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Specific-heat measurements of Ne and Ne are reported in the temperature range
2. 5-23. 5 K. Tile IQGRsureIQents were IQRde simultaneously on the two isotopes in R caloriM-
eter employing a mechanical heat switch. The results are presented in the form of tables of
smoothed values of the following thermodynamic properties: specific heat at constant pres-
sure, specific heat at constant volume, entropy, enthalpy, and the Gruneisen parameter.
The results are compared with the Nernst- Lindemann equation, the Gruneisen equation of
state, and the theoretical calculations of Barron, Gupta eg ul. , Gillis ef al. , and Goldman
et a/. Excellent agreement is found at low temperatures between the present results and
cRlculatlons based on Rnharmonic IQode18. However, dlscrepancles Rrlse Rt higher teIQper
atures.

In recent years renewed interest has been shown

in the solid-state properties of the noble gases.
The fix st review article on this subject was pub-
lished in 1957,' and since then several others have
appeared. Interest in the noble-gas solids (NGS)
is due mainly to the following factors;

(a) The atoms of these solids have closed elec-
tronic shells. Thus, no free electrons or magnetic
moments are available to contribute to the thermo-
dynamic properties. The thex"modynamic proper-
ties of the NGS are, therefore, determined only by

(b) The intermolecular forces between NGS atoms
are to a good approximation spherically symmetric
central two-body forces. The intermolecular po-
tential can then be written in a simple analytic
form. And one often uses the Mie-Lennard-Jones
potential:

where the parameters e snd 0 represent the poten-
tial minimum between two NGS atoms snd the sepa-
ration at the potential minimum, respectively.

(c) This class of solids, which consists of Rn,
Xe, Kr, Ar, Ne, and He forms a series whose be-
havior x"anges fl'om cla881cal to quantum. The
heaviex' NGS, such as xenon, exhibit classical be-
haviox', while the lighter ones such as neon exhibit

q ant. u.m behav1or.
The rare-gas solids, then, form an ideal testing

ground for the study of the various models of lattice
dynamics which have been proposed. Due to the
fact that the intermolecular potential is pairwise
additive and of a simple form, the sums found 1n

lattice dynamical theor1es can be evaluated and

compared with experimental results. In addition,
by applying a lattice dynamics theory to various
members of the NGS, one is, in effect, s,ble to

on" q a t eff t a dd t m' eatwhst

point the theory breaks down.
Some of the above statements represent an ideal-

ized solid. There is reason to believe, for exam-
ple, that the intermolecular forces are not com-
pletely pairwise additive. Many-body effects may
be present. However, it is generally believed '

that they do not play an important role in the ther-
modynamic properties of these substances. The
question of using the empirical Lennard- Jones po-
tential to represent the real potential between two
NGS atoms has been the subject of a great deal of
discussion. The consensus is that this potential
still provides the best source of information about
atoms with closed shells, especially in the neigh-
borhood of the potential minimum. The assumption
of pairwise additive forces together with the Len-
nard- Jones potential allows one to make very useful
comparisons between the various theories of lattice
dynamics and experimental measurements.

We have mea8uled the specific heat at constant
pressure of solid 3 Ne and ~Ne between 2. 2 K and
the triple point. Neon is a particularly interesting
member of the NGS because it exhibits moderate
quantum behavior. Theories which are capable of
accurately predicting the properties of the heavier
NGS may fail when applied to neon. Thus, solid
neon provides a more stringent test of lattice dy-
namical theoxies. On the other hand, it is simpler
than solid helium, and so it may be used as a pre-
liminary stage in the development of a theory with
which the thermodynamic propexties of all NGS,
including solid helium, may be understood.

Eaxlier measurements of the specific heat of sol-
id-neon isotopes were reported by Clusius et al. '
at temperatures above 8 K. In addition, the spe-
cific heat of natural neon (composed of 90.9% "Ne,
8. 8% ' Ne, and 0. 3% ~Ne)" has been measured in-
dependently by two groups. 3' The present data
will be compared with these previous measurements
as well as with the results of various models of
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solids and theories of lattice dynamics.

I. EXPERIMENTAL METHOD

The specific-heat measurements were performed
in a modified version of the apparatus described by
Shinozaki and Arrott. ' Two cylindrical calorim-
eters, constructed of thin-walled tellurium copper
(0.018 in. thickness), were incorporated into the
cryostat so that the specific heat of Ne and Ne
could be measured simultaneously. Soldered to the
inside of each calorimeter was a rolled strip of
corrugated copper foil which served to distribute
the heat to all parts of the sample. When full, each
calorimeter held 0. 2 mole of solj.d neon.

