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A dynamic theory of the cubic-to-tetragonal transformation in spinels containing octahedrally
coordinated ds and d4 Jahn-Teller ions is presented. Following Kanamori, the model assumes
that the dominant coupling between the doubly degenerate electronic orbital and the lattice is
via the elastic strain. The temperature dependence of the splitting of the degenerate electronic
level and the changes in the elastic constants due to the interaction is determined. For linear
Jahn-TeQer coupling, the phase transition is second order. The soft mode is the acoustic shear
mode propagating in the t110t direction. The frequency of this mode goes to zero at the transi-

- tion temperature and remains zero in the distorted structure. Including third-order Jahn-
Teller coupling, the phase transition becomes first order. The shear sound velocity changes
discontinuously at the transition temperature and then increases with decreasing temperature.

I. INTRG DUCTION

This paper considers structural transitions from
cubic to tetragonal symmetry in spinel structures
containing d' and d transition-metal ions. The
connection between these phase transitions and the
Jahn-Teller effect was first recognized by Dunitz
and Orgel' and by MCClure. Several thermody-
namic theories were subsequently constructed.
Those by Finch, Sinha, and Sinhas and by %ojto-
wicz', considered the case of large local distortion
due to the static Jahn-Teller effect. At high tem-
peratures, these distortions are oriented randomly
among three equivalent positions. Due to interac-
tions between the distortions, a transition occurs
to an ordered structure with all the local distortions
aligned in one particular direction. This occurs
when the interaction energy gained by aligning the
distortions becomes more effective in lowering the
free energy than the entropy, which favors a, ran-
dom distribution of the distortions among the equiv-
alent positions. This model corresponds to the
case of strong local anisotropy in which the anisot-
ropy energy is much larger than k T, where T, is
the transition temperature.

The more x'ecent work, by Englman and Halperin'

extends the work by Wojtowicz by taking into ac-
count the dynamic Jahn- Teller coupling and the
exclt6d v1bx'Rt1onRl stRtes. Due to the 1nterRctlon
between the Jahn-Teller complexes, the localized
vibrational modes associated with a single complex
assume the character of propagating optical pho-
nons. However, the interaction was treated in a
molecular-field theory and thus only the q = 0 limit
wRs discussed. Intex'Rctlon of the electronic sys-
tem with acoustic phonons was not considered.

A'basically different model has been considered
by Kanamori. This model desex'lbes the spontR-
neous appearance of a local distortion at the transi-
tion temperature. The model implicitly assumes
that the interaction between neighboring distortions
is sufficiently strong to immediately align the local
distortions once these appear. In this model (in
its simplest form), there is no local distortion
above the transition temperature.

For the case of the normal spinels FeCr+4 and

FeVQ~ with Fe ' Zahn-Teller ions at tetrahedral
sites, Mossbauer experiments show that consider-
able local distortion persists above the transition
temperature. However, for Jahn-Teller ions at
octahedral sites the amount of local distortion can-
not be measured by the Mossbauer effect because



E. PYTTE

field gradients exist at the octahedral site even in
the absence of distortion. ' In CuFe30„an abrupt
decrease in the quadrupole splitting at the transi-
tion temperature has been reported, whereas in
Mn„Fe3 „04. and GeL2Cu~ g Fey 6O4 no change could
be detected. '

It is the purpose of the present paper to point
out that large elastic anomalies are predicted by
the Kanamori model, and that measurements of
the elastic constants may provide a simple method
of distinguishing between the proposed models.

Whereas Kanamori considered only static ef-
fects, the present treatment takes into account the
dynamic interactions between the electronic sys-
tem and the acoustic phonons. However, coupling
to the optical phonons will be neglected. In a sim-
ple manner, the present treatment also extends the
theory to the case of several Jahn-Teller ions per
unit cell.

In the high-frequency limit &7» 1, where v is
the electron-lattice relaxation time, the elastic
constants will be calculated from a coupled set of
equations for the electron-phonon system. Due to
the interaction the phonon frequencies become tem-
perature dependent exhibiting step discontinuities
at the transition temperature. The degenerate
electronic level splits due to the interaction with

the static strain and becomes dispersive through
the interaction with the acoustic phonons.

In the low-frequency limit +7.«1 the elastic
constants will be calculated thermodynamically.
The isothermal elastic constants' are obtained in
the usual way from the second va, riation of the free
energy in the presence of a static deformation with

respect to this deformation.
Because of the short electron-lattice relaxation

time ' the condition &v «1 is expected to apply at
usual ultrasonic frequencies. For the very much

higher frequencies used in neutron scattering ex-
periments the results for &7» 1 may apply.

