is dif-
ficult to estimate the relative strength of the direct
contribution. In the work of Boyd et aE. , it appar-
ently was appreciably larger than the higher-
oxder contributions. In a case where the magnitude
of q is too small to allow index matching (i. e. , to
allow both the condition k& = 2k + q and over-all en-
ergy conservation), the argument of f in Eq. (1V)
is a minimum when k, +q, and k& are all collinear.
In the present work, however, we are primarily
interested in the case where q is approximately
orthogonal to k and in the resonance effects which
allse ln second order.

There are obvious similarities between Eq. (14),
which describes the generation of second-harmonic
optical radiation by consecutive SHG and Brillouin
scattering processes, and Eq. (22}, which describes
the second-order phonon-assisted SHG process of
interest here. In particular, we note the presence
of the same C and D coefficients. The primary
differences lie in (a) the fact that the first process
requires a real intermediate state while the inter-
mediate state is virtual for the second process and

(b) the way the square modulus is taken; in the sec-
ond process, there is interference between the two
terms. Furthermore, we have an energy-conser-
vation requirement in the first case, whereas there
is a resonance denominator in the second, e. g. ,

In the consecutive process, there are two energy-
conservatlon condltlons. In the virtual-lntermedl-
ate-particle process of interest, however, we now

have only one conserved quantity, which is the
over-all energy, instead of two. Instead of the
other energy-conservation requirement, we now

have a resonance condition, which is satisfied at
the same point as the conservation condition for the
real-intermediate-particle case. The momentum-
matching conditions are the same in both cases.

Since the real- and virtual-intermediate-particle
cases ale so similar, lt ls important to considBr
the relative strengths of the two contributions.
Comparing, for example, the first terms in Eqs.
(14) and (22}, we find the ratio at resonance to be

~= I&., l'/IM", , I'= l(«c, ) (».—»- ~2) I;.. (»)
If we treat the loss and linewidth effects by the '

common method of introducing a quantity —,'I" for
the imaginary part of (dg —&p- 0; at resonance,
we have

P = (I'f /2c, ) (28}

Thus the virtual-intermediate-particle case will
be the dominant term if

1 &2c(/I (29)

Typically, 2c, /I is in the order of 5x10 sec '.
The value of I' to be used requires more careful
selection. In essence, the quantity &I' is the mini-
mum value that l .„—&g j can take when g is the

kp

frequency of a given laser quantum and +» = &u»(k2)

is the dispersion relation for photons in the crystal.
Thus, the laser linewidth is not a relevant quantity
here, the main contribution to I being loss in the
crystal. If the optical radiation intensity decays
in the crystal as e "", then o'. = 1'/e, and Eq. (29)
becomes

& (~1)f (x2)
'

(31)

which will be maximized. The question now arises
as to which, if any, of the conditions

In other words, the virtual-intermediate-particle
process of second-order perturbation theory is
more important than the consecutive process if
there is less than about 90% intensity loss as a pho-
ton propagates across the crystal. In the experi-
ments described in Sec. IV, the inequality &I- «1
was satisfied, and thus the resonant process domi-
nates.

Assuming that over-all energy conservation is
satisfied, we have factors of the form [see, for
example, Eqs. (22)- (25)]
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(a) MATCHING CONDITIONS FOR
FIRST TE RIVI

FIG. 2. Beciprocal-space
representations of energy
conservation and index match-
ing [(a) Mz &

and (b) M z~ ] when

x2 0[s——ee expression (Sl)) is
satisfied. Points A and Bare
not coincident because the
usual SHG index-matching
condition is not assumed to
be satisfied.

generated 0. 53-p, photons described elsewhere. "
This would be difficult to detect in the ring. that is
thereby produced on an intersecting plane. ' '
The detector in the experiments described in Sec.
IV was placed at appreciably sma, lier angles than

this. Thus, we are concerned with satisfying the
conditions v~=0, I", = 0.

