leo

p=3 B=(+1, +1, +1, +1) ,

p=4 B=(+1, -1, =1, +1) . (A14)

The transition moment M for the unit cell can be
obtained from the moments of the four molecules:

M= [WEWdr=Y,B,M, , (A15)
where
Ma = f(p{z* Fa ¢?xd7
is the transition moment for the o molecule.
If the transition moments transform like vectors
and one is known, the other three can be generated
by the symmetry operations that transform one

molecule to another. M4 1s obtained from M1 and
Mg from Ms by inversion; M3 is obtained from Ml
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by a reflection in the ac plane.!® In terms of the
three components of ﬁl, the total transition moment
will have the following components along the a, b,
and ¢’ directions for the four levels:

p=1 M=(0,2M,0) ,

=2 M=(2M,0,2M,) (A16)
p=3 M=(0,0,0),

p=4 M=(0,0,0) .

Thus, it is seen that only the first two transitions
are allowed and that they will absorb light polarized
either parallel or perpendicular to the b axis, re-
spectively. The difference in energy between the
two levels at k=0 is the Davydov splitting.

tSubmitted by S. Arnold in partial fulfillment of the
requirements for the Ph.D. degree at The City University
of New York.
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Lattice Dynamics of Rutile*
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(Received 30 November 1970)

The phonon dispersion relation for rutile (TiO,) has been measured by the coherent inelastic
scattering of thermal neutrons along principal symmetry directions of the Brillouin zone.
Theoretical models based on rigid-ion and shell models, with either axially symmetric or
tensor first- and second-neighbor forces, have been fitted to the measured dispersion relation.
Only the shell model with tensor forces for all interactions except the second-neighbor oxygen-
oxygen interaction was able to give acceptable qualitative agreement with the data, and that
agreement is good for only some modes. A frequency distribution and Debye temperature
spectrum are presented for that model. The temperature dependence of the frequency of the
I'T (A,) transverse optic mode is measured from 4 to 300°K, and the behavior of the square
of the frequency is in good agreement with that predicted by the static dielectric constant
measurements of Parker.

I. INTRODUCTION properties of a compound are reflected in the lat-
tice dynamics of the crystal. For example, infor-

Many of the physical, optical, and chemical mation related to the elastic behavior, specific
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heat, dielectric behavior, optical properties, and
chemical binding can be obtained from a successful
analysis of the measured phonon dispersion rela-
tions. Rutile (TiO,) is of particular interest since
more than 20 compounds® having interesting mag-
netic, dielectric, and chemical bonding properties
crystallize with this structure; no complete mea-
surement of the phonon dispersion relations has
been made? for any of these compounds. In addition,

rutile has been extensively investigated® with studies

of the Raman*® and infrared®” active modes at
zero-wave-vector elastic constant measurements,®°®
and determination of the temperature dependence!®
of the static dielectric constants. Cochran!! dis-
cussed the relation of high static dielectric con-
stants and possible “soft” phonon modes, which
may lead to ferroelectric phase transitions. In
rutile the c-axis static dielectric constant is ex-
ceptionally high and demonstrates an increase at
low temperatures; therefore, although rutile does
not become ferroelectric, the I'; (4,,) mode is ex-
pected to have an unusually low frequency compared

to the behavior of the same mode in other compounds

of this structure. With six atoms per primitive
unit cell, rutile has 18 branches to its dispersion
relations and thus represents one of the most com-
plex structures studied by neutron scattering tech-
niques to date.

The phonon dispersion relations for rutile at
300 °K have been determined experimentally by
the coherent inelastic scattering of thermal neu-
trons. A primary objective of this paper is the
presentation of the measured dispersion relations
and analyses of those relations in terms of inter-
atomic force models. In particular, the rigid-ion
model (which assumes nonpolarizable ions) and the
shell model (which allows ionic polarization) are
presented, and each is tested with both central
forces and tensor forces (as qualified in Sec. II).
A secondary objective is the comparison of the
temperature dependence of the frequency of the
T’} mode with that of the static dielectric constant
along the ¢ axis. :

Other workers have attempted to fit the zero-
wave-vector frequencies which had been measured
by optical experiments. Dayal'® used a simplified
model of central short-range forces. Gubanov
and Shur®® used a rigid-ion model with central
forces; however, their assignments of the Raman
‘active modes disagree with the most recent work
by Porto ef al.* Katiyar and Krishnan also ap-
plied a rigid-ion model with central forces, and
were successful in fitting all of the optically active
=0 frequencies except the I'; mode. (They con-
cluded that a model which allowed ionic polariza-
tion would be required to fit that mode.) However,
a present calculation with their parameters is
found to give imaginary frequencies for some modes
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in [110] direction near the Brillouin zone boundary.
It is found in this work that both the second-neigh-
bor rigid-ion and shell models, when used with
central forces, are unable to predict the qualitative
features of the data. The rigid-ion model with
tensor forces is also in disagreement with the ex-
periment. Only the shell model with tensor forces
is in satisfactory agreement.

II. MODELS
A. Rigid-Ion Model

The rutile structure is primitive tetragonal
(DY}, P4,/mmm) with six atoms per primitive unit
cell, as shown in Fig. 1. The two titanium ions
occupy positions (000) and (33%), and the four oxy-
gen ions occupy positions (uu0), (1-u, 1-u,0), and
(3+u, $Fu, ), with the lattice parameters of
Table I. The equation of motion is therefore an
18X 18 complex matrix equation. We write the
equation of motion for the rigid-ion model, 15,16
in which we assume the ions to be point charges,
as

Mo U=(R+2C2)U, (1)

where M is a diagonal matrix of atomic masses,
w? is a diagonal matrix of squares of the circular
frequencies of vibration, U is a matrix composed
of displacement vectors of the ions, R is a matrix
specifying the short-range interactions, Zis a
diagonal matrix of ionic charges, and Cis the ma-
trix of Coulomb coefficients. !’