II. MODEL HAMILTONIAN

In the case of octahedral coordination, the linear
Jahn-Teller coupling between the doubly degenerate
electronic level and the local elastic strain may
be written6

H, = -W' P [u, (lk)~, (lk)+u, (lk)o, (ik)] .

Here, we have

u, (ik) = (1/&& )[e„(lk) —e33(ik)],

u3(lk) = (1/M6)[2e, 3(lk) —e~~(lk) —e,3(lk)],

where e;&(lk) are the elastic strain components at
the 0th Jahn-Teller ion in the lth unit cell. The
operators o, (lk) are Pauli spin operators describ-
ing the doubly degenerate electronic level. ' It is

assumed that the electronic levels are nondisper-
sive in the absence of the coupling to the elastic
strain.

Similarly the third-order anharmonic interaction
and Jahn-Teller coupling may be written

H3 = -If ( Q [u3(lk) —3u3(lk) ug(lk)]

-Z', Qf [u,'(lk) —u', (lk)]o, (ik)
lk

—2u, (l k) u3(l k) o, (l k) ] . (3)

As long as we are interested only in the linear
phonon spectrum, the k dependence of the strain
may be neglected. The interaction Hamiltonian
then takes the form

Hg ——-A Q, [u3(l)S3(l)+ ug(l)Sg(l),

H3= -ff, Z, [u,'(l) -3u, (l)u', (l)]

-K Q, ([u (l) —u, (l)] S (l) —2u, (l)u (l)S,(l)], (4)

where

S,(l) = —,
' P,o, (lk) .

Thd spin associated with each unit cell depends on

the number of Jahn-Teller ions. CuFe304 has two
Cu ' ions at octahedral sites per primitive unit cell,

3+ .whereas Mn304 has four Mn ions per unit cell.
For cubic symmetry the Hamiltoriian describing

static elastic strain and acoustic phonons with a
linear spectrum may be written

H, = —,
'

Q, MA'(l ) + —,'C,
~ Q, [egg (l ) + e33(l ) + e,', (l )]

+ C„Q [e$f(l)e33(l) + e„(l)e33(l)+ e33(l)e33(l)]

+BC«Q, [eq3(l)+e,3(l)+e3, (l)], (5)

where B(l) is the center-of-mass coordinate for
the tth unit cell and M the mass of the unit cell.
The constants C,&

have units of energy and are re-
lated to the usual elastic constant c&& by C,&

= (V/N)c, ~, where V is the volume of the crystal
and N the number of unit cells.

Deviations from cubic symmetry are. described
by nonvanishing thermal expectation values of the
strains e;&(l) and the spin operators S,(l). We set

(6)

We shall consider only the case of tetragonal dis-
tortion in which case

&e;,) =o, iwj

&eu) = &e33& = e. ,

&e33) =e
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&Sl&=0 for 2&8 y (6)

where the 3 axis has been taken as the c axis.
The Quctuations about the average values of the
strain may be expressed in terms of the normal-
mode coordinates of the acoustic phonons in the
usual way:

&l)(f)=: Z e [qley("q)+ qyel(&ql'] Ql(q) ~

l,a
(9)

where Q(&q) is the normal-mode coordinate for the
&th acoustic branch of frequency ((l(&q), wave vector
q, and polarization vector e(Xq). X(l) is the center
of the Eth unit cell.

When Eq. (6) is substituted in Eq. (6), the Ham-
iltonian H, separates into static terms, terms grhich
are linear in the fluctuations b,&(l) and terms which
are quadratic in the fluctuations. For tetragonal
distortion, the static part of the Hamiltonian takes
the form

0 =N[ Cll(e+ae )+Cia(e +2e e )] .
The linear term may be written

=[(Cll+ Cla) eo+ Cise~] &., [bll(&)+ has(f)]

+ (Cll eg + 2 Cla eg) Q 523(f)

~8 (&s)' ~8 (Ma) +
~q (&s)(~()) =O

A 3K) 2 2K3

& us )= (2/W6 )(e, -e,) .
The S,(f) equations have no static parts.

