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+ 0.001 eV. The Mo-point contribution to the re-
sulting line shape is about 25Vo ~

We feel that the good agreement (Fig. 2) between
the experimental points and the curve calculated on
the basis of the metamorphism of critical points
provides strong evidence that the exciton model de-
scribes quite well (also in a bidimensional crystal)

the effect of the Coulomb interaction upon the direct
interband transitions above the fundamental edge.
Further work is now in progress to show the pres-
ence of such an effect in GaSe.
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A Green's-function equation-of-motion analysis of the large polaron is presented. Existing
theories for the ground-state energy and effective mass are obtained from a nondiagonal form of
the Fock approximation to the electron self-energy. A connection between the usual canonical
transformation techniques and the Green's-function approach is given explicitly. The effects
of vertex corrections and translational invariance are examined in the context of these results.

I. INTRODUCTION

The problem of the large polaron has received
considerable attention in the past. ' There re-
main, however, a number of unanswered theoretical
questions which arise when one attempts to make
predictions that can be verified experimentally.
For a small electron-phonon coupling constant u,
the polaron ground-state energy can be obtained
from perturbation theory, ' 6 and has the form

Eo —n —0. 0159o.———O(u ) .
For large n, the ground-state energy has theform' 4

z, = —a,n'- a,n'- o(n ') .
Thus, as indicated by Larsen, 7 polaron perturba-
tion theory must have a finite radius of convergence.
This implies a critical coupling constant n, such

that for a & o., the polaron spectrum develops in-
ternal structure. The experimental verification of
the internal structure would be facilitated by a theo-
ry which predicts a„ the internal-energy spectrum,
and the lifetimes of the states. A Green's-func-
tion equation-of-motion approach to the polaron
problem should be appropriate because of its abil-
ity to handle dynamic effects and because it per-
mits a systematic accounting of electron-phonon
correlations by the use of Feynman graphs. Such
a theory does not exist. On the other hand, existing
polaron theories cannot be easily applied to these
questions, partly because of mathematical com-.
plexitiese' and partly because of inherent limita-
tions s, ii-is For example, Feynman's theory pre-
dicts n, =0. The theories of Pekar" and Bogoliubov
and Tiablikov'3 (referred to as PBT and reviewed
by Allcock' ) are adiabatic theories and therefore
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valid only for large a. The variational theories of
Hohler, ' Tiablikov, " and Buimistrov and Pekar'
do not yield lifetimes or excited states. Further-
more, the relationship of these theories, both to
each other and to a diagrammatic analysis, is not
always clear.

Translational invarianee is another important
aspect of the polaron problem for large n. The
Frohlich Hamiltonian commutes with the total-
crystal-momentum operator. This fact implies
that the total crystal momentum is conserved, and
that the polaron eigenfunctions must be simulta-
neously eigenstates of the total crystal momentum
and the Frohlich Hamiltonian. This condition has
proved difficult to apply rigorously in the strong-
coupling theories mentioned above.

The purpose of this payer is to present a theory
of the polaron which is based on Green's function
equation of motion, with emphasis on the strong-
coupling limit. The objective of this paper is
limited to establishing the origin of previous strong-
coupling theories in terms of a selective summation
of infinite subsets of Feynman diagrams. An at-
tempt is made to identify and assess the relative
importance of the Fock and vertex parts of the po-
laron self-energy in these theories and to investi-
gate the question of translational invariance of the
polaron and the critical-coupling constant o, The
Green's-function theory presented here represents
a different approach from the Green's-function
theories of Tiablikov'9 and Puff and Whitfield.
These authors use a translationally noninvariant
many-electron Green's function calculated within
the Hartree approximation, and then find the one-
electron limit. This results in an artificial depen-
dence of the ground-state energy on the Fermi
level, which should be avoided because the polaron
is a one-electron problem. Furthermore, as Puff

and Whitfield point out, 'o the Hartree approxima-
tion should not yield a contribution to the self-en-
ergy if only one electron interacts with the phonon

field. As will be seen later, the Hartree contribu-
tion never appears in a systematic expansion of the
electron self-energy in terms of exact one-electron
retarded Green's functions, which are the appro-
priate propagators for this problem. ' ' 0 porsch"
has recently developed a finite-temperature polaron
theory which is based on employing successively
the shifted harmonic-oscillator canonical transfor-
mation and a Green's-function equation of motion.
The introduction of the Green's function, however,
is used merely as a device to generalize the theo-

ry of Gross' to low temperatures. At zero tem-
perature the Green's-funetion equations of Porsch
are redundant, and his approach is equivaLent to
that of Gross, ' and thus, no proper identification
with regard to a diagrammatic analysis is possible.

It is clear that a polaron strong-coupling theory

must employ only exact electron propagators, since
the zeroth-order description of strong coupling
cannot result from using free-electron propagators
or a perturbation expansion in terms of free-elec-
tron propagators. Therefore, the theory can be
formulated only in terms of renormalized Pock
and vertex diagrams of the irreducible self-energy.