The short-range interaction matrix R is of the
form

RZKﬂ'@:E (0K, ZIKI)e-ia-[f'(OK)-F(l'K’)] , (2)
ll

O=+

©=o

o

FIG. 1.

Rutile structure.
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TABLE I. Physical properties of rutile at room temperature.
Property Quantity Unit
Lattice parameters® a=4.59373 A
c=2.95812 I
u=0.3056 dimensionless
Elastic constants® Cy1=2.660=0. 066 10® dyn/cm?

Cppy=1.733 +0. 071
Cy3=1.362 0. 081
Cg3=4.699+0. 081
Cyy=1.239£0.007
Cge=1.886 +0. 050

d

10% dyn/cm?
102 dyn/cm?
102 dyn/cm?
10 dyn/cm?
10 dyn/cm?

Dielectric constants® a axis ¢ axis
€,=86 170 dimensionless
€,=6.843 8. 427 dimensionless
Scattering lengths® bpy =—0.34 102 em
bo= 0.577 102 em
Neutron cross sections® Ti 0o
Ooherent  1.45 4.2 10" cm?
Otncoterent  2.95 0.04 10" em?
Ombsorption 35 0.0001 10" cm?

M. E. Straumanis, T. Ejima, and W. J. James, Acta

Cryst. 14, 493 (1961). See also, W. H. Baur, Acta
Cryst. 9, 515 (1956), and D. T. Cromer and K. Herring-
ton, J. Am. Chem. Soc. 77, 4708 (1955).

PSee Ref. 8.

°See Ref. 10.

where ®,4(0k, I’ k') is the force constant describing
the ath component of force on atom (0x) due to a
displacement of atom (I’«’) in the B direction; J
=27/)\ is the wave vector of the phonon disturbance,
and F(Ix) is the vector position of the kth atom

in unit cell I. The ¢ matrices are of the form

Duex
by
Dex

Dy
d’w
Day

Dee
¢y¢
(bll

B(0k, 1'k")= (3)

However, the symmetry of the crystal may re-
quire some of the ¢, to be interdependent. Also,
by assuming that the interatomic forces are een-
tral forces, one may describe the tensor force
constants ¢,, in terms of two force constants ¢,
and ¢, where ¢,=0%p/87% is the bond-stretching
or radial force constant and ¢, = (1/7)(8¢/87) is

the bond-bending or tangential force constant. In
this work we apply both central and tensor force
models. However, the oxygen-oxygen [3]-[4] in-
teraction (see Fig. 1 for labeling of atom positions)
is constrained to be central throughout this work,
since in tensor form that interaction contributes an
excessive number of parameters to the models.
The force constant matrices are given in Table II.
The particular bond system used was chosen by
considering the ionic separation distances. The in-
teractions were terminated at second neighbors to
limit the number of disposable parameters.

de, =x? using theindices of refraction of D. C. Crone-
meyer, in MIT Laboratory for Insulation Research
Report No. 46, 1951 (unpublished).

°G. E. Bacon, Neutvon Diffraction, 2nd ed. (Oxford
U. P., London, 1962), pp. 31 and 61.

It is well known'® ' that the R and ZCZ matrices
must satisfy the translational invariance condition;
that is, if the crystal is bodily moved (every atom
is given the same displacement), the sum of the
forces must be zero since no internal distortion
has taken place between any atom pair. The re-
sult of applying the translational invariance con-

TABLE II. Force constant matrices used in the analysis
of rutile data.

Atom pair  Position of ¢ Matrix
KK’ K’

P(1) P(2) 0
11 0, 0, ¢ P@2) P(1) 0
0 0 P(3)
P{4) P(5) 0
13 (u, u, 0) P(5) P(4) 0
0 0 P(6)
P(7)  P(B P9
23 (u, u, 1) P@®) P(n P9
P(10) P(10) P(11)
P(14) P(19) 0
35 (1—u, 1—u, 0) P(15) P(14) 0
' 0 0 P(16)

7(34) 7,(34)

34 Su, -u, % =

G Emn D 0T T

x(¢r—¢t) +¢t6xy
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[oo1]
r=(0,0,0)
X =(g,0,0) | -y
M=(% 2 0) [o10]
z=(0,0,F)

FIG. 2. Brillouin zone for the primitive tetragonal lattice.
Labeling is in the notation of Koster (see Ref. 27).

dition to the R matrix is, for example, that the
self-term force constant is defined as

’
®,5(0k, 0K) = — 2 o500k, 1"k, (4)
1k’

where the prime on the summation indicates that
the I’ =0, k’ =« term is omitted.

B. Shell Model

Because the rigid-ion model has no means of
accounting for the polarizability of the ions, sev-
eral workers®0-? guggested that the ion be consid-
ered as an inner core (positively charged) and an
outer valence electron shell, which may be dis-
placed relative to the core. This shell model has
been discussed at length for cubic structures with
most workers following the approach of Woods et
al.,® Cowley et al., ® and Cochran ef al. %

To extend the model to the tetragonal structure,
we followed the original approach of Woods et al.
in writing a 6nX 6n (r is the number of atoms in
the primitive cell) equation of motion in the dis-
placements of the cores and, independently, the
shells. Imposing the translational invariance con-
dition on that 6nX 6r equation, we find a general
result slightly different in form from that of
Woods et al. or Cochran et al. The matrix equa-
tion may be written in the form

Mw®U=®R+ZCZ) U+(T+ZCY)W, (5)
0=(T"+YCZ)U+({+YCY)W,

where the T matrix describes the interaction of
an ion with the shell of its neighbor, Y is a diag-
onal matrix of shell charges, and Wis a matrix
of column vectors which are defined such that
YWgives the dipole moments of the ions. The
shell mass is taken as zero. The { matrix is
given by

SR (T) = S(Q) + B {Pubas+ TE({ = 0)
-S5s(=0)+[YC({=0) 21851, (6)
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where the S matrix describes the shell-shell in-
teractions, k, is the force constant between the
core and shell of ion &, and the [YC ({=0) Z]3; is
the Coulomb self-term from the YCZ matrix. It
is this expression which differs from the similar
definition by Cochran et al. (their results are not
affected); they require =« in the T and S terms
in the braces, saying that the core-shell inter-
action F=T - § is diagonal. The F interaction may
not be diagonal for noncubic structures, and £ has
been generalized. Cochran’s equation does not
include the YCZ term, which is zero for the cubic
symmetry discussed in their paper, but which is
not zero for rutile.