Prom these equations, me obtain

ee= —~ec~ (16)

(C„-Cla) &us) -3K, (us& =(A+2K2 &us))(Ss&. (1'7)

Making use of Eq. (16) the static part of the Ham-
iltonian H, may be written

ff',"=& 2 (Cll-Cla) &us)' (16)

For the linearized equations of motion, we obtain

sl{q) = nls, (q),Bt

—sa(q)=-nlsl(q)+~ &Ss)
Bt

«2 Z [qlel(~q) -qaea(~q)] Q.(q)

The term quadratic in the fluctuations is most con-
veniently expressed in terms of the acoustic nor-
mal-mode coordinates

a,"'= P ~(q)~(-q)
A, q.

—ss(q) = 0, ss = 0
BI;

82
„2-@.(q) = ~'(~q) el(q)+- -'-

(21)

+~2~ & (da(&q) Q), (q) Ql(-q), (12)

where P„(q) is the canonical conjugate momentum
to Q„(q),

~ [qlel(~q) —qaea(~q)1 sl(q), (22)

[e,(q), &,{q')]=26„6;; . (12)

Similarly, making use of Eqs. (6) and(V), the Ham-
iltonians H& and H2 may be separated into their
static and fluctuating parts.

III. COUPLED-MODE FREQUENCIES

nl= &u, ) (A+ffa &ua)),

na=(u-2xa &u, )),

~'(~q) =~',(~q). (1/M) (3'; &u, &+f~, &S,&

x ([q,e, (Zq) —q, , (Xq)]'

(23)

(24)

From the Hamiltonian we calculate the equations
of motion fox the acoustic normal-mode coordinates
Ql(&q) and the spin operators S,(l). We set the
static parts of the equations of motion equal to zero
and linearize the equations of motion by keeping
only terms linear in the Quctuations 5&& and 8&.
Setting the static parts of the acoustic-phonon equa-
tions of motion equal to zero gives the f0110%'lng
two relations among the static parts:

A
(Cll+ Cla) e, + Cise, + — (Ss&

+ ~ (us& + ~ ( Ss& &us) = 0, (14)
3Eg g 2K2

s~ [2 qses(~ q) 'qlel(~q) qaea(& q)]'f (26)

Equations (19) and (20) may be combined to give

Ba 4

Bt
2»(q)=-nl »(q)+~ &Ss&

x n, na Q [q,e, (~q) - qaea(~q)] Q(q). (26)

We note that this equation contains a sum over the
acoustic modes. For simplicity we shall consider
the coupling of one acoustic mode A. to the electronic
system. From Eqs. (22) and (26), the secular equa-
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tion then takes the form

[~' —~'(~q)] (~' -Q'l)

—(1/2M) (S ) Q, Q [q,e (Xq) —q e (~q)] = 0, (27)

with the solution

(u', , ,( q) = —,
' [Q', + (u'(z q)]+ (-'[Q', + ' (&q)]' —Q' '

(&q)

+ (1/2M) (Ss ) QlQz [qlel (& q) —qzez(& q)]')

X (Qz/Ql) [qlel() q) —qzez(& q)] (29)

for the plus sign, we obtain

&'= Q, + (1/2M) (Ss) (Q, /Ql) [qlel(Xq) —qzez(Xq)] .

This latter mode describes the splitting of the
doubly degenerate electronic level due to the static
distortion and the interaction with the acoustic
phonons. This expansion is only valid for &o(hg)

«0& and is therefore restricted to the distorted
structure.

Making use of the relationship between the sound
velocities and the elastic constants we may deduce

I

(»)
We note from Eq. (27) that there is no coupling be-
tween the modes for T& T, . If we expand for small
q, we obtain for the minus sign an acoustic mode

(uz'= (o'(X q) —(1/2M) (S,)

from Eq. (29) the corresponding changes in the
high-frequency elastic constants for T & T,. We
obtain

cll Cll +3P )
0 2

C»--C» —vP

Clz=Clz+(z-r&,. 0 4

C44 = C44

C66 = C66

2
Cis = Ci2+ s P

(31)

where C, &
are the elastic constants for the cubic

structure assumed to be temperature independent
and where

2

n= z&$6)
Q2

i

P =3K, (u, )+Kz($, ) (32)

Equation (17) provides a relationship between (Ss)
and (us). In order to calculate these expectation
values explicitly as functions of temperature and
the model parameters, an additional relationship
is required. We make use of the molecular-field
approximation. Prom the Hamiltonians, Eqs. (4),
the effective field acting on the spin S(l) may be
written

F = (0, O, A (u, )+Kz(us) ) (33)