Some of the results obtained from this Green's-
function approach are as follows: (i) The usual
strong-coupling energy is obtained from the non-

diagonal Fock approximation to the polaron self-
energy, i. e. , by purposely ignoring total-crystal-
momentum conservation. (ii) An explicit corre-
spondence of the PBT and Feynman theories with

the Green's-function theory is established, thus
demonstrating that these theories are not based on
the Hartree approximation as had been thought. '"'
(iii) The Fock approximation can be extended to
weak coupling, yielding a critical n of about 6, as
has also been reported elsewhere. ~'9" (iv) The
usual strong-coupling masses are obtained after
translational invariance is taken into account. (v)

The vertex terms are estimated to contribute to
the constant term in the yolaron self-energy. How-

ever, a question arises concerning the convergence
of vertex corrections treated by perturbation
theory.

Only the ground-state energy is calculated, al-
though expressions for excited-state energies and

associated lifetimes can also be obtained. The
present calculations are restricted to zero temper-
ature. The integral equation for the electron
Green's function is derived in See. II. The con-
nection between the Pock approximation and the
Hamiltonian formalism is established in Sec. III.
Translational invariance, the effective mass, and

the vertex corrections to the self-energy are dis-
cussed in Sec. IV. Some final considerations are
presented in Sec. V.

II. GREEN S-FUNCTION EQUATIONS OF MOTION

The Frohlich Hamiltonian, expressed in dimen-
sionless form, is"

H=Z;p'c-,'c;+Z-„a„' a„-

+ 2 f, (Vf Pf, af, + Vf, P f af ),

where p; = g;c-„„;c;;af, and a„are the phonon crea-
tion and annihilation operators; c; and c; are the
electron creation and annihilation operators;

V- =- f(4var, '/n)'" r

where ra= (5/2m'&)'~, &u being the phonon frequency
and m the band mass, and 0 is the volume. The
electron-yhonon coupling constant is

n = (e'/2r, h(u)(c 'e, ') . „-
The total momentum operator



D YNAMICAL THEOR Y OF THE LARGE POLARON 3489

P = Z.y p c C y + & k k 0"Ok

commutes with the Hamiltonian, i, e. ,

[H, P] =o.

(2)

1 1
+ +intZ- IJD ~-IIO-a (6)

where Il„, is the interaction term in the Frohlich
Hamiltonian. Dynamical approximations are then
generated by the use of the identity

1 1
"Z-a Z-8-1 "

1 1
+Z H I [af H&„] z

which is readily derived from the commutator of
II and ak. , together with the identity operator

I= Zc;io&(otic; 2 P„
n=o

(6)

which is inserted between products of resolvents
in Eq. (6). Here

1P =—Z a- a. ~ ~ a- ~0&(0~a" a" ~ ~ a.
n &f „k] k2 k I t k~ k2 kn~fl e k q ~ qk

n

p, fo&= /0&
(9)

and P„ is a projection operator which projects out
the n-phonon space.

Equation (6) yields the following equation for the
Green's function:

G,'(p, z) G(p, p'; z)

= 5;„"+Z„V~(00~cg ra„- [1/(Z —H)] c;,
~
00&, (10)

where Go(p, Z) = (Z —P3) ' is the free-electron prop-
agator. Equation (10) is the first in a hierarchy
of equations relating successively higher-order

The zero-temperature electron Green's function,
in momentum space, is given by'20

G(p, p'; 7') = (00
~

T c- (f) c;.(f )
~
00&, (4)

where v=(f i), -T is the time-ordering symbol,
and 100& is the electron-phonon vacuum state. In
the low-density limit, the advanced Green's func-
tion vanishes, and G= Q".2 In frequency space,

G(p, p'; Z) =(00~ c; [1/(Z —H)] cp~
~
00&, (5)

where Z is a complex frequency. Equation (5) de-
fines the expectation value of the resolvent operator
in second quantized form, which is independent of
the Fermi level, and Eq. (5) is thus the starting
point of the present theory.

The derivation of the equations of motion for the
Green's functions is accomplished by the inverse-
oper ator expansion22

1 1
Z- IIO- &~.~ ~- IIO

Green's functions. A termination of these equations
at various levels leads to the usual Tamm-Dancoff
theories. ' ' These theories, however, do not
yield a strong-coupling limit, at least within the
tractable two-phonon cutoff, and therefore will
not be pursued here (see Appendix A).

Now, by a repeated application of Eqs. (V)-(9),
Eq. (10) becomes

G, '(p, z) G(p, p'; z)

~+ P g(p, p&,
' Z) G(p1& p i Z) i

Qg

where

g(p, p&, Z) = 2,
~

V„~ G(p —k, p —k; Z —1)

k~k1»p~ p3

x G(p„p, —k; Z —2) G(p„p, —k„z —1) + ~ ~ ~ (12)

is the polaron self-energy expressed in terms of
exact propagators G. The self-energy given by
Eq. (12) is the nondiagonal version of the conven-
tional diagonal self-energy, which can be depicted
diagrammatically in terms of the usual set of all
topologically distinct, irreducible, and compact
Feynman graphs. '4

Translational invariance, as expressed by Eq.
(3), has been ignored to this point. If it is taken
into account, then Eq. (11) assumes the usual
factorized Dyson form

G-'(p, z) =G,(p, z) —z(p, z) .
Here P is now the total polaron crystal momentum,
and is treated as a parameter. The self-energy in
Eq. (13) has been evaluated only in fourth-order
perturbation theory, ' and approximately within the
(diagonal) Fock approximation. '0 ~' A strong-
coupling limit has not been obtained. It is assumed
that vertex corrections, i. e. , Feynman graphs
with crossing phonon-propagator lines, are im-
portant, '3 but it has not proved possible to deal
with them. ' ""

Since it is the purpose here to show the origin of
other theories, in terms of nondiagonal Green's
functions, no attempts at solving Eq. (13) will be
made. Rather, it will now be shown how one ob-
tains the strong-coupling limit from Eq. (11), in
which translational invariance is ignored (see,
however, Sec. V).