In this work we have used the simple shell model,
which assumes that the short-range forces are of
shell-shell type only, by setting T=8S=R . We,
along with others, #'# have attempted to include
some core-shell interaction by setting S =yR, only
to find that allowing v to be significantly different
from unity made no noticeable change in the agree-
ment between the calculated and measured disper-
sion curves. Thus, v is set equal to unity through-
out the remainder of this paper.

C. Factorization of Dynamical Matrix

The dynamical matrices for rutile are 18x 18
complex matrices. However, along the principal
symmetry directions of the Brillouin zone, the
18X 18 matrix may be factorized into block
matrices. %% The Brillouin zone for rutile is
shown in Fig. 2, and the symmetry decompositions
for the principal symmetry directions are given
in Table III, where the superscripts preceding the
Koster symbol give the degeneracy of the irre-
ducible representation. As an example of the no-
tation to be used in the remainder of this work,
the symbol 122(3) represents a phonon of the third
lowest branch of the T, representation, which is
singly degenerate.

Following Dayal, 12 we give the symmetry of the
optic modes at zero wave vector in Fig. 3. The
3, 'z, and I'; modes have oxygen-only

o+ +
1 23

TABLE III. Irreducible representations for selected
points in Brillouin zone for rutile structure.

Point in q Irreducible representations
Brillouin zone

r (0,0, 0) DEERS SR ¥ S S DS i
+2107 + 2105 +21;

A €,0,0) 61a,+31a,+61a,+314,

p) (&,¢,0) 6!z +518,+615,+13,

A (0,0,%) 3IA +1A, +1A5 4317, +5 %A,

X (r/a,0,0) 6 %x;+3%,

M (t/a,m/a,0) My ,+*My ,+2° M;
+4. 203 +2M;

z 0,0,7/c)  322,+2%°2,+%Z,+3%Z,
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o
)
(21 (0] (2)e r}) @€ ()
FIG. 3. Symmetry of the optic modes of the rutile structure for zero wave vector. Labeling is in the notation of Mulliken
and, in parentheses, of Koster. Doubly degenerate modes are indicated by a “(2)”” preceding the Mulliken symbol.
displacements. Furthermore, for the first four modes. These degeneracies are not split for wave

of these modes, oxygens [3] and [5] are moving in
directions normal to the displacements of oxygens
[4] and [6], and it is not possible to label these
modes as transverse or longitudinal for wave vec-
tors in the xy0 plane. There is motion of the ti-
tanium atoms for the I'{ and I'; modes in which
the displacements are along the z axis and for the
I't modes with displacements in the xy0 plane.
Consider the I';-type modes. The symmetry of
the space group D,};‘, requires that the I's modes be
doubly degenerate. For each of the I'; modes in
Fig. 3, there is a similar mode which has dis-
placement vectors rotated by 37 from them. For
phonon wave vectors along [110], a pair of these
modes would comprise LO and TO modes. From
the space-group symmetry alone, the modes would
be degenerate since the atomic environment is the
same for both. However, the long-range Coulomb
field of the crystal may split the degeneracy of
polar modes in which an electric dipole moment is
created in the unit cell. For rutile, which is tet-
ragonal, the splitting is dependent on the direction
of approach” to §=0. That is, for wave vectors
in the xy0 plane [q=(q,, g,, 0)], the doubly degen-
erate I'; modes are split into distinct TO and LO

vectors approaching § =0 along the ¢ axis, since

both the I'; with [110] displacements and the I'; with
[110] displacements are transverse to the direction
of propagation of the phonons. Thus, both vibra-
tions experience the same transverse Coulomb

field, and they are not split in energy. (The TO
frequency one measures with wave vectors approach-
ing § =0 along the ¢ axis is identical to the TO fre-
quency measured with wave vectors approaching

d=0 in the xy0 plane.)

The I'; degeneracy at § =0 is not dependent upon
the direction of approach to §=0. The two I'; modes
are not polar modes; one has oxygens [4] and [6]
moving as shown in Fig. 3, with [3] and [5] fixed,
while the other mode has [3] and [5] vibrating out
of phase along the z axis with [4] and [6] fixed. Both
modes experience the same short-range force
field, and the degeneracy is not split.

The I'] mode is the only polar mode with ¢ axis
displacements. It is measured as a TO mode for
4~ 0 in the xy0 plane and as an LO mode for q—~0
along the z axis. The polar state created in the
crystal by this mode has all titanium ions (positive)
displaced oppositely to the oxygen (negative) ions,
similar to a possible ferroelectric state of the crys-
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tal which is discussed in Sec. IID.
D. Relation of Polar Modes and Dielectric Constants

Cochran® generalized the Lyddane-Sach-Teller
relation for cubic crystals with more than two atoms
per unit cell:

.EQ_ - Vz((i - 0) i (7)
€ i viG~0)];’
where €, {€,} is the static {high-frequency} dielec-
tric constant and [v%({~ 0)];{[v2({~0)];} is the
square of the ith longitudinal {tranverse} optic-
phonon-mode frequency at zero wave vector. Bar-
ker®® showed that for a uniaxial crystal, the expres-
sion may be separated; if ¢ is the unique axis and
a is normal to ¢, then

€9 _ v ([G-0)];
Sea -y QB

Cyo i Vc,t(.(.l"o) i ’
and there is a similar expression for the a axis.
For rutile, there is only one pair of LO-TO polar

modes with displacements along the ¢ axis, namely,
the I'; modes, and Eq. (8) becomes

(8

€ =7ea@- Oy ©)
€6, [Vs,t@"o)]r;

Cochran'! related dielectric constants to soft
phonon modes for ferroelectric materials with the
relations

€(T)~1/(T-T¢),
V%(T)~ (T - TC) )

(10)
11)

where T, is the Curie temperature of the ferro-
electric transition. The temperature dependence
of the frequency of the I'; mode is investigated in
this paper.