The calorimeters were suspended by means of
their filling tubes from a copper platform which
served as a heat sink. This platform was itself
suspended from the top of the vacuum can by three
thin-walled stainless-steel tubes. All electrical
leads and capillary tubes were thermally anchored
to the top of the vacuum can, as well as to the cop-
per platform. The temperature difference between
the platform and the calorimeter was monitored
by means of a Au-Co-vs-chromel thermocouple.
By heating the platform when necessary, its tem-
perature could always be kept very nearly the same
as that of the calorimeters. This procedure re-
duced the flow of heat between these parts, thereby
improving the temperature stability of the calorim-
eters. The initial cooling of the calorimeters was
provided by a mechanical heat switch, which was
thermally anchored to the top of the vacuum can.

Temperatures were measured with two germani-
um resistance thermometers" of similar charac-
teristics, one attached to each calorimeter by
means of GE insulating varnish No. 7031." These
thermometers were calibrated simultaneously in
the cryostat described above. At temperatures be-
low 4. 2 K they were calibrated using thevaporpres-
sure of liq uid helium, and the National Bureau of Stan-
dards 1958 temperature scale' using the calorim-
eters themselves as vapor-pressure bulbs. Above
4. 2 K the calibration was done by means of a heli-
um constant-volume gas thermometer. ' The helium
virial coefficients of Keesom" were used. The
temperature-resistance data were fitted to the equa-
tion given by Ahlers and Macre.

The neon samples were obtained from Mound
Laboratories. ' The following are the purities
quoted by the supplier for Ne: 99% 2Ne in total
neon, 99% total neon; 2 Ne: 99. 5'% 2 Ne in total
neon, 99% total neon.

Only 0. 14 moles of Ne and 0. 18 moles of 2 Ne
were available for the experiment; thus it was im-
portant to transfer as much of the samples as pos-
sible to the calorimeters and to minimize the
amount left in the storage tanks. A toepler pump
was used for this purpose. A given amount of the

sample to be measured (usually about 0. 01 mole)
was first allowed to flow from its low-pressure
storage cylinder into a measuring chamber built of
precision bore tubing. Here the quantity of gas was
found to an accuracy of 0. 4% by measuring heights
of mercury with a cathetometer. The sample was
then transferred to the calorimeter, which was
kept at liquid-neon temperature (24. 5-, 2V K). This
process was repeated several times until most of
the available gas had been measured and transferred
to the calorimeter. Towards the end of the filling
procedure the pressure of the neon in the storage
tank fell to such a low level that it became neces-
sary to use the toepler pump in order to transfer
gas from the storage tank into the measuring cham-
ber. The temperature and pressure of the samples
in the calorimeter were carefully monitored during
the entire filling process, in order to prevent for-
mation of blocks in the filling lines.

After filling the calorimeters, the temperature
of the cryostat was kept at the triple point of neon
for several hours while the helium exchange gas
which was necessary in the filling process was
pumped out of the vacuum can. The samples were
then allowed to cool slowly to 4. 2 K. Typically it
took 6 h for the samyles to cool from the triple
point to 4. 2 K. It was hoped that this slow cooling
would cause the neon to solidify into a small num-
ber of single crystals with a minimum number of
imperfections.

The usual heat-pulse technique was used to mea-
sure the specific heat. The voltage across each
germanium resistance thermometer was measured
with a Guildline model 9160 GD six-dial potentiom-
eter, whose off-balance dc signal was amplified
with a Keithley-type~ 148 nanovoltmeter and fed
into a strip-chart recorder. This resulted in a
temperature-vs-time graph for each syecific-heat
data point. By switching the potentiometer from
one resistance thermometer to the other, tempera-
ture-vs-time plots were obtained simultaneously
for both solids. At temperatures below 5 K the
combinations of heat leaks and low heat capacity of
the samples caused their temperatures to change
rapidly with time at different rates. It was much
more difficult to carry out simultaneous measure-
ments at these low temperatures, although each
sample could be measured individually.

It should be noted that the simultaneous measure-
ment of specific heat as outlined above does not in-
crease the accuracy or sensitivity of the measure-
ments. It was found, for example, that the scatter
of experimental points between several runs was no
longer than the scatter within a run. The advantage
of the simultaneous method is that it allows the mea-
surements to be done more quickly. The gain in
accuracy comes about in the simultaneous calibra-
tion of the germanium thermometers. Any syste-
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matic error will affect both thermometers in the
same way and will tend to cancel out.