The situation for the first term (vs= (of ) is shown

in Fig. 2(a). The point k& must lie on the &= 2&u„-

surface to satisfy over-all energy conservation.
To satisfy the resonance condition, k~ must lie on

the same shell (w= ~"„)as k and this requires a
specific angle 8&, between q and the plane normal
to k. This angle is given by

q'-2 kI I qI sine", = 0,

I

I

I
I

/
/

(b) MATCHING CONDITIONS FOR

SECOND TERM

K2=0
)

He((oi —Q)s) = 0

is more critical than the others. For t-1 mm,
&xs-10 cm ' is the half-width of the f function, and
4x&- j. cm ' for L - 1 cm. The half-width of the
resonance is»- 2I". If we consider the first term
in Eqs. (22) and (24), we have' &us= &u-„and, if
(ks- k) is parallel to k, then»=c, bk and the half-
width is &- &&. Thus &« ~tc, 3, since &I. «1
and l &L, . In this case, the resonance condition
would be the most stringent. However, if (k, —k)
is almost normal to k, the frequency offset can be
much smaller (i. e. , »«c, M). In fact, if ks is
on the same energy shell as k (see Fig. 2) and both
photons belong to the ordinary branch, M can be
as large as 2 I k) and still satisfy the condition
(dI, = (dg,

In the experiments mentioned in Sec. IV, it is not

possible to satisfy both index-matching conditions

(Z, =O, Vs=0) simultaneously, primarily because
I q I is too small when the lithium-niobate crystal

is 80'C cooler than the SHG index-matching tem-
perature. ' Therefore, we may, in general, ex-
pect two peaks (i) where 7& =0 and &ts= ~, and (ii)
where K~=0 and &„" = 0. As noted, ' however,
case (i) does not occur for the second term of Eqs.
(22) and (24} under the conditions currently being
considered. Furthermore, the result of case (i)
for the first term in Eqs. (22) and (24) is a photon

emitted at the same angle as the noncollinearly

es =sin '(& iL), (34)

where iL = IqI/'Ikl ~ The vector length I.iI =
I ~i

(k, + k)
I

is a minimum (and thus F a maximum)

when k, is collinear with k+4» the angle between

k, and k is then also 8„,.
The situation for the second term (&u, = 2&v„-) is

shown ln Fig, 2(b). Again, k, must lie on the
=-2j surface. In the present case, k2 will also lie
on the same surface at resonance. This will occur
for an angle &„"s (between q and the plane normal to
k) which is given approximately" by

'gs s
= »n 4 p ) . (35)

%e note that, for the second term, F is maximized
when k~ is parallel to k, and the angle between k&

and k is then approximately" equal to 8„",, the same
output angle as for the first term. Therefore, the

angle of emission of the final photon is essentially
the same for both terms in Eq. (22). However, as
shown by Eqs. (34) and (35), the angle of acoustic
propagation for which resonance occurs is quite
different in the two cases. This is because the
magnitude of the optical wave vectors connected by
the wave vector q is approximately twice as large
for the second term (see Fig. 2).

In the foregoing discussion, we have so far ig-
nored the presence of the stimulated phonon-emis-

sion process described by Eq. (24). In this case,
q- -q and 0;- —0;. Equations (33) and (34) yield

gs, = —sin '(-', p, ) and Hs = —sin '(-,'p), and the angle

between the optical input k and the output k, is also
8„=—8R, . Thus, two output beams would be ob-
served, one at +sin '(-,' p) and the other at -sin '

&&(-', p). Each would show a resonance at two differ-
ent angles between q and the plane normal to k

[e.g. , for the output beam at +sin '(-,' p, } these
resonance angles would be + sin '(-', p. ), + sin '(-', p, )].
However, if the acoustic wave were a standing wave

rather than a. traveling wave (i.e. , if there were as
many —q phonons as + q phonons), each output beam
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FIG. 3. Experimental measure-

ment of resonant phonon-assisted
second-11armonic generation.

would show all four resonances, since absorption of
a phonon q and emission of a phonon -q give the
same photon output angle when f is maximized.