III. EXPERIMENT

The experimental methods of using coherent in-

TABLE IV. Rutile specimens used in experiment.

Full-width at Volume Orientation Source
half-maximum of (cm®) of
rocking curve Boule axis
(deg)
0.24 4.0 [o01] On loan from
G. W. Clark, ORNL
(Linde grown)
0.28 11.0 [o01] On loan from
R. A. Weeks, ORNL
(Linde grown)
0.42 19.2 [110] Purchased from

National Lead Co.,
Titanium Division
(M. D. Beals,
grower).
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FIG. 4. Neutron intensity scans for various phonons
showing the fitted Gaussian functions.

elastic scattering of thermal neutrons to measure
phonon dispersion curves are now well known.
Neutrons of energy E,=%%k%/2m, and momentum
h‘ﬁo are incident on the sample, and are scal:tered
with energy E' =%%'2/2m,, and momentum %K if
the conservation conditions

-

ko-k'=Q=217 -7 , (12)
Ey-E'=xhv , (13)

are satisfied. The +(~) signs refer to phonon
creation (annihilation), § is the wave vector, and
hv is the energy of the phonon; 7 is a reciprocal
lattice vector.

The present measurements were made at the Oak
Ridge National Laboratory (ORNL) High Flux Iso-
tope Reactor with the computer-controlled HB-3
triple-axis spectrometer facility.?* The large ma-
jority of the measurements were made with the
“constant Q” method, * although “constant E” scans
and scans in which both E and Q were varied were
employed when necessary. Most of the data were
collected using the (101) plane of beryllium as the
monochromator and the (111) plane of germanium
as the analyzer, with 2/3 degree slits before and
after the sample. The low-temperature experi-
ments were performed with the sample sealed in a
helium gas atmosphere inside an aluminum can
which was mounted inside a liquid-helium cryostat.
A resistance heater was positioned between the
sample and the liquid-helium bath, and copper-
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FIG. 5. Phonon dispersion relation of rutile as determined by coherent inelastic neutron scattering (low-frequency data).

Lines through the data points are guide lines only.

constantan thermocouples were installed at opposite
ends of the sample. Three samples were used in
the investigation (see Table IV). The results from
the three crystals were consistent,

Each of the approximately 950 neutron peaks ob-
served in the experiment was fitted to Gaussian
functions by a nonlinear least-squares-fitting rou-
tine which allowed two Gaussians, one Lorentzian,
and a cubic polynomial background function to be
fitted. In most cases a single Gaussian and a
linear sloping background provided adequate fits,
as shown in Fig. 4.

IV. RESULTS AND CALCULATIONS

A. Data

The measured phonon dispersion relations for

phonons propagating along the [100], [110], and
[001] directions are shown in Fig. 5 (low-frequency
data) and Fig. 6 (high-frequency data). The.
branches are labeled in the notation of Koster,
following the paper by Gay et al.?" The experi-
mental errors are believed to be of the order of
1%; if a particular data point has an error larger
than the plotted point, an error bar is indicated.
The straight solid lines near v—0, q -0 represent
the acoustic-phonon branch slopes as calculated
from the measured elastic constants.® The solid
(open) points represent measurements made under
predominately longitudinal (transverse) scattering
conditions. The circular (square) points indicate
that the scattering vector Q lay predominately
normal to (parallel to) the z axis. The triangular
points represent modes with displacements normal
to z, but which may not be classified as longitudi-
nal or transverse.
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FIG. 6. Phonon dispersion relation of rutile as determined by coherent inelastic neutron scattering (high-frequency data).
Lines through the data points are guide lines only.

Values of the phonon frequencies at the I, X,

M, and Z points are given in Table V. (Complete
tabulations of the measured data are available by
request from the authors.) The errors given in
Table V represent the larger of (i) the statistical
error as determined by the peak-fitting program
or (ii) 1% of the measured frequency. Where more
than one determination of a phonon frequency has
been made, the statistical average of the deter-
minations is given.

It is seen from Fig. 5 that the measured acoustic
branches have slopes in good agreement with the
slopes predicted by the elastic constant measure-
ments, except for the LA branches in the [100] and
[001] directions. The differences in the two LA
branches are larger than the errors in the mea-
surements and are thought to be real.

B. Calculations from Models

Various forms of the rigid-ion and shell models
were fitted to the measured dispersion relations
by nonlinear least-squares methods with the force
constants as variables (see Table VI). In order
to be acceptable, each model was required to satis-

fy two criteria: (i) All calculated frequencies had
to be real. (ii) All zone boundary degeneracies
had to agree with those observed experimentally.
It was found that all eight models could be forced
to satisfy criterion (i). However, imposing cri-
terion (ii) on the resulting models eliminated all
except models VII and VIII, the shell models with
tensor forces.