II. RESULTS—COMPARISON WITH PREVIOUS
MEASUREMENTS

Simultaneous specific-heat measurements of solid
Ne and Ne were made in three separate runs in

the range 2. 2-23 K. The experimental data are
given in Tables I and II for Ne and Ne, respec-
tively. '4

The calculated experimental error below 18 K is
2%. Above 18 K, uncertainties in the temperature
given by the gas thermometer resulted in an error
of 6%. In addition, at higher temperatures there is
a systematic error introduced by the fact that, as
the sample is heated, some of the heat goes into
vaporizing the solid. This error reaches about 10%
at the triple point. " We estimate the error in ~C&,
the difference in the specific heat between the two
isotopes, to be 8'%%uo for temperatures below 18 K,
and higher above.

After examining the data we found no systematic
differences in the data from different runs. That
is, the scatter of experimental points within a run
was the same as scatter between several runs. In

addition, there was no significant difference in the
specific heat when measured in different calorim-
eters. For these reasons it was felt justified to
fit all the data from all runs for each isotope with
a polynomial curve. The smoothed C~ values for
~ONe and ~~Ne thus obtained are given in Tables III
and IV, respectively.

Using the smooth values of C~, we have calculated
the specific heat at constant volume C~ from the
relation '

TABLE I.

T
(K)

2. 235
2. 377
2. 395
2.404
2.469
2. 552
2. 559
2. 702
2.745
2. 878
2. 920
3.046
3.050
3.090
3.230
3.249
3.348
3.450
3.478
3.512
3.735
3.895
3.899
3.903
4.029
4. 245
4. 220
4. 247
4.388
4.474
4. 544
4. 547
4. 575
4.681

Cp

(J/mole K) (K)
C~

(J/mole K)

(0

0.0572
0.0713
0.0697
0.0713
0.0769
0.0879
0.0863
0.1020
0.1125
0.1234
0.1340
0.1524
0.1467
0.1635
0.1865
0.1898
0.2084
0.2274
0. 2364
0.2407
0. 2934
0.3583
0.3380
0.3390
0.3798
0.4499
0.4376
0.4524
0.4963
0.5389
0.5441
0.5483
0.5561
0.6020

1
ole)

HUXl

.0889 m

4.691
4.795
4.799
4.872
4.916
5.046
5.053
5.201
5.463
5.716
5.854
6.080
6.234
6.369
6.596
6.833
7.199
V. 751
8.375
8.777
9.465

10.88
11.74
12.51
12.71
12,97
13.49
13.88
14.52
15.89
17.05
19.57
21.22

0.6045
0.6431
0.6326
0.7036
0.6929
0.7503
0.7628
0.8522
l.019
l. 198
l. 258
l.452
1.560
l.673
1.859
2.040
2.377
2. 877
3.562
4.004
4. 558
6.759
8.115
9.036
9.534
9.917

10.80
10.94
11.46
13.47
15.54
19.96
23.46

Measured specific heats of solid Ne.

C -C =&'Tlpx,
where the experimental values for the expansivity

P, density p, and isothermal compressibility X z,

of Batchelder et a/. ' have been used. In addition,
the entropy S and the enthalpy H have been calcu-
lated by direct integration of the C~ data. Smoothed
values of these quantities appear in Tables III and

IV. These tables also include the Gruneisen pa-
rameter y of each isotope as a function of tempera-
ture, This was calculated from the expression '

&= Plpxr&v

The present results may be compared with the
previous isotope measurements of Clusius et al. ~

and with recent natural-neon measurements. '3'"
We find that our measurements are generally 6%
higher than those of Clusius et a/. We cannot find

any reason for this; however, since our Ne data
are in good agreement with the natural-neon mea-
surements of Fenichel and Serin and of Fager-
stroem and Hollis-Hallet' we feel that our calo-
rimetry techniques are sound. When the differences

2.798
2. 873
3.132
3.224
3.341
3.480
2.746
2.788
2. 813
2, 835
2. 906
2.973
3, 026
3.166
3.210
3.301
3.308
3.389
3.396
3.502
3.507
3.546

0.1185
0.1348
0.1669
0.1811
D. 2047
0.2319
0.1126
0.1136
0.1184
0.1178
0.1336
0.1360
0.1488
0.1685
0.1784
0.1953
0.1910,
0.2130
0.2080
0.2377
D. 2320
0.2474

5.855
6.063
6. 292
6.514
6.702
6.853
7.166
7.412
7.677
7.973
8.319
8.706
9.056
9.355
9.741

10.18
10.67
11,25
ll. 62
12.03
12,42
12.84

Bun 2

(0.1084 mole)

1.259
1.403
1.584
1.753
1.890
2.024
2. 308
2. 535
2.793
3.090
3.475
3.797
4. 305
4.718
5.189
5.751
6.431
7.288
7.845 .