First, Eq. (12) is approximated by using for
Z(p, p„Z) only the first term on the right-hand
side. Then Eq. (11) becomes

(Z- P')G(p, p'; Z)

=5;;,+ Z,
~

V~~'G(p —k, p, —k, Z —1)G(p„p;Z) .
(14)
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This equation, when iterated, generates all Feyn-
man graphs with noncrossing phonon-propagator
lines, i. e. , the Fock approximation. Infact, the
iterated version of Eq. (14) can be resummed in
the diagonal form of Eq. (13) with the self-energy
given by the usual Pock expression

z, (p, z) =Z. -„iv,i'G(p-k, z- 1).

This, it is believed, cannot give the strong-cou-
pling limit, since G is now diagonal in contrast to
G given by Eq. (14). Thus, although Eq. (14) is
translationally noninvariant and therefore offers
the possibility of localized solutions, it yields a
translational invariant (i. e. , electron momentum
is conserved) solution if it is solved by iteration.
This point will be elucidated later (see Sec. V).

For now, Eq. (14) will be solved by retaining the
nondiagonality of G. Suppose that G(p, p; Z) can
be expanded in a complete set of orthonormal func-

I

tions

(16)

such that

&„y„*(p)q„(p') =6;,;,
&;q„*(p) q„.(p) = &„,„. .

(16)

Here, the E„are then the poles of G, which could
be either discrete or continuous. The lowest en-
ergy is obtained by setting Z =E0+i5, where 6 is
infinitesimally small. Then note that

limis G(p, p; Z =F0+ is) =g(p) go(p ) .
6 0

(17}

If one substitutes Eq. (15) into Eq. (14), sets
Z=E0+i6, and takes the limit of 5-0, one obtains
an equation for g, and Eo

(z, -P')y, (p) =- Z
1
v, l'y (p-k) y"(p -k) q,(p, ) P. v. 2 5 iv, ~'

k, pg m40 k) py m 0+
(18)

where P. V. means principal value. To obtain Eq.
(18), Eqs. (17) and (16) have been used. Equation
(18) can also be obtained by Fourier-transforming
Eq. (14) to time variables and taking the limit of
infinite times, thereby ensuring that the electron-
phonon interaction is at full value and that the po-
laron is in its ground state. " There are several
points to be noted about Eq. (18). (a) One needs a
complete spectrum in order to obtain the solution
for the ground-state energy. (b) In strong coupling,
assuming E —E0~e, then in the adiabatic limit
one Can neglect the P.V. term and obtain an equa-
tion similar to that of Pekar which describes the
electron motion in a self-induced polarization po-
tential. "' '"' ' There is, however, no factor
of 2 here in the potential term. This will be com-
mented upon again in Sec. III. (c) The P. V. term
plays the role of the second-order adiabatic per-
turbation theory of PBT ' " and Gross. ' (d) The
equation is not limited to strong coupling, but can
in fact be used for the whole coupling range, in
contrast to the PBT theory, since no restrictions
pertaining to weak or strong coupling are built
into it. (e) It should be noted that the |t/„'s are
Franck-Condon-like states ' ' as long as one is
concerned only with the ground state and insists
on the conditions of Eq. (16). There are no life-
time effects, It is, however, also possible to ex-
tract from Eq. (14) equations similar to Eq. (18),
which describe relaxed excited states" 8 (RES)
and their lifetimes, i. e. , internal resonancelike
states. These, however, will be discussed in a
future publication.

Next, the ground-state energy for weak and

strong coupling will be obtained, and a detailed
connection to Hamiltonian formalisms of the polaron
will be given.

III, CONNECTION WITH HAMILTONIAN FORMALISM AND
GROUND-STATE ENERGY

The first objective will be to obtain the strong-
coupling polaron wave function from the Green's-
function formalism. To achieve this, one can use
the wave-function representation for the polaron,
as employed by De%itt~ and Langreth. In sec-
ond quantized notation, the polaron wave function
for an electron with momentum p (translational
noninvariant) is

4 =(Z~) '/ lim . c", ~00), (IO
6 0 0 + i

where Z& is the wave-function normalization con-
stant and E0 the polaron ground-state energy. Z~
is obtained within the Pock approximation from

1=(ei 4) =(Z, ) '/2(e~c;~OO)