The failure of the models to satisfy the zone
boundary degeneracies observed experimentally
stems from the symmetry requirement that no two
branches belonging to the same irreducible repre-
sentation can become degenerate; that is, the
branches cannot cross one another in (§, v) space.
Suppose itis found experimentally that Z,(2) - Z4(2) at
the zone boundary, and ,(3)— Z4(3). (These modes
are uniquely defined by their eigenvectors.) If a
model calculates the mode identified experimentally
as %,(2) to be higher in frequency than the =4(3)
mode, then the model must necessarily predict
that 2,(2) -~ =4(3) and =,(3) ~ £3(2) at the zone bound-
ary. This result disagrees with the experiment,
and the model is rejected. None of the models
using axially symmetric forces was able to satisfy
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FIG. 7. Comparison of the dispersion relation calculated by RIM III with that measured in the neutron experiment (low
frequencies). Solid lines are the measured curves and are labeled according to the irreducible representation of the

branch.,

criteria (i) and (ii) simultaneously.

Although only the shell models with tensor forces
proved acceptable, both the rigid-ion model III
and the shell model VII are presented in Figs, 7-9.
(The rigid-ion model with axially symmetric forces
is employed extensively in the literature. The
rigid-ion model with tensor forces is presented
here for the purposes of comparison.) Neither of
the models presented includes Ti-Ti forces, since
it was found that the Ti-Ti interaction had little
effect on the calculations. In the figures the solid
lines represent the measured curves, and the ir-
reducible representation of each is given. The
calculated curves are presented as dashed or
dotted lines, where the symbols used indicate the
irreducible representation of the branch.

The qualitative features of the data and the re-

sults of the calculations are discussed simultaneous-
ly, with the rigid-ion and shell models being re-
ferred to as RIM and SM, respectively. (It may
prove helpful to refer to the diagram of the eigen-
vectors of each mode at §=0, Fig. 3.) Notable
features are the following:

(a) The RIM predicts the T4(3) and T4(4) branches
become degenerate at the zone boundary. This
calculation disagrees with the experimental de-
generacy of Z4(3)~ =,(3). Another pair of incor-
rect degeneracies given by the RIM is 24(5)~ Z,(3).
The SM predicts all degeneracies in accord with
the measurements.

(b) The =,(1) LA branch interacts with the =,(2)
branch which originates as Ty, v=11.23%10' cps.
The sharply peaked appearance of the LA branch
is given by both models. However, both models
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FIG. 8. Comparison of the dispersion relation calculated by SM VII and that measured in the neutron experiment (low
frequencies). Solid lines are the measured curves and are labeled according to the irreducible representation of the

branch.

predict a sharp dip in the =,(2) branch; no such
dip of =,(2) was seen experimentally.

(c) The A5 TA mode has a definite dip at g
=~ (0, 0, 0.33). The SM calculation indicates similar
structure at a wave vector slightly displaced from
that of the measurement; the RIM calculation shows
no indication of a dip.

(d) The A; TA branch also exhibits structure at
d=(0. 20, 0, 0); neither model demonstrates this
feature.

(e) Both models are in serious disagreement
with the A4(2) mode near the zone boundary.

The general features of the models may be seen
by comparing calculations and measurements in
terms of four categories of modes: acoustic modes,
optic modes which create an electric dipole moment
in the lattice at §=0 (polar modes), optic modes
which cause each O-Ti-O unit to have a dipole mo-
ment at =0, but, because of out-of-phase motion

of adjacent O-Ti-O units, create no net dipole mo-
ment in any unit cell, and optic modes which create
no dipole moments between ions.

(a) The acoustic modes are, in every case, fitted

TABLE VI. Models used to fit rutile phonon data.
Number Ton Force type Included
structure Ti-Ti forces
1 RIM Axially summetric No
I RIM Axially symmetric Yes
11 RIM Tensor?® No
v RIM Tensor? Yes
A% SM Axially symmetric No
VI SM Axially symmetric Yes
vIiI SM Tensor® No
VIII SM Tensor?® Yes

20xygen-Oxygen interaction out of the xy plane is con-
strained to be axially symmetric.
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FIG. 9. Comparison of the dispersion relation calculated by both RIM III and SM VII with the measured curves at high

frequencies.

better by the SM than the RIM. However, the zone
boundary frequencies of all of the calculated acoustic
modes of both models are lower than the measured
frequencies.

(b) As is expected from the construction of the
two models, the SM gives closer agreement with
the measured frequencies of the polar modes. An
extreme example is the =,(3) mode (I';, v=12.85
X102 cps) which is fitted reasonably well by the
SM but very poorly by the RIM. (The frequency
for 4=0, as calculated by the RIM is approximately
13% too high.) Surprisingly, the RIM does fit some
of the polar modes well. For example, the Z,(3)
mode (I';, v=5.18x10% cps), the TO mode as-
sociated with the c-axis static dielectric constant,
is fitted equally well by both models.

(c) The =4(1) mode (I';, v=3.39x10" cps) is an
example of a mode in which the O-Ti-O unit has an
electric dipole moment at §=0, but the entire lat-
tice does not. The SM again gives significantly
better agreement with the experimental frequencies
than does the RIM.

(d) The optic modes, in which no dipole moments

Solid lines are the measured curves.

between ions are created, still may produce ionic
polarization owing to the physical distortion of the
electron shells when the ion is displaced in the lat-

g(2) (arbitrary units)

0 I L ) L I L L Il | 1 1 |
0 4 8 12 16 20 24
FREQUENCY (10'2 cps)

Frequency distribution for SM VII calculated
by the method of Ref, 33.

10.



[eo

800

o oo

750

. —
700 * /

yd

.
_ 650
g \_ 4
~ L]
o /
® 600 ® EXPERIMENTAL RESULTS ——
0°-+ 20°K SANDIN AND
KEESOM
550 " 20°-+300°K H.N. PANDEY | __|
. o —— CALCULATED WITH SHELL
| MODEL
500 —f
'

/

[¢] 40 80 120 160 200 240 280
7 (°K)

450

<*'

FIG. 11, Comparison of the Debye temperature for
rutile as calculated from the frequency distribution for
SM VII with the specific-heat measurements given in
Refs., 35-38.

tice. Thus, one may expect the SM to give some
small improvement over the RIM. The present
result is that the RIM actually gives slightly better
agreement with the experiment than the SM does.