8.566
9.133
9.771
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3.695
3.839
4.012
4.157
4, 315
4. 515
4.652
4.753
4.835
5.184
5.330
5.662

2.919
3.068
3.236
3.460
3.582
3.685
3.786
3.877
4.006
4.140
4.337
4.496
4.599
4.714
4.897
4.773
5.054
5.243
5.387
5.547
5.655
5.768
5.964
6.126
6.439

0.2826
0.3207
0.3735
0.4486
0.4716
0.5318
0.5864
0.6325
0.6660
0.8340
0.9154
l.129

13.35
13.69
14.15
14.65
15.90
16.62
17.52
18.34
19.29
20. 35
21.93
23.30

Run 3
(0.1070 mole)

0.1259
0.1492
0, 1711
0.2117
0.2414
0.2971
0.3114
0.3365
0.3757
0.4169
0.4795
0.5357
0.5642
0.6090
0.6874
0.6252
0.7599
0.8661
0.9467
1.044
l.119
1.191
I.327
1.429
l.687

6.771
7.229
7.521
7.857
8.094
8.524
8.963
9.517
9.894

10.24
10.45
10.71
11.29
12.07
12.45
13.09
13.46
13.91
14.33
15.72
16.46
17.43
18.50
20. 09
21.88

TABLE I, (continued).

, Run2
(0.1084 mole)

10.37
10.66
11.46
12.05
14.23
15.07
16.04
17.67
19.28
21, 10
23.85
26.03

l.959
2.366
2.614
2.959
3.212
3.678
4. 219
4.909
5.393
5.856
6.075
6.386
7.168
8.249
8.821
9.637

10.27
11.05
11.52
13.40
14.33
16.02
17.95
20.35
23, 41

as pronounced in the present result.
In Fig. 2the Debye temperature is plotted and cor-

rected for thermal expansion. Such a procedure
is followed in order to facilitate comparison of the
experimental results with the quasiharmonic theory.
This is done by reducing the Debye temperature
corresponding to the actual crystal volume, 8 (V, T)
to the Debye temperature corresponding to the crys-
tal volume at 0 K, 8 (Vo, T). The following rela-
tion~9 was used to obtain Fig. 2 from Fig. 1:

(4)

The values of the Gruneisen parameter y were
taken from Tables III and IV and p from Batch-
elder. ~~ In addition to all the other points of Fig.
1, Fig. 2 also includes the natural-neon data of
Fagestroem and Hollis Hallet" taken from the pa-
per of Batchelder et al. ~~

By extrapolating the present measurements to
absolute zero, we have calculated the Debye tem-
perature ~o and the sublimation energy Lo at T
= 0 K. We obtain for ~ Ne: O~o(20) = (74. 6+ 1.2) K
and Lo(20) = (461 + 9) cal; and for ~~Ne: 0 0 (22)
= (71.7 + 1.2) K and I,o(22) = (469 + 9) cal. These
results have been discussed in greater detail else-
where. '0

III. DISCUSSION

In comparing our results with theory we shall
restrict the discussion to temperatures below 18 K.
The reason for this is that the error in C~ at high

in the specific heats of ONe and ~~Ne are compared
(see Fig. 6), the data of Clusius et al. and the
present data agree to within the combined experi-
mental errors.

In making comparisons between various sets of
specific-heat data, it is convenient to compare the
Debye temperature 8 rather than the specific-
heat data itself. This is done in Fig. 1 where we
present our results together with all other available
data. The tables of Giguere and Boisvert ' were
used to convert the specific heat at constant volume
to O~ . The figure demonstrates the large discrep-
ancy between the Clusius work and the present re-
sults. The agreement between our Ne curve and
the natural neon of Fenichel and Serin is quite good.
However, we note that the oscillations in the Debye
temperature curve appearing in their data are not

70—
4J
lK

68-
lL
LLI
CL
X 66-
LLII-

60
I I

0 2 4
. I I I I I I

6 8 10 12 I4 16 IS

TEMPERATURE, K

FIG. 1. Experimental temperature dependence of the
Debye temperature OH reduced from the specific heat at
constant volume. o-o: present result x-x: Clusius
et al. (Ref. 10); o-e:natural-neon measurements of
Fenichel and Serin (Ref. 12). The extrapolation to
0 K was achieved by fitting the low-temperature points
to a parabola. The curves have not been corrected for
thermal expansion of the solid.
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TABLE II. Measured specific heats of solid Ne. TABLE II. (continued).