R 1=lim —00 c; — . c- 00
60 P 0 +&

i6= lim —G(p, p; Z = Eo+ is)
6 0 p

= (0 (p)40(p) z, ',

where $0(p} is as defined in Sec. II. Thus

(z )1/8 (y+( ) q ( ))1/2
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In order to obtain 4, (Eo-H+i5) 'c;100) is ex-
panded in a complete set of phonon states,

e = Z d(p, p ') c t,
~

00) + 2 d(p, p'; k, )c-'„a,'
~

OO&

~p
d{p p 'kg' ' 'k ) =Iim

( )gyp
f)~0 8 ~ P

( 2~ ' Z0-a+&~ "
Using Eq. (7), all the phonon operators are com-
muted through to the right. After these commuta-
tions, one inserts between the resolvents a com-
plete set of one-electron states, and a zero-phonon
state. The zero intermediate-phonon states are
consistent with the Foek approximation used to de-
rive the polaron Green's-function equation of mo-
tion in 3ec. II. For example,

] . i5 1
d(p, p;k, ) =lim, „&2 00 c;.

g 0 h~pj E0- 1 —H+Z5

XV . p~ 00
Ag ~kg p ~ 'g 'g

d(p, p; k, ) = lim, „~2 V~,
%~p J

x 2 G(p', p, —k„.Z =E, 1+id)—
Qg

&(G(p„p; Z = Eo+ f6), (23b)

where

Vt p 0.{p')t.*{pl k1)to{p&l (23,)z, —i-z +~~nyg 0 n+~

=- —V),, p.„,go(p'} for large a,

Pi =~ &o(pi- ks)&o(p&) ~
1

1

(24)

In Eq. (23c), the assumption that Eo —E„~@2was
made. The general coefficient [Eq. (22)] is ob-
tained analogously. Thus,

d{p p' k k„)

=(-I)"(n)) 'V'" V' p-" "p' q(p') (26)

Hence,

@=cZax)(-Zv, g-a)) (p )c;.~00), (26)

where C is a normalization coefficient, which is
necessary because 4' of Eq. (26) is an approxima-
tion to the exact 4' of Eq. (21). The normalization

+ Z d(p, p';k„k, ) cp'a-„', a-„,~00)+ ~ ~, (21)
y'&kg ~kg

where the general coefficient is given by

coeffxczent zs

Returning to the Schroedinger representation for the
electron coordinates in H and 4, one can then
write

)I) = (0(r }exp[- Z, f (VI p„-al~ —V„p„a„)j
~
0), (27)

which is the product ansatz wave function of
Pekar. 3'

The ground-state energy for strong coupling can
now be obtained as usual by taking the expectat&on
value of B with the wave function +, or from the
equation for )))o [Eq, (18)] by neglecting the P. V.
term (which is necessary for consistency with the

approximations made to derive )I'). This indicates
that the poles of |"give the polaron energy directly,
in contrast to the Hartree approximation. Thus
the g's here are wave functions of an electron in a
self-consistent polarization well, i.e. , the lattice
potential energy is properly taken into account.
Hence, Eq. (18) gives the same ground-state en-

ergy, as (H), which is not the case in the Hartree
approximation. Furthermore, the ground-st3te
energy for weak coupling can also be obtained from
this formalism. The solution of Eq. (18) in terms
of a complete spectrum seems possible only for the
spectrum of a fixed harmonic oscillator, because
one does not know how to deal with the continuum
states associated with most spectra, ' in contrast
to the Gaussian spectrum, which has none. Qn the
other hand, the use of an orthogonal Gaussian spec-
trum in Eq. (18) is equivalent to assuming the elec-
tron is bound in a harmonic-oscillator potential,
which is characterized by a single parameter, the
spring constant. This can be chosen as a varia, -
tional parameter. The problem should thus be equiv-
alent to Feynman's "fixed-harmonic-oscillator"
potential. In the present case, a Gaussian spec-
trum, characterized by a variational parameter P,
is chosen, and the P.V. sum done by the use of the
Slater sum rule. For details, see Appendix B.
One obtains for the ground-state energy, in units
of 8&,

Eo= 'f)' (o'/-(»)-' "8)B(I/2P', l), (28)

where B(l/2P~, —,') is the P function, defined by

B(I/2P' -')= J' x"~ -'dx/(I —x)'"
This is indeed the same result found by Feynman
in the "fixed-harmonic-binding approximation"
[Eqs. (33) and (34) of Ref. 9]. The variational pa-
rameter P is evaluated for small and large P, r e-
spectively. The result is E0= —& if «6 and

E = —& /37'-31n2 —0(o' )

for strong coupling (see also Appendix 8).
In connection with this result, note that Eq. (14)
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thus gives a solution with two asymptotic limits,
one in an ascending power series of & and one in
a, descending power series in & . For weak cou-
pling, Eq. (14) also automatically gives a solution
in which linear electron momentum is conserved,
which is not the case for strong coupling. Thus
the usual diagonal Fock approximation can never
give the strong-coupling limit. To obtain the latter
one must solve Eq. (14) noniteratively. One should
also note that, although the result obtained here
gives only the Feynman result for a "fixed-har-
monic-binding" potential, it gives some additional
information. It is clear that at &=6 there is a
well-defined transition from localized to delocalized
solutions, i. e. , below 0'=6 no more discrete states
exist. This result is similar to that obtained re-
cently by Larsen. ' The reason for this, as will be
shown elsewhere, is that the Lee-Low-Pines
canonical transformations employed by Larsen
generate only approximations to the Fock self-
energy.