The expectation value of Ss is therefore given by

(S,) = —,Ns tanhy

where y =F/2kzT and Nz is the number of Jahn-
Teller ions per unit cell. The free energy may be
written

F/N = z(C„—C„)(u, )'-A (us) (Ss) —K, (u, )' —Kz(u, )'(S, )

+kzT ~zNz([1+ (2/Nz) (Ss)] ln( z [1+(2/Nz) (Ss)]}+ [1—(2/Nz) (Ss)]ln( z [1—(2/Nz) (Ss) ]}) . (35)

These molecular-field equations have previously
been derived (for Nz = 1) by Kanamori who discussed
their solutions for different relative values of A,
K„and Kz. For K, =Kz = 0, Eqs. (17) and (34) may
be written

the free energy of the two phases equal.
By calculating the changes in the free energy in

the presence of static external deformation the iso-
thermal elastic constants are obtained in the usual
way. We obtain

(Cll —Clz) (us) =A (Ss) (36) ~11 Cll ++6 ~ 61
2

($ ) = 'N tanh[A—'/(C„—C„)]($,)/2k T . (37)

It follows from Eq. (37) that the phase transition is
of second order. The transition temperature is
given by

4 1Css= Cii s n —
6 y

Ci2= Ci2+ n ——sP -—sy4 2

Cis=Ci2+s ~+s &
2 1

kzT = 4NsA /(C»- C») .
In the molecular-field approximation, we have

&, ), &$, ) (T,-T)'" for T'T, .

(38) where
2

* (&+2((,(~,))' () —~~(&,) (40)

For E„A240 the transition is of first order.
The transition temperature is obtained by setting

These expressions are valid for all values of the
temperature. For T & T„we have
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I.O
k, =

3A NsE1
k

NsE2
2 (C„—C,2)

' 2 (C„-C,2)

Then Eq. (17) determining the strain distortion
.may be written

X
0.5—

x —k1x = (1+2ksx) tanhy

where

(44)

)2

0.5
T/Tc

1.0 &~s.&)~
0

FIG. 1. Temperature dependence of the tetragonal
distortion. Curve 1: k~ = k2 = 0; curve 2: k~ = 0.15, k2 = 0;
curve 3: k~=0, k2=0. 10. : CuFe204, +: CuFe& &Cro 30&.

12=2 Ns Aslk T, fr=0 y=z1Ns A IkT (41)

The sound velocity of a shear mode propagating
in a [110]direction polarized in the [110]direction
is given by

-0.5

0.5

I & ( ) i I

0$ l.o l.5
T/Tc

v~2= (C„-C,2)/2M (42)

From the preceding expressions, it follows that for
a second-order transition v,' goes to zero discon-
tinuously, whereas v,' vanishes continuously. In

both cases, v, remains zero for all temperatures
T & T,. It is of interest to note the frequency as
calculated by the equation-of-motion method van-
ishes discontinuously in spite of the fact that the
phase transition is of second order in which the
order parameter (us) or (Ss) goes to zero contin-
uously as T approaches T, from below.

When the transition is first order (E, or E20 0)
v, exhibits a step discontinuity at T = T, to a non-
zero value and then increases with decreasing tem-
perature.

The requirement that v, &0 yields a stability con-
dition for the tetragonal structure, In the limit of
small anisotropies, it takes the form

A E1/(C„—C,s) +E2 & 0

This condition has previously been derived by
Kanamori (for Ns = 1) using the free-energy expres-
sion.

IV. NUMERICAL CALCULATIONS

It will be convenient to introduce the dimension-
less variables

11 12) / X f (C11 12)
AN '"' ~

'-
A N8 S

a

I I I I I I I I I I I I I I

0 0.5 1.0 I.5

1,0
(c)

0.5—

I I I I I I I I I I I I I I

0.5 I.O l.5
/Tc

FIG. 2. Temperature dependence of the changes in the
relative high-frequency elastic constants dP&& defined by
Eq. (47). (a) k&=k2=0; (b) kg=0. 15, k2=0; (e) kf —0, k2
= 0.10.
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0.5
1
p x —x tanhy —

3 k'1x3 —k2x2tanhy

+ s t((1+tanhy) ln [s (1+tanhy)] + (1 —tanhy)

x ln[-, (l —tanhy)]+21n2) I, , =0 (45)

0 Further, if we define

4
g

= (C(g —C&g)~(C11 —Cis) (46)

the changes in the elastic constants may be written

-0.5

0.5

I I I I I I I I I I I I I I I I

0.5 I.O l.5

c

/ 2 /
6s( ———n +sP,

/ 4 /
~12=& -3 P r

/ 2 / Q /
&11=—~ +30 -e &

i / 4
~12 + 3 P e Y p

i~44= ~44= o

a 4~33= -3 ~

g 2 /
@is= s P

&ss = sP— ~ &— (4&)

~ee= &ee = o

0

where

(l. —2ksx) s tanhy

1+k2x 2x
(48)

p'= A, x+ k2 tanhy,

y
'= (1+ 2k, x)' Sech'y/t .