T
(K)

2. 863
2.910
3.035
3.069
3.148
3.201
3.249
3.286
3.346
3.369
3.426
3.440
3.483
3.489
3.595
3.604
3.729
3.760
3.840
4.027
4. 172
4.358
4. 534
4.682
4. 799
4.909
5.130
5.267
5.399
5.541
5.700
5.864
6. 255

2.612
2.665
2.725
2. 765
2. 812
2, 916
3.035
3.154
3.262
3.385
3.419
3.511
3.600
3.710
3.853
3.998
4. 188
4.345
4. 541
4. 673
4.882

T
(K)

0.1453
0.1432
0.1644
0.1800
0.1837
0.1927
0.2141
0.2099
0.2306
0.2293
0.2451
0.2434
0.2548
0.2587
0.2864
0.2876
0.3416
0.3440
0.3613
0.4184
0.4711
0.5424
0.6096
0.6783
0.7193
0.7594
0.9161
1.007
1.108
1.202
1.316
l.438
1.775

6.461
6.636
6.788
7.078
7.338
7.566
7.877
8.188
8.596
8.951
9.257
9.613

10.05
10.54
11.07
11.44
ll. 82
12.20
12.65
13.08
13.45
13.86
14.33
14.86
15.50
16.26
17.15
17.95
18.87
19.93
21.47
22. 70
23.36

Bun 3
(0.1054 mole)

0.0962
0.1040
0.1134
0.1204
0.1297
0.1437
0.1617
0.1828
0.2036
0.2284
0.2424
0.2632
0.2870
0.3165
0.3587
0.4044
0.4736
0.5358
0.6211
0.6681
0.7542

6.093
6.357
6.712
7.160
7.413
7.767
8.000
8.415
8.839
9.380
9.748

10.09
10.03
10.55
ll. 12
ll. 86
12.25
12.84
13.21
13.64
14.02

Cp

Q/mole K)

Run 2
(0.0999 mole)

Cp

(Jimole K)

1.927
2.066
2. 230
2.487
2.742
2. 965
3.305
3.650
4.178
4.593
5.004
5.503
6.068
6.782
7.554
8.117
8.653
9.299
9.975

10.53
11.07
11.61
12.25
13.19
13.88
14.91
16.29
17.60
19,16
20. 96
23.76
26. 25
27. 19

1.614
1.831
2.153
2.589
2.835
3.202
3.468
3.945
4.461
5.179
5.668
6.146
6.393
6.743
7.550
8.642
9.330

10.22
10.83
11.43
11.95

Run 3
(0.1054 mole)

4.914
5.135
5.229
5.293
5.478
5.700
5.849

0.7705
0.9183
0.9749
1.015
l.142
1.319
1.425

14.60
15.34
16.06
17.01
"8.04
19.59
21.34
23. 21

12,69
13.70
14.64
16.18
17.75
20.03
23.62
28. 27

Although, as previously mentioned, the isotopes
of neon are expected to deviate significantly from
classical behavior, it is of some value to compare
the present experimental results with some of the
early model theories. This comparison is espe-
cially interesting in viem of the conclusions of the
frequency-shift model of Bar ron which predicts
that in the low-temperature limit the thermody-
namic properties of anharmonic crystals as func-
tions of temperature will appear to be like those
of harmonic crystals. The temperatures must be
low enough and in the range where the zero-point
energy is much larger than the thermal energy of
the crystal. For neon at the triple point, the zero-
point energy is three times the thermal energy, so
that the harmoniclike behavior should be noticeable
over a large portion of the temperature range of
the solid-neon isotopes. This type of comparison
was made for argon by Peterson et al. It was
found that the experimental results for argon mere
in good agreement with some of the early model
theories of solids. It seems, therefore, worth-
while to make the same kind of comparison for the
more anharmonic crystals of neon.

One of the early empirical relations is the
Nernst-Lindemann equation '. (C~ —C~)/C~ T=A,
where A is assumed to be independent of tempera-
ture. In the case of the neon isotopes it is found to
be approximately a constant, varying by only 3% in
the temperature range between 5 and 16 K. The

temperatures is considerably greater than at lower
temperatures. This large error arises not only
from the error in the C~ data discussed in Sec. II,
but is also due to the large error in the measured
values of compressibility at high temperatures.
In addition to this, at temperatures near the triple
point, thermal generation of vacancies in the crys-
tal begins to contribute significantly to its thermo-
dynamics properties. " No attempt was made to ac-
count for this fact in our data analysis. We esti-
mate that this omission will contribute, at most, an
error of 5% at the triple point and a much smaller
one for temperatures below 18 K.