An alternative approach to the weak-coupling
limit is possible. Suppose that the right-hand side
of Eq. (18) is discarded. Then the solution of
Eq. (18) is

(29)

i. e. , a freely propagating electron with momentum
Tc, Iterating with these wave functions on the right-
hand side of Eq. (18), after replacing n by v, yields

(3O)

Taking the limit E~ =-0 for p, =0 on the right-hand
sid,-.', one obtains the usual second-order perturba-
tion-theory result

(31)

Tile VR1'1RtlollRl 1'eslllt Rgl" ees wltll Eq. (31) wltll

P =- 0, and since the variational result requires that
P= 0, it suggests that the Gaussian spectrum be-
comes a continuum spectrum-. The iteration pro-
cedure leading to Eq. (31) can be continued, and it
generates the self-consistent perturbation theory
leading to the Fock approximation.

IV. TRANSLATIONAL INVARIANCE, EFFECTIVE MASS,
AND VERTEX CORRECTIONS

The question of translational invariance, i.e. ,
the conservation of total crystal momentum, has
beer' ignored to this point. The conservation of
total crystal momentum for strong coupling can be

taken into account approximately by the technique
of the Lagrange undetermined multiplier, as was
done by Gross" and Tiablikov. '9 To this end, the
Frohlich Hamiltonian is rewritten

H=Q; p (p-V)c;c;+Qf &f(V)a;a„-

+ P V++"„(V„ap,p-„+ Vl a„-p„), (32)

where &„-(V)= 1 —V k and V is the Lagrange multi-
plier to be determined from the condition P =(P),
where I' is the total-crystal-momentum operator.
Also, following Gross" and Tiablikov, '

m& is iden-
tified from (P) = (m„/2m)V, where V is interpreted
as the polaron velocity expressed in units of xo&.
Note that this identification makes use of the con-
cept of mechanical momentum (see Sec. V). Within
the Pock approximation, the equation for G [analo-
gous to Eq. (14)j is then easily obtained for the
Hamiltonian given by Eq. (32). The stationary limit
of this equation' then yields the wave-function equa-
tion

33

which is the V-dependent analog of Eq. (18). At
this point one needs to calculate (P) to determine
V and m~. The method of Tiablikov, "which in-
volves the use of the spectral representation, can™
not be followed since it gives (P) = 0 in the present
case. The result follows from the fact that the Fermi
level is at —~ in a one-electron problem. A V-
dependent polaron wave function must therefore be
used, and can be derived by the procedure employed
in Sec. III. The result is the same wave function
as given by Eq. (27) except with the replacement
pl -pf/(l. —V k). Then

(P ) = (4'(V)
~

p+ Q f kaf' a„~ q'(V))

(34)

The polaron mass is identified as discussed above,
and is

In tile GausslR11 Rppl'oxizllRtio11, 'tllls 18 nip&/nc
= 18n'/8lv', which is the same as obtained by oth-

erss.

"'"Note that the free-electron contribution to
tile polRI 011mass vanlaaie 8 identically 8111ce(go( p [ gg
=- 0. Thus, the polaron mass originates from the lattice
part of the momentum only. This is reminiscent
of the Feynman concept of a fictitious particle
which approximates the effect of the lattice. The
usual weak-coupling polaron mass may also be ob-
tained, by following Gross" or by an iterative tech-
nique [see Eq. (31)j. Its calculation, however,
adds no further insight to the problem of transla-
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tional invar iance.
Consider next the effect of vertex corrections to

the self-energy. In the weak-coupling limit these
represent no conceptual difficulty because the self-
energy can be obtained by iteration. On the other
hand, a rigorous treatment of the vertex correc-
tions in strong coupling is not easy to achieve. Qne
already has difficulty ln finding a dimensional anal-
ysis within the px'esent continuum I'epx'esentRtlon
of the Green's function, which leads to a descending
power series in + for the energy, as is expected
intuitively. The Pock approximation provides a
zeroth-order description of the strong-coupling
limit, which corresponds to the adiabatic approxi-
mation of other theories. It turns out not to be
true, however, that the vertex contributions can
then be, treated as a perturbation to the Pock-ap-
proximation Green's function. For example, the
second term of Eq. (12) contributes a leading term
of order &4. Successively higher-order vertex
terms start with leading terms of ordex &, &, . . . . 31

Each vertex term also has a descending power
series in & associated with it.

The technique of Hamiltonian renormalization
can be attempted as an alternative approach to the
vertex corrections. Thus, as was shown earlier,
with the help of the Fock approximation, one can
generate the well-known unitary operator
S= exp[- (g»" V,'p»-'a„'-- c.c.)], which has the property

sa» s = a»+ v, p» -=p» ~

Expx'esslng the ggq Qj opel Rtol's ln the FI'ohlleh
Hamiltonian in terms of the Pg, P," operators, one
obtains a new Hamiltonian Ho+ II,„„where

Ho=- &'+~.-
I &.I'I p.-l'

—3~r, Ii'»I'p»& "+L» P»P», (38)

Hi.~=&r [l'f(& —p )ref+ V'r(e —p )P ] (37-)

This separation is the same as that given by
Hohler, ' and forms the start of his adiabatic per-
turbation theory. The equation

(IIo-&» p»f&»)4. ="&. (38)

then determines a zero-order electron Franck-
Condon spectrum. It is now easy to develop a per-
turbation theory on the bRsls of this Hamijtonian
renormalization. Some of the results follow. To
second order, one obtains the usual correction to
the self-energy

~&»&(g) g ~ &a ~'P~i(&)p'w(k)

k» $4i ~ El

where i refers to the ground state and

a~(l) =1 'elan"( )P&r( }d~r .