-0.5— The splitting of the degenerate electronic level due
to the interaction with the static strain and the
acoustic mode X takes the form

I I I I I I I I I I I I I I I I I

0 0.5 I.O l.5
T/Tc

0.5-

~', = n', + v' [q,es(~j) —qse, (Xq)]',

with

A2x,
0, =

(C
'

)
x(l+ ksx),

11 12

(49)

n =2am, ,

I.O—

-0.5—

I I I I I

0 0.5
I I I I I I I I I I I

I.O I.5
T/Tc

05—

FIG. 3. Temperature dependence of the changes in the

relative isothermal elastic constants &~&&. Parts {a), (b),
and (c) of the figure correspond to the same values of k1

and k2 as in Fig. 2. 0-—
0.5 I.O 1.5

y=(x+k, x')/t .

The equation for the transition temperature takes
the form

FIG. 4. Shear sound velocity v™sdefined by Eq. (42) as
a function of temperature. For T Tc vs~=vs~ For T Tc

v,'=v, . Curves &, 2, and 3 correspond to the samevalues
of k1 and k2 as I F1g. I..
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where v, is the sound velocity of the shear mode
propagating in the [1,1,0] direction and polarized
in the [110]direction in the undistorted structure.

Figures 1-4 show the results of numerical cal-
culations based on these expressions for N, = 2.
Figure 1 shows the temperature dependence of the
tetragonal distortion for different values of k, and

k3 together with experimental points for CuFe304
and CuFe, ,Cro 30,. The values of k, and k& have
been chosen to give curves in the neighborhood of
the experimental points. No attempt was made to
determine k, or k& as a satisfactory fit could be
obtained for different combinations of k, and k~. The
strain distortion depends somewhat more strongly
on k~ than on k, . Figures 2-4 show the temperature
dependence of the elastic constants and of the sound
velocity v, for the same values of 0, and k, . No
measurements of the elastic properties of these
spinels have as yet been reported.

The splitting of the electronic level is proportional
to x for k~=0. For the value of k2=0. 10 used in
Fig. 1 the curve showing the temperature depen-
dence of 0, is slightly below the corresponding
curve for x.

For given values of k& and k~, the constants A
and C» —C» may be determined from the transition
temperature T, and the low-temperature value of
the c/a ratio. The c/a ratio is related to (u3) by
Eg. (15):

(c/a —1,)=e, —e, = —,'v6 (u, )

For CuFez04, we have T, =630'K and' (c/a —1)
= 0. 06.

The values of A. and e, obtained for different
values of k, and k& is shown in Table I together with

TABLE I. Predicted values of v, and O& for
different values of the anisotropy constants kf and k2.

Aniso tropy

k)=0, k2=0

k)=0. 15, k2=0

kg =0.25, k2=0

k)=0, k2=0. 10

ki =0, k2=0. 175

v A Qi
(10 (10 (10

xp x&/xp cm/sec) ergs) cm )

10 10 0 21 35 88
1.02 1.23 0.27 2. 6 4.4 11

1.06 2. 0 0.38 4.3 7.1 17

1.06 1.25 0.49 2. 7 4.4 13

1.21 1.54 0.72 3.3 5.5 17

t„xo=x(t=0), x, =x(t,) and the splitting of the elec-
tronic level 0, (f = 0).

The mass of the CuFe204 unit cell has been taken
as ~=8.010"G.

V. CONCLUSIONS
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In this paper, the interaction between the static
strain and acoustic phonons with the doubly degen-
erate electronic orbital level in the spinel structure
exhibiting a collective Jahn-Teller effect has been
studied. The model predicts anomalous behavior
of the elastic constants at the phase transition. A
study of the elastic properties of these materials
may therefore give valuable information concerning
the relative merits of the theories that have been
proposed for these phase transitions.
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