The one-phonon density of states for the shell
model VII has been calculated by the method of
Gilat and Raubenheimer® as adapted by Mostoller®*
and is presented in Fig. 10. The distribution func-
tion has been used to calculate the specific heat and
associated Debye temperature in the harmonic ap-
proximation as a function of temperature. The
resulting @p is shown in Fig. 11 along with the
experimental values of Sandin and Keesom?® (0. 3 °K
- 20 °K), and Dugdale et al.®® and Shomate®” (20 °K
- 300 °K) as converted by Pandey.3® That the room
temperature model cannot predict the low-temper-
ature ®p is not surprising because of the changes
in the low-frequency optic modes with temperature
(to be discussed in Sec. IVD).

C. Discussion of Best-Fit Parameters

During each iteration of the fitting procedure a
standard error x was calculated. Two separate
tests were used to determine the end of a fitting
cycle. The first test was comparison of x for
successive iterations; if x(I+1) - x(I) were less
than some predetermined convergence criterion,
the model was considered to have converged. The
second test involved the previously discussed un-
physical degeneracies; if the model began to cal-
culate unphysical degeneracies with succeeding
iterations, the lowest-y iteration having correct
degeneracies was chosen as the best-fit limit of
the model.

LATTICE DYNAMICS OF RUTILE
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In the analysis of the present experiment, the
fitting of RIM III was terminated by criterion (i)
when the change in X between successive iterations
was less than 1%. The fitting of the SM VI was
terminated by criterion (ii). For both models,
large changes were being calculated for some
parameters [namely, P(9), P(10), and P(13)] even
in the final fitting step. Because of the possibility
of correlations between these and the remaining
parameters, it is felt that no parameter is known
to an uncertainty less than 5%. The best-fit pa-
rameters and values for RIM III and SM VII are
given in Table VIIL.

The similarities of the signs and the relative
magnitudes of the parameters of the two models are
obvious. These best-fit parameters offer additional
indications of the necessity of using tensor forces
to describe rutile; that is, if one assumes that
the interatomic forces are central forces, certain
interrelations among the tensor parameters are
required, namely,

P(5)=P(4) - P(6), P(9)=P(10),

(14)
P(15)=P(14) - P(16).

None of these relations is satisfied by the best-fit
parameters of either of the models presented in
Table VII. Note that the models predict the ratio
of the effective charge to the ionic charge to be
0.55 (RIM) and 0. 63 (SM). Fitting only § =0 data
with RIM’s, Katiyar and Krishnan found 0. 62.
The best-fit values of the electronic polarizabilities
in the SM are o(Ti)=0.36 A® and a(0)=0. 48 A3,
which may be compared with the polarizabilities
of Tessman, Kahn, and Shockley®®: a(Ti**)=0.2 A3
and @(02)=0.9 A% [In Ref. 39 various values of

27

i
: T 7 -
3 © PRESENT NEUTRON MEASUREMENTS
2 sk FROM DIELECTRIC MEASUREMENTS ____
oS OF R A PARKER
&g 4
Ja 23 I B 2 ]
g, .
@
ae” °
N
2'g o =
5= »
£
L]
& 19 o ]
& . /
> o
2
] 17
= 0 50 100 150 200 250 300
TEMPERATURE (°K)
FIG. 12,

Plot of the square of the frequency of the I'j
(Ag,) mode as measured and as calculated from the static
dielectric constant (c-axis) measurements of Parker
(Ref. 10), as a function of temperature. The Lyddane-
Sachs-Teller relation was used to calculate the TO fre-
quency squared from €, , by assuming that the product of
the square of the LO frequency with the high-frequency
dielectric constant was independent of temperature.
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@(02) from 0.5 to 3.2 & are reported, as deter-
mined from different compounds. The value quoted
here was calculated for oxygen atoms in SnO,,
which has the rutile structure.] The mechanical
polarizabilities as determined by the shell model
have the ratio d(0)/d(Ti)=4. 2.

D. Temperature Dependence of I'J(A,,) Mode

The frequency of the I'j(4,,) mode has been mea-
sured as a function of temperature from 4. 2 to
300 °K. The two most striking features of the
data are that the frequency observed at 300 °K de-
creases by 18% at 4.2 °K, and that at 300 °K the
peaks in the phonon scans are symmetric and broad,

2000 3 |
Q=(0.89,0.89, 3)
/ TA MODE
1500 V] e T=300°K
. o T=4°K

1000 /li \!
] ,{ ' \!

counts/25 monitor counts

500 [ - \i
0
1.0 1.5 2.0 2.5 3.0
v (10'2 cps)
600 T T
Q=(0,0,2)
», 4= 0 MODE
e T=300°K
o T=50°K

- ﬁv
§\difi‘\§\
o ALY

24 Ny

counts /50 monitor counts

100 /
]
0
3 4 5 6 7
‘ v (102 cps)
FIG. 13. Neutron groups of the I';(4,,) mode and TA

Z3(1) mode, measured at two temperatures.
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while at low temperature the peaks are asymmetric
and sharp.