The reason one has I ci in the above equation is due
to the relation

(fir„,l
f) (40)

To conclude this paper some discussion on new
results and remaining problems mill be given. It
has been shown that the zeroth-order description
of the strong-coupling limit ean be obtained from

which hoMs only if i refex s to the ground state.
Equation (3S) is the usual result for the fluctua-

tion energy33 if Z=EO, which is valid for strong
coupling only because of the way IIO was defined.
It represents the correction to the strong-coupling
ground-sta. te energy, within the Fock approxima-
tion and a Gaussian spectrum, and thus gives the
same result as the P.V. sum of Eq. (18) does.

The next term in the perturbation expansion con-
sists of two contributions, both fourth-order in
perturbation theory. One is Fock-like and the othe~
represents the first vertex correction. Qne can
readily verify that both contributions have leading
terms of order & . The reason for this is that the
selection rule [Eq. (40)] does not apply for matrix
elements involving only virtual states. It is then
not difficult to ascertain that because of this, in the
eth-order perturbation, the leading contribution is
also of order & . Thus, according to the Hohler
RdlRbRtlc pox'tux'bRtlon theory Q// pel turbatiotl
terms begin with & corrections to the ground-
state energy. This then raises questions about con.
vergence. In particular, one wonders whether the
constant term of —,'-, as given by Feynman, can
emerge as suggested by Hohler and MuDensiefen. '4

Finally, it should be note'd that the adiabatic
perturbation theory cannot be applied to calculate
corrections to the excited Franck-Condon states.
The selection rule [Eq. (40)] does not apply at all
in that ease, and the perturbation theory then gives
an ascending power series in &' in addition to one
in descending powers of & . Thi.s is the same re-
sult as was obtained earlier where a Hamiltonian
renormalization was not used.

In conclusion, it seems that in strong coupling
the vex'tex terms lead to difficulties, which a,re
not well understood. Although the adiabatic per-
turbation theory of Hohler does appear to indicate
that vertex terms do not contribute to order & in
the energy, it is not clear what happens to ordex

The difficulty 11es ln the fact that Hg„t [Eq.
(37)] has no small parameter in it. The nonper-
turbative character of Eq. (37) is thus similar to
that of the interaction Hamiltonian obtained in the
adiabatic theory of PBT. ' ' However, in that
theory the H„, ean be handled nonperturbative1y. "
The possibility of finding a corresponding Green's-
function analysis is currently being investigated.
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the Fock approximation of the polaron self-energy,
in which the origin is a special coordinate, i.e. ,
translational invariance is violated. This finding
is in contrast to existing beliefs that the strong-
coupling energy is based on the Hartree approxi-
mat1on

The difference between the Hartree and Fock
approximations is that the former leads to a static
limit, and therefore conforms to the notion of Ham-
iltonian dynamics which requires local interactions
in time, whereas the Pock approximation leads to
retarded interactions. This may be why the strong-
interaction limit has been attributed to the Hartree
approximation. Yet, it is important to realize that
the retarded interaction embodied in the Fock ap-
proximation is of a special kind, i. e. , it depends
only on time differences, and that for a large time
difference, stationary states ean be obtained. Thus
it has been shown explicitly here how the Pock
approximation is connected with canonical transfor-
mations used to obtain lowest-order results of
PBT. '~'" In this connection, note that the adiabatic
perturbation theory of Hohler' predicts corrections
to the Pekar theory which are of order oo to all
orders of perturbation theory, indicating that the
vertex corrections to the strong-coupling adiabatic
limit cannot be obtained by perturbation theory.

Concerning the theory of Feynman the situation
seems to be as follows. Feynman has used two
trial actions. The first one, the "fixed-harmonic
binding approximation, " corresponds to the non-
dlRgonRl Pock approximation Rs 18 evident from
a, comparison of the two results. " The discon-
tinuity in the ground-state energy at & =6 then cor-
responds to a, transition from strong (localized
electron) to weak (delocalized electron) coupling.
The second model considered by Feynman is the
"fictitious-particle model, " i. e. , the effect of the
lattice is replaced by a fictitious particle harmon-
ically bound to the electron. The introduction of
this fictitious particle accomplishes two things.
For one, translational invariance is introduced
since the electron fictitious-particle complex im-
plies center of mass and relative coordinates for
the polaron. For another, vertex corrections to
the self-energy are also taken into account. This
is evident if one considers the weak-coupling limit.
In that limit, it is known that, up to fourth-order
perturbation theory, the two Fock terms together
are positive and the vertex term large and negative,
the net result being the usual negative n term (see
Appendix C) which Feynman approximates quite
closely. 4' 6 On the other hand, with regardto the
strong-coupling limit, it is not quite clear whether
the energy term of ——,', which has been called the
localization energy by Allcock, ' ' ' arises from
vertex corrections. It is worth emphasizing that the
"fictitious-particle model" predicts that &,= 0.