A. Early Theories
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FIG. 2. Temperature depen-
dence of the Debye temperature
0 (Vp, P, corres ponding to the
crystal volume at absolute sero.
In addition to the data found in
Fig. 1, the natural-neon data of
Fagestroem and Hollis Hallet
(Ref. 13) is also included (&&).
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60—
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TEMPERATURE, f(

I

12
I

14
I

16

V~ —Vp Ez
Vo Q-bZr ' (5)

where V~ is the molecular volume at temperature
T, V0 is the molecular volume at absolute zero,
and Er is the thermal energy. The constants Q and

5 are given by

Q= Vo/Xo&o,

b =&(m+m+3),

(6a)

(6b)

where Xp and yp are the absolute-zero values of the
compressibility and Gruneisen parameter, respec-
tively. The integers m and n are the exponents of
the intermolecular potential equation when written
in the form

v(») = A»-"+a»—

average values of A in this range are A = (49. 2 + 1.0)
x 10 ' mole/J for oNe and A = (48. 5 s 2. 0)x 10 '
mole/J for ooNe. There is a drop in A at low and
high temperatures for both isotopes. The low-
temperature drop is caused by experimental uncer-
tainties which arise from the fact that A is propor-

.tional to the sQuare of the coefficient of thermal ex-
pansion-a quantity which is very difficult to mea-
sure accurately at low temperatures. The high-
temperature drop in A is real.

Another early empirical relation we shall discuss
is the Gruneisen equation of state. The equation
is'4

The thermal energy E~ has been calculated by
graphic integration of C». According to Eq. (5) a
plot of Er Vo/&V vs Er should yield a straight line
whose intercept on the vertical axis is Q and whose
slope is b. This graph has been plotted for the neon
isotopes in Fig. 3. In the temperature range 9-
18 K, the experimental points do indeed fall along
a straight line. The values of Q and b obtained from
the graph are for Ne

Q = 5. 51 x 10 J/mole,

b =6.67,

and for '~Ne

Q= 5. 66x10' J/mole,

b =6. 23.

The self-consistancy of this theory can be
checked by calculating the constants Q from Eq.
(6a) and comparing them with the above values. In

order to do this the parameter y has been taken to
be 2. 78 for both isotopes. This is the value ob-
tained from Fig. 4 if the apparent drop of the curve
at low temperatures is ignored. The values of Vp

and y p are taken from Batchelder et al. ' The re-
sults are Q = 5. 35x10' J/mole for ' Ne and Q
= 5. 51x10o J/mole for oNe, which are in good
agreement with the values of Q calculated from Fig.
3. In particular the 2. 7% difference between Q of

Ne and ~Ne obtained from Fig. 3 is in excellent
agreement with the value 3/o obtained using Eq.
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(6a) and experimental values of Vo g 0 and yp.
However, the value obtained from Eq. (6b) for the
sum of the exponents appearing in the intermolec-
ular potential equation [Eq. (7)I is 33.4 for Ne
and 37. 6 for Ne, which are much larger than the
value of 18 commonly used for both.

The final empirical relation we shall discuss is
also due to Gruneisen. According to this model,
there exists a parameter (the Gruneisen parameter
y) which is a measure of the dependence of the nor-
mal frequencies of the crystal on volume. It is re-
lated to several thermodynamic quantities of the
solid as shown in Eq. (3) and is assumed to be in-
dependent of temperature. In Fig. 4 the Gruneisen
parameters for the neon isotopes are plotted against
temperature. The upper curve gives the results of
Clusius et al. and the lower curve, the present re-
sults. The data of Batchelder et al. for P, p, and

X ~ have been used. In the range between 5 and
17 K this parameter is essentially temperature in-
dependent. The graph also shows no isotopic dif-
ference in y. This is in agreement with the specif-
ic-heat experiments of Sample and Swenson" who
found that y is isotopically invariant in the solid-
helium isotopes. As in the case of the Nernst-
Lindemanp constant, the present experimental re-
sults indicate that the Gruneisen parameter has a
very sensitive temperature dependence below 5 and
above 17 K. Again the high-temperature drop is
real while the drop at low temperatures is caused

by the large uncertainty in the coefficient of ther-
mal expansion and most likely does not represent
the true properties of these crystals.