The squares of measured frequencies are plot-
ted versus temperature in Fig. 12, along with the
squares of frequencies calculated from the static
dielectric constant (c-axis) measurements of Par-
ker by using Eq. (9) in the form

vie, . _ const

GolT) oo " (15)

viT)=

The constant was calculated from the €, , (300 °K)
of Parker and our v? (300 °K). Determining a
linear slope to the neutron data between 300 and
100 °K, we find a Curie temperature of — 540 °K
[Eq. (11)] reflecting the fact that rutile does not
become ferroelectric; however, a simple Curie
law will not describe rutile since the data of Fig.
12 do not show a linear dependence on temperature.
Neutron groups of the I'j(A5,) mode and the TA
%,(1) mode are shown in Fig. 13. The intensity
of the TA mode decreases by a factor of about 5,
as is expected from the change of the phonon pop-
ulation factor in the coherent inelastic scattering
cross section®’; however, the intensity of the I'j
mode increases with decreasing temperature. The
asymmetry and abnormal increase of intensity of
the T'] are both suggestive of the ionic displace-
ments being increasing, causing increased anhar-
monicity in this mode at low temperatures.

V. SUMMARY

The phonon dispersion relation for rutile has
been measured by the coherent inelastic scattering
of thermal neutrons. Theoretical models based
on the RIM and SM, with either axially symmetric
or tensor first- and second-neighbor forces, have
been constructed and fitted to the measured dis-
persion relations. Only the SM with tensor forces
(as qualified in the text) was able to give qualitative
agreement with the data, and that agreement is
good for only some modes. Frequency distributions
are calculated and presented, along with calculated
Debye temperatures. The temperature dependence
of the frequency of the I7(4;,) mode is measured,
and the behavior of the square of the frequency is
in good agreement with that predicted by the static
dielectric constant measurements of Parker.
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TABLE VII. Best-fit parameters of least-squares analysis of experimental dispersion curves.
Parameter Quantity Units RIM IIT* SM VI*
represented

PQ1) By (11) 105 dyn/cm 0 0

P(@2) Py (11) 10° dyn/cm 0 0

P@3) bz (11) 10% dyn/cm 0 0

P(4) By (13) 10° dyn/cm —-0.7921 —-0.0727
P(5) Gy (13) 10° dyn/cm -0.8924 —1.1165
P(6) $ge (13) 10° dyn/cm 0.4051 0.5295
P(7) By (23) 10° dyn/cm —-0.0809 -0.1363
P(8) Gy (23) 10° dyn/em -0.0594 ~0.6967
P(9) byg (23) 10° dyn/cm 0.6797 1.0053
P@10) b (23) 10% dyn/cm 0.9127 1.1746
P@11) baz (23) 10% dyn/cm —-0.8288 -1.2100
P(12) o, (34) 10° dyn/cm —0.1751 —-0.2673
pP(13) by (34) 10° dyn/cm 0.0001 0.0289
P(14) by (35) 10° dyn/cm -0,7036 -0.7152
P(15) by (35) 10° dyn/cm —0.6432 —-0.6500
pP(16) bgg (35) 10% dyn/cm —-0.5737 —0.4293
P(17) Z (Ti) dimensionless 2.1967 2.5215
P(18)® zZ ©) dimensionless - 1.0984 —1.2608
P(19) o (Ti) 3 0 0.3578
P(20) a (0) 0 0.4832
P(21) d (Ti)/e dimensionless 0 0.0594
P(22) d (0)/e dimensionless 0 0.2487

X dimensionless 9.9 7.8

2parameters are given to four decimal places to allow
accurate verification of the calculations. Number of
digits is not intended to indicate significance (see text).

for growing large, specially oriented samples.
The authors are particularly grateful to R. S.
Katiyar and G. S. Pawley of the University of
Edinburgh, Scotland, for sending us their prelim-
inary measurements on phonons in rutile. One

bP(18) is constrained to be equal to — $P(17).

of us (J. G. T.) wishes to express his appreciation
to the Oak Ridge Associated Universities for a fel-
lowship during this work, and to the Solid State
Division, ORNL, for making his stay pleasant and
rewarding.

*¥Research sponsorec by the U. S. Atomic Energy-
Commission, under contract with the Union Carbide
Corporation. Paper based on J. G. Traylor’s doctoral
dissertation, Dept. of Physics, University of Tennessee,
1971 (unpublished).

toak Ridge Graduate Fellow from the University of
Tennessee under appointment from Oak Ridge Associated
Universities. Present address: Dept. of Physics, Iowa
State University, Ames, Iowa 50010.

R, W. G. Wyckoff, Crystal Structures, 2nd ed.
(Interscience, New York, 1963), Vol. II, p. 251.

*Preliminary measurements on MgF, have been made
and reported by R. Kahn, J. P. Trotin, D. Cribier, and
C. Bensit, in Proceedings of the Fouvth IAEA Symposium
on Neutron Inelastic Scattering (IAEA, Vienna, 1968),
Vol. I, p. 289. Also, preliminary measurements of
phonons in TiO, have been made by R. S. Katiyar and
G. S. Pawley, University of Edinburgh, Edinburgh, Scot-
land (private communication). Measurements on CoF,
are reported by P. Martel, R. A, Cowley, and R. W, H.
Stevenson, Can. J. Phys. 46, 1355 (1968).

SF. A. Grant, Rev. Mod. Phys. 31, 646 (1959).

4s. P. S. Porto, P. A. Fleury, and T. C. Damen,
Phys. Rev. 154, 522 (1967).

P. 8. Narayanan, Proc. Indian Acad. Sci. 324, 279
(1950).

fw. G. Spitzer, R. C. Miller, D. A. Kleinman, and
L. E. Howarth, Phys. Rev. 126, 1710 (1962).

'D. M. Eagles, J. Phys. Chem. Solids 25, 1243
(1964).

8J. B. Wachtman, Jr., W. E. Tefft, and D. G. Lam,
Jr., J. Res. Natl. Bur. Std. 66A, 465 (1962).

%G. L. Vick and L. E. Hollander, J. Acoust. Soc. Am.
32, 947 (1960).

1R, A. Parker, Phys. Rev. 124, 1719 (1961).

"W, Cochran, Advan. Phys. 9, 387 (1960).

2B, Dayal, Proc. Indian Acad. Sci. 32A, 304 (1950).