Thus, it appears that the vertex terms permit a
localized ground-state solution, even for weak cou-
pling, which, as was seen earlier, is not the case
for the Fock approximation alone. It is as if the
vertex terms act as an effective potential, which
has at least one bound (localized) state for all cou-
pling strengths.

The question of translational invariance also
merits some further comments, particularly in
connection with the Fock approximation and the cal-
culation of the effective mass of the polaron. Thus
it was shown here how to obtain the polaron mass
by requiring that the conventional momentum (which
involves mass transport) be conserved (see Sec.
IV). Translational invariance is used in the sense
that the Pekar-product wave function is made to be
an approximate eigenfunction of the mechanical-
momentum operator, and not the crystal-momentum
operator. The latter, however, is the starting
point in the analysis involving the I Rgrange mul-
tiplier technique, for example. As has been em-
phasized in the literature, '4'3' both these mo-
menta are conserved, and represent distinct con-
servation laws. Their hybrid use to obtain the
polaron mass thus seems to require further eluci-
dation.

The problem becomes even more acute when
crystal-momentum conservation is treated exactly.
The Pock approximation, it is well known, then
becomes diagonal,

Here P is now the total polaron crystal momentum,
rather than the electron momentum. It is known,
however, that this self-energy does not preserve
Eo= —& as an upper bound for weak coupling, Rnd

because Z~ is diagonal, the strong-coupling limit
is lost altogether. However, since crystal-mo-
mentum conservation is required, and since most
previous strong-coupling theories rest on the non-
diagonal Fock approximation, there appears to be
some doubt about the complete correctness of ex-
isting theories. This problem has been pursued in
some detail. It turns out that one can apply crys-
tal-momentum conservation rigorously in the
strong-coupling limit, in the same way as has been
done in the weak-coupling limit, and find a varia, -
tional principle which minimizes the ground-state
energy for a given crystal momentum. It then
appears that previous strong-coupling theories are
indeed incomplete. However, since the main thrust
of this paper was directed towards a Green's-func-
tion analysis of previous theories, these new
results will be reported in a future publication.

A preliminary account of the work presented here
has already appeared elsewhere. "
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APPENDIX A

It is the purpose her e to elucidate the derivation
of Eq. (18) and the connection to the usual Tamm-
Dancoff equations. Consider the total polaron
wave function~a'39

q =(Z, )-'"»m, c,'-~00) .
6 0 +~ (Al)

This wave function is dependent both on electron
and phonon coordinates. The variational principle
then requires that the polaron energy E be a mini-
mum~ l. e.

&

hZ= 5(C
i Hi 0 )/{0

i
0 ) = O

which leads to
6 {4

i
H E

i
4 ) = 0—.

The variation is both for the electron and lattice
part of +. The usual Tamm-Dancoff equations are
obtained by expanding )I in the manner of Eq. (21},
the coefficients being given by Eq. (22). Substitut-
ing Eq. (21) into (A2) and performing a functional
minimization with respect to the d's then gives the
Ta.mm-Dancoff equations, the first two of which
are

(E-P~)d(p, p') =&-„V,d(p-k, p;k),

[E- (p-k)'- ll d(p-k, p';k) = I,'d(p, p')

+2+; V, d(p —q —k;p';q, k) . (A4)

Note that the minimization is with respect to the
lattice coordinates for a fixed-electron-char ge-
density configuration. This is indicated by the elec-

tron coordinates p and p in the d's. In solving
these equations one effectively eliminates the lattice
coordinates in terms of the electron coordinates.
This solution is usually obtained by ltel ation which

is equivalent to doing W-8 perturbation theory
(0()-order selective diagrammatic summation). On

the other hand, one may eliminate the lattice coordi-
nates to a, certain order by making use of the defin-
ition of the d's, Eq. (22). Thus in Eq. (A3),
d(p-k, p';k) can be rewritten in the manner of

Eqs. (23a) and (23b), which. involves the electron
Green's functions with arguments Z= E- 1+i~ and
Z = E+ i6. These Green's functions must have a
spectrum of poles and possibly a branch cut in fre-
quency space, which is expressed by the expansion
Eq. (15). Taking the limi. t of 5 -0 and integrating
out the functions with argument p leads to Eq.
(18). The transformation which produced Eq. (18)
from Eq. (A3} is unitary for strong coupling as was
shown explicitly in Sec. III. Unitarity is not so
easily demonstrated for weak and intermediate
coupling. It will, however, be assumed that the
transformation is unitary for all coupling, since
the resulting Pock equation has a symmetric and

difinite kernel. Furthermore, one can easily verify
from Eqs. (A3) and (A4) that Eq. (18) (the Fock
approximation) is basically a one-phonon Tamm-
Dancoff approximation [renormalized by replacing
G, (E-1) by G(E- I)]. These two factors then al-
low one to minimize Eq. (18) and be sure that one

still has an upper bound to the polaron energy.
Note, however, that the minimization must be done
in terms of a complete electron spectrum.