.The high-temperature drop of the Gruneisen pa-
rameter is in qualitative agreement with theoreti-
cal calculations based on the quasiharmonic ap-
proximation ' which indicate that the main vari-
ation in y with temperature occurs in the neighbor-
hood of 0. 20. An anharmonic theory has been used
recently to determine the temperature dependence
of the Gruneisen parameter for the heavier NGS '

however, such calculations for neon have not yet
appeared.

B. Modern Theories

Most modern theoretical calculations of the ther-
modynamic properties of solid neon as functions of
temperature have employed the quasiharmonic ap-
proximation, although recently several anharmonic
models have been used. Unfortunately, most theo-
retical studies have been limited to natural neon.
Only one set of calculations for 2~Ne has been pub-
lished; this is based on the self-consistent phonon
model and will be discussed at the end of this sec-
tion.

In the absence of exact theoretical calculations we
have computed theoretical Debye temperature 8
vs temperature curves for '2Ne in an approximate
manner from existing calculations on natural neon
based on the quasiharmonic theory and on the fre-

TABLE III. Smoothed values of some thermodynamic functions of Ne. C& is specific heat at constant pressure;
C„ is specific heat at constant volume; S is entropy; & is enthalpy; p is Gruneisen parameter.

Cp

{J/mole K)
C„

{J/mole K)

S
{J/mole K)

H
{J/mole)

3. 0
3.5
4. 0

5
5. 0
6. 0
7. 0
8. 0
9. 0

10, 0
ll. 0
12, 0
13. 0
14. 0

15.0
16.0
17.0
18.0
19.0
20. 0
21. 0
22. 0
28. 0

0. 143
0. 242
0. 367 + 0. 007
0. 529
0. 746
1.362+0. 027
2. 170
3, 118
4, 254
5. 541 +0. 111
6. 915
8. 329
9. 747

11.15 + 0. 17
12.55
18.96
15.48
17.00 +0. 23
18.69
20. 49
22. 36
24, 14
25. 59

0. 143
0. 242
0. 366 + 0. 007
0. 528
0. 744
1.857 +0. 027
2. 154
3. 079
4. 173
5. 392 + 0. 111
6. 659
7. 922
9. 137

10.28 + 0. 19
11,86
12, 43
13.54
14. 75 +0.35
16, 11
17.61
19.38
21. 05
22. 34

0, 0527
0. 0821
0. 122
0. 174
0. 241
0. 427
0. 696
1.046
1.476
1.990
2. 582
8. 244
3. 967
4, 741
5. 558
6. 413
7. 308
8. 229
9. 193

10.20
11.24
12, 32
13.43

0.322
0. 445
0. 568
0. 837
1.106
2. 140
8. 895
6, 522

10.19
15. 08
21. 80
28. 92
37. 96
48. 41
60. 26
73. 51
88. 20

104.4
122. 2
141.8
163.3
186.5
211,4

0.625
l. 848
2.436 ~ 0. 216
2. 706
2. 759
2.699+0, 150
2. 686
2. 741
2. 746
2. 723 + 0. 213
2. 754
2. 782
2. 824
2. 888 + 0.276
2. 901
2. 864
2. 738
2. 555 + 0. 284
2. 302
2. 037
1.661
l. 890
1.211
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1

O

l.72 these values of O are based on the quasiharmonic
theory, it was assumed that the corresponding val-
ues of O for ~Ne could be obtained from the rela-
tion

O ( 'Ne)/O ("Ne) = [M("Ne)/M("Ne)] 3= 0. 9579,

(8)

l.56

l.48

l.40

0 40 80
THERMAL ENERGY, J/mole

FIG. 3. Test of the empirical Gruneisen equation of
state for the solid-neon isotopes. The numbers adjacent
to the points on the graph correspond to the temperatures
at which the quantities appearing. in the Gruneisen equa-
tion of state were evaluated.

quency-shift theory of Barron. 33

The following procedure was used to obtain the
theoretical quasiharmonic curve Oc vs T for ~~Ne:

(a) The quasiharmonic specific-heat values of Leech
and Reissland' (based on anharmonic potential pa-
rameters) obtained from the paper of Batchelder
et al. were converted to Debye temperatures, us-
ing the tables of Giguere and Boisvert. ' (b) Since

where M("Ne) and M(22Ne) are the molar masses of
natural neon and Ne, respectively. That this ap-
proximation is plausible may be seen from the fact
that this method yields 4. 7/o for the percent differ-
ence between the absolute-zero values of 0 for the
two neon isotopes. This agrees quite well with the
value of 4. 9% obtained by Barron and Klein~o using
quasiharmonic theory. These quasiharmonic O

vs temperature curves for ~DNe and 22Ne [labeled
Q(20) and Q(22), respectivelyj are shown in Fig.
5. ' The same figure also includes the experimen-
tal O curves corrected for thermal expansion.
These are labeled X(20) and X(22). Note that al-
though the quasiharmonic curves fall well below
the experimental ones, their shapes are quite simi-
lar. This agrees with the frequency-shift theory
of Barron mentioned earlier.