In summa, ry, if the SHG output Rt Rn angle of
either +sin '( Ig l/2 I k l) is measured as a function
of the angle between q and the normal to k at tem-
peratures mell below the index-matching tempera-
ture, either two or four resonance peaks may be
observed, depending on whether the acoustic wave
is a traveling or standing wave. The resonant peaks
as a function of angle are due to the traversal of a
path in the ~ plane close to poles in the scattering
amplitude at a &ug and a 2~f„as given by E&y. (23)
and (25). For a standing acoustic wave, the values
of the angle between q and the plane normal to k
for which a resonance is expected are +sin '(-, p. )
and a sin '(-," p, ), i. 'e. , with separations of —,

'
p, , —,

'
p, ,

Rnd 4 p between them j,f p, (&1

IV. EXPERIMENT

Phonon-assisted SHG was first observed in
(cubic) GaAs, where the birefringence which is
necessary for the usual index-matched SHG is ab-
sent. In these experiments, the optical- and acous-
tic-propagation vectors were collinear. In the ex-
periments reported in this article, we utilize lithi-
um niobate, which is birefringent and in which in-
dex-matched SHG is readily obtained. The main
advantage of lithium niobate is that the conical SHG
oUtput which 18 ob8ex'ved below the index-IQRtchlng
temperature gives very accurate information on the
refractive indices and proximity to index matching.
In the present experiments, the acoustic- and op-
tical-propagation vectors are far from collinear,
1D ol'del to ob8ex've the I'esoDRnce behRvlox' dis-
cussed earlier.

A. Experimental Arrangement

The experimental arrangement is shown in Fig.
3. A 10&&5&&5-mm' LiNbO, crystal (c axis along
the long dimension) was polished, and an evaporated
CdS transducer (3 mm diam) generating longitudinal
waves was placed on one of the square faces. The
transducer was excited by an rf oscillator near
300 MHz via an impedance-matching network. Be-
cause the square faces were highly polished, the
acoustic xef lection at the ends was high, and thus

the Rcou8tlc wRve wRS RIIQost R pule stRndlDg wRve

along the e axis. This high Q of the lithium-niobate
crystal resulted in sharp resonant dips in the impe-
dance of the crystal as seen by the oscillator, and
the experiments were carried out with the oscillator
frequency held fixed at the center of one of these
acoustic resonances, close to 300 MHz. Besides
increasing the energy density in the acoustic stand-
ing wave in the crystal, the resonant effects had
the further advantage of reducing the effect'of off-
axis acoustic emission from the transducer since
this "walks off" the end faces.

The optica, l input radiation was obtained from a
TRG 400 series neodymium; yttrium-aluminum-
garnet (Nd: YAG) laser repetitively pulsed via a
r«ating-prism Q switch at 1.06 p, in the lowest-
order (TEMoo) transverse mode. An intracavity
barium-sodium-niobate crystal regularly used for
doubling the 1.06-p, laser radiation was retained in
the cavity (but not heated to its SHG index-matching
temperature) in order to polarize the output. ' The
laser radiation was optically filtered to remove any
second-harmonic Rnd pump radiation in the visible
region. The polarized 1.06-p. radiation was coupled
into the lithium-niobate crystal as an ordinary
wRve. The Llwb03 clystRl wR8 plRced 1D R glIQbR1

mount and held at room temperature (compared
with an SHG matching temperature of = 100 'C). The
angle between the 1.06-p. beam and the long dimen-
sion of the crystal (and thus the acoustic bealll)
could be varied over the range (90+6'). The loss
in the crystal was much less than 1 cm ' at both
0.53 and 1.06 p and thus al «1 Isee Eq. (30)].

The detector for the 0. 53-LLI. acoustically induced
doubled radiation consisted of an optical filter, a
photomultiplier, and a 200-p. -diam pinhole, set at
the appropriate angle to the incoming optical beam
and at a distance of about 30 cm from the crystal.
An infrared-absorbing filter was used to reduce the
scattered 1.06- p, radiation. The pinhole position
was slightly readjusted for maximum average signal
after each change in crystal orientation, primarily
because of the small shift due to refraction. Be-
cause of fluctuations in the laser output, the photo-
multiplier pulses were fed to 100 channels of a
pulse-height analyzer so that the 0. 53-p, height dis-
tribution was available for analysis.
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V. 43 ~10' cmsec ' and v =3~10'sec '. Hence

p. = 0.0192 . (3&)