APPENDIX 8

An estimate of the ground-state energy can be
obtained variationally from Eq. (18). After Fourier
transformation, Eq. (18) becomes

—av'4o(r)- s ~
(2v)

where 2A „=E„and the („(r) are defined over all x. Equation (Bl) can be rewritten

(Bl)

2 ~ ~ FG dr)dr dk ~g, (» y )

7f

and &0 estimated by the use of a complete trial
spectrum whose eigenvalue separation is determined
by the variational parameter. The trial spectrum
is chosen to be the solution of the harmonic-oscil-
lator equation, which is obtained from Eq. (Bl) by
the replacement of the second term on the 1.eft-hand
side by —,'& r )()0(r). The trial functions are then
normalized-harmonic-oscillator functions

1ja
(„(x)=( „,&. , H„(()x)e' * ~'

t

(Cartesian Coordinates), where P is the variational
parameter and &= p'so that A„—A, =n (d=np .
The trial spectrum is substituted into the right-
hand side of Eq. (B2). After writing

(
-()t -x +t/2)c dtfI O+ 2J

0

and X„—~0= n, and transforming variables in Eq.
(B2) to Pr =g and k= PK, one performs the sum over
n using the Slater sum rule, for the harmonic-oscil-
lator spectrum,
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Z P„*(&)P„((')e '" =e" '(2msinhy) ' '

&& exp( —~[($+ $ ) tanh 2y+ ($ —$ )coth2yjj .
(s4}

After all the integrations are performed, the ex-
pression for the energy is

Z, (P) = 2X,

pt
y'/

I I

(a) (~) (c)
FIG. 1. Electron self-energy diagrams which

contribute to order G' and & .

culation will be briefly described. The diagrams
contributing to order & in the energy are shown
in Fig. 1.

To order &, the total self-energy is

where & = p . and 8 is the p function defined by

B(p, , v) = j ' ~ ' '(1 —r)" ' dr .

Z~ = Z, + Z~+ Z, ,

where a, b, and c refer to diagrams (a), (b), and

(c) of Fig. 1. Numerically, these are

) v, , I'
I v,, l2

~.=-o'+.+ a~ a = —&+ho',
(1+k, ) (1+k,)

(large P)

Z, (P) = —o.'+ (-,'P')(6 —o.') —O(P') (small P) .
For n& 6, minimization of Eo(p) with respect to P

gives p= ~ n(2/m} ~ and Eo ———o.' /371 —31n2+ 0(o' ).
For «6, minimization gives P=0 and Eo= —a.

APPENDIX C

Since reference is made in the paper to the re-
sults of fourth-order perturbation theory, that cal-

I v&, I'I v„l'
p, ,p, (1+0',)'[2+ (k, +kp)']

= —~'[in(1+ 1/W2) —1/(2+ 2 &2)]

= —0. 3280~',

I v, , l'i v„la-; (1+a', )(1+a',)[2+ (k, +k )']

= —o'[ln(1+ W2) —ln2]

= —0. 1879&
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Raman Spectra of the Alkali Azides: KN3, RbN3, CsN3
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The first-order Raman spectra of KN3, BbN3, and CsN3, all of which possess a body-cen-
tered tetragonal crystal structure with the symmetry of the space group D4&-I4/mcm, have been
measured at room and liquid-nitrogen temperatures. The five Raman-active phonons predicted
by group theory have been observed and assigned on the basis of the scattering tensors.

INTRODUCTION

Many of the solid inorganic azides decompose to
give the simple products of the anion and nitrogen.
This decomposition may be caused by heat, shock,
light, or ionizing radiation. In the case of the
heavy-metal azides the reaction can be highly exo-
thermic. However, some of the azides, in partic-
ular the alkali azides, are more stable. Therefore
the alkali azides have been the subject of many
studies.

Considerable work has been done on the vibration-
al spectra of the alkali-metal azides. Bryant' 4

has presented extensive infrared data on single crys-
tals of sodium, potassium, and cesium azide and
some mercury-arc Raman data on polycrystalline
alkali azides. Recently, the long-wavelength trans-
latory optical frequencies for KN3, RbN3, and CsNS
have been measured by far-infrared transmission
on polycrystalline samples. ' Also an attempt has
been made recently to calculate on the basis of a
rigid-ion approximation the lattice vibrational fre-
quencies of potassium, rubidium, and. cesium
azide. e Because of our interest in Raman scattering
fromm radiation-induced defects in the alkali azides, ~'

we have undertaken a study of the laser Raman
spectra of these alkali azides. The present study
has allowed a definitive assignment of the first-
order Raman-active phonons.

Potassium, rubidium, and cesium azide possess
a body-centered tetragonal crystal structure with
the symmetry of the space group D4~ I4/mcm. The-
crystal structure is shown in Fig. 1. There are
four formula units per crystallographic unit cell
and two formula units per primitive cell. The crys-
tallographic unit-cell parameters for these alkali
azides are listed in Table I. As the effective ionic

radius of the metal ion is increased the unit-cell
dimensions are correspondingly increased. How-

ever, these changes are such that the contact radius
between the metal ion and the end nitrogen of the
azide ion is the same for all three materials.

Group theory indicates that the 24 deg of freedom
for the 8 atoms in each primitive cell are divided
into vibrations at k= 0 of the symmetries indicated

1 3—1
1 3

)4

1

2

1 3
) 4

K, Rb, or Cs atoms

FIG. 1. Crystallographic unit cell of the alkali azides
possessing the symmetry of the space group D4&-I4/mmmm.

Letters a, d, and h refer to the special positions of D4~I,.
Fourfold z axis is normal to the figure.