13A. 1. Gubanov and M. S. Shur, Fiz. Tverd. Tela 7,
2626 (1965) [Sov. Phys. Solid State 7, 2124 (1966)].

4R, §. Katiyar and R. S. Krishnan, Phys. Letters
25A, 525 (1967).

M. Born and K. Huang, Dynamical Theory of Crystal
Lattices (Oxford U. P., New York, 1954).

g, W. Kellermann, Phil. Trans. Roy. Soc. London
A238, 513 (1540).

TR, A. Cowley, Acta Cryst. 15, 687 (1962).

138G, Leibfried and W. Ludwig, Solid State Phys. 12,
275 (1961). '



3472 TRAYLOR,

BG. Dolling, in Molecular Dynamics and Stvucture of
Solids, edited by R. S. Carter and J. J. Rush, Special
Publication 301 (Natl. Bur. Std., Washington, D. C.,
1969), p. 289.

B, G. Dick and A. W. Overhauser, Phys. Rev. 112,
90 (1958).

1B, Szigeti, Trans. Faraday Soc. 45, 155 (1949),

225, D. B. Woods, W. Cochran, and B. N. Brockhouse,
Phys. Rev. 119, 980 (1960).

BR. A. Cowley, W. Cochran, B. N. Brockhouse, and
A. D. B. Woods, Phys. Rev. 131, 1030 (1963).

Uy, Cochran, R. A. Cowley, G. Dolling, and M. M.
Elcombe, Proc. Roy. Soc. (London) A293, 433 (1966).

%P, R. Vijayaraghavan, R. M. Nicklow, H. G. Smith,
and M. K. Wilkinson, Phys. Rev. B 1, 4819 (1970).

%S. H. Chen, Phys. Rev. 163, 532 (1967).

3. G. Gay, W. A. Albers, Jr., and F. J, Arlinghaus,
J. Phys. Chem. Solids 29, 1449 (1968).

®R. 8. Katiyar, J. Phys. C 3, 1087 (1970).

®W. Cochran, 7. Krist. 112, 465 (1959).

%A, 8. Barker, Jr., Phys. Rev. 136, A1290 (1964).

SMITH, NICKLOW, AND WILKINSON 3

M. K. Wilkinson, H. G. Smith, W. C. Koehler,
R. M. Nicklow, and R. M. Moon, in Proceedings of the
Fourth IAEA Symposium on Neutvon Inelastic Scatteving
(IAEA, Vienna, 1968), Vol. II, p. 253.

2P, K. Iyengar, in Thermal Neutvon Scattering, edited
by P. A. Egelstaff (Academic, London, 1965), p. 98.

3G, Gilat and L. J. Raubenheimer, Phys. Rev. 144,
390 (1966).

“M. E. Mostoller (private communication).

%7, R. Sandin and P. H. Keesom, Phys. Rev. 177,
1370 (1969).

%3. 8. Dugdale, J. A. Morrison, and D. Patterson,
Proc. Roy. Soc. (London) 2244, 228 (1954).

3'C. H. Shomate, J. Am. Chem. Soc. 69, 218 (1947).

%H, N. Pandey, Phys. Status Solidi 11, 743 (1965).

¥J. R. Tessman, A. H. Kahn, and W. Shockley, Phys.
Rev. 93, 890 (1953).

9w, M. Lomer and G. G. Low, in Thermal Neutron
Scatteving, edited by P. A. Egelstaff (Academic, London,
1965), p. 1.

PHYSICAL REVIEW B

VOLUME 3,

NUMBER 10 15 MAY 1971

Phase Transition in a Wigner Lattice™

Leslie L. Foldy
Depavtment of Physics, Case Western Resevve Univevsity, Cleveland, Ohio 44106
(Received 21 December 1970)

Detailed calculations of the frequency spectrum of lattice vibrations for the body-centered-
cubic and face-centered-cubic Wigner lattices in the harmonic approximation show that a phase
transition from the body-centered-cubic to either the face-centered-cubic lattice or to some
other lattice almost certainly occurs with increasing temperature at sufficiently low densities,
but a transition from the body-centered-cubic to the face-centered-cubic lattice does not occur
at zero temperature with increasing density in the region where the harmonic approximation is
valid. The parameterless frequency spectra for the two lattices, which have been calculated
to relatively high accuracy, and their moments are tabulated.

I. INTRODUCTION

The problem of a many-body system consisting
of identical point-charged particles moving in a
compensating rigid uniform background of opposite
charge was first studied as a model for the electron
gas in a solid. At zero temperature (or sufficiently
low temperatures) and very high densities, the
system behaves as a degenerate Fermi gas, and
hence is a fluid. In the high-density expansion of
the zero-temperature energy of such a system, the
leading terms are the Fermi energy and the ex-
change energy associated with the Coulomb inter-
action. The next two terms in the expansion were
first obtained by Gell-Mann and Brueckner! and
are the leading terms in what is called the correla-
tion energy of the system. An early attempt to
estimate the correlation energy of the electron gas,
particularly at intermediate densities, led Wigner?®
to examine the low-density limit of the same sys-

tem and to discover that in this limit such a system
(whether composed of fermions or bosons) crystal-
lizes in the classical configuration of minimum po-
tential energy which, by all indications, appears
to be a body-centered-cubic (bcc) lattice. Thus,
as a function of density, even at zero temperature,
a fermion system of this type must undergo a phase
transition from a crystalline to a fluid phase. A
similar situation seems to prevail for boson sys-
tems at zero temperature since the high-density
behavior is predicted to be that of a superfluid.®
Furthermore, the elementary excitations of the
high-density boson system appear to be plasma
oscillations (plasmons) with a finite energy gap
separating them from the ground state, while the
low-energy excitations of the low-density Wigner
lattice are phonons with no energy gap. Thus there
must be a transition density at which the finite gap
disappears.

Since Wigner’s original exploration of the so-