~ ~

4
s

4
~ ~ sos 4~

~ ~

PUI SE HEIGHT

We note that the crystal rotation angle O. and the
angle 6 between q and the plane normal to k are not
equivalent, due to the refraction which takes place
at the crystal surface. Thus

sin8 = sins/2. 24 (38)

by Snell's law. Hence, the angle AQ= (l. 2+0.05')
is equivalent to 68 = (0. 535 s 0.025'). From Eq.
(37), the angle given by 2 sin '(-,' p) is 1.10' and that
given by 2sin '(-,' p, ) is 0. 55 . The latter value is in

good agreement with the observed b, 8 of (0.535
a0. 025)'. The double resonance peak shown in Fig.
5 is therefore interpreted as being due to the (a)
phonon-absorption and (b) stimulated phonon-emis-
sion contributions which are resonant at &-„,= 2~„
when 8R2=+ sin '(; p), respectively. In other words,
the two peaks are due to the pole at '&&2= 2&-„ in the
second terms in Eqs. (22) and (24). The other two

peaks which are to be expected at 8s = sin '(-', p) were

FIG. 4. Photomultiplier pulse-height distributions:
{a) typical distribution of assisted second-harmonic pulses
and {b) distribution in the absence of acoustical radiation.

8. Results

A typical pulse-height distribution for the acousti-
cally induced radiation is shown in Fig. 4(a). The
first peak is due to small noise pulses, as indicated
by Fig. 4(b), which shows the pulse-height distribu-
tion in the absence of acoustic radiation. In Fig. 5,
two parameters deduced from these data, the mean
induced pulse height and the most probable height,
are plotted against the angle of rotation of the lithi-
um-niobate crystal (and thus the angle of the acous-
tic beam) with respect to the incoming laser beam.
We note that both parameters, derived from the
data in different ways, show a double resonance
peak. The two peaks are just resolved and are
separated by approximately AOH= 1.2' of arc in
terms of crystal rotation. As shown in Sec. III, we
expect possible resonance peaks at values of 8 (the
angle between q and the normal to k of + sin '(—,

'
p)

and + sin '( p, ), where p. = Iq l/ lk I. The parameter
p. is given by

I
I

I l

1
1.20 I

p, = ~, /&, = ~,v. /c, , (36)
I t I

where ~0 and ~, are the wavelengths of the fundamental
optical and acoustic radiation in the crystal and v,
is the acoustic frequency. In the present experi-
ments, the wavelength ~, is

(1.06xl0 4)/2. 24 em=0. 48x10 ' cm.

The longitudinal sound velocity in LiNb03 is"

ROTATION ANGLE IN DEGREES

FIQ, 5. Phonon-assisted second-harmonic output, in
arbitrary units, as a function of the angle of rotation of
the crystal. The average power output &~v (black dots)
and most probable pulse-height Pz, {open circles) are
shown.
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not observed, presumably because either the
strength is lower or the resonance width is appre-
ciably greater (i.e. , the pole at &= &r is further
from the real axis). The angular positions at which
these peaks wouM occur are shown by arrows A and
B in Fig. 5.

V. SUMMARY

A tluantum approach to phonon-assisted (or acous-
tically induced) optical-harmonic generation based
on perturbation theory has been developed. The
results obtained in second order suggest that reso-
nant behavior may be observed if the acoustic beam
is almost normal to the optical beam. This possi-
bility is studied experimentally in LiNbO, 'with a
1.06-p. optical fundamental and 300-MHz longitudi-

nal acoustic wave. A double resonance peak is ob-
served, with a separation of 1, 2' in the rotational
position of the crystal. This separation agrees
closely with the expected separation of & p, between
resonances due to the pole at 2&l., for the two pro-
cesses of absorption and stimulated emission of
phonons. Two more resonances which could occur
(due to the pole at ~) have not been observed
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Free Energies of Vacancies and Rare-Gas Crystal Mixtures
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The Gibbs-Bogolyubov variational principle is used to calculate the free energy of vacancy

formation g„(p in solid Kr, Ne, and Cu and the interchange parameter ut fox dilute Ax-Kr
mixtures. These calculations include vibrational properties and, since any tempexature can
be considered, all other thermal properties can be obtained. For the vacancy, the formation
energy obtained in this way as h„=g„—(dg„/dT)pT is essentially the same as expected from
equiv4. lent static-lattice calculations at & =0 'K. Thus, the vibrational motion does not
encourage further relaxation and there remains a large discrepancy between computed and
observed h„ in solid Kx, although the entropies s„compare well. The computed sv's agree
very well with the observed values of Fender and Halsey.

I. INTRODUCTION

Most calculations of point-defect properties such

as the formation energy' or substitutional energy
are done for T =0'K only. This is because (a) a
static vibration-free lattice is considered and (b)