The frequency-shift model of Barron" is an an-
harmonic model which yields numerical results
that may be compared with experiment. The anal-
ysis is based on the formal anharmonic Born-von
Karman calculations of Leibfried and Ludwig. 2

According to this model the large nonharmonic
atomic motions in crystals (due to thermal and
zero-point effects) cause a shift in the individual
frequencies of the quasiharmonic spectrum. The
relative shift is proportional to the total vibrational
energy of the lattice. That is,

4v/v =Ae,

3.4-

3.2-

30

lL
LiI
L

Lil 28-
X

CL

2.6-
Lil
lh
Lilz 2.4-

~Q

O.
X

X 0

FIG. 4. Temperature depen-
dence of Gruneisen parameter
p=P/p &„Xq. The lower curve
shows the present results for
both isotopes. &&&& is 2 Ne and
oo is Ne. The upper curve
shows the results of Clusius et
al. (Bef. 10). ~ ~ is Ne and
hD is Ne. In all cases the quan-
tities P, p, and gq were taken
from Batchelder et al. (Bef. 27).

I L I

I 10 12

TEMPERA7URK . K

14 16 20
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TABLE IV. Smoothed values of some thermodynamic functions of 22Ne. C& is specific heat at constant pressure;
C„ is specific heat at constant volume; 8 is entropy;. I is enthalpy; p'is Gruneisen parameter.

3. 0
3.5
4, 0
4. 5
5. 0
6. 0
7. 0
8. 0
9. 0

10, 0
11,0
12. 0
13.0
14 ' 0
15.0
16.0
17. 0
18.0
19, 0
20, 0
21. 0
22. 0
23. 0

Cp
(I~mole K)

0. 157
0. 264
0, 405 + 0. 008
0. 591
0. 841
1.541 +0. 015
2. 423
3.465
4. 665
6. 016+0.060
7. 457
8. 936

10.41
11.86 + 0. 12
13.28
14.68
16.11
17.60 + 0. 18
19.22
20. 99
22. 92
24. 98
27. 05

0. 157
0.264
0. 405+0. 008
0. 590
0. 839
1.534+0. 015
2. 403
3.418
4. 572
5. 848+0. 062
7. 173
8. 489
9

10.91 +0. 15
12. 00
13.02
14. 07
15.21 +0. 32
16.49
17.97
19.72
21.76
23. 67

{J/'111Qie K)

0. 0579
0. 0901
0. 134
0, 192
0. 266
0. 478
0. 780
1, 168
1, 643
2. 204
2. 844
2. 556
4. 330
5. 155
6. 022
6, 923
7. 856
8. 819
9. 813

10. 84
ll. 91
13, 03
14, 18

0.353
0.488
0. 623
0. 924
1.224
2. 395
4. 368
7. 286

11.33
16.66
23.39
31.59
41, 26
52. 40
64. 97
78. 95
94.35

111.2
129.6
149..7
171.6
195.6
221.6

0. 584
~. 915
2. 383 +0.203
2. 724
2. 792
2. 786 + 0. 144
2. 762
2. 767
2. 726
2. 704+0. 213
2. 729
2. 757
2. 807
2. 875+0.281
2. 881
2. 898
2. 787
2, 599 + 0. 297
2.355
2. 072
1.722
l. 393
1.185

where v is the frequency and e is the vibrational
energy (thermal plus zero point) in units of 3B, the
8 being the gas constant. The anharmonic coeffi-
cient ' A canbe approximated from the experimen-
tal Debye temperature at absolute zero, Oz~'. The
following equation may be used

O,' '= 8"(- 3)[i+-,'&8"(2)j, (io)

where O~ "(-3) and O~ "(2) are the low- and high-tem-
perature limits of the Debye temperature obtained
from the specific heat in the quasiharmonic approx-
imation. Other methods of evaluating the constant
A. may also be used. 5 Using our experimental
value of OP' = 74. 5 K for ~ Ne and the quasiharmon-
ic values of O"(- 3) and O "(2), obtained from Leech
and Reissland, we obtain the value of 4, 8x10 deg '
for A, which is very close to previous estimates.
Horvever, the value obtained for Ne using Oo~'
= Vl. 1 K, and the values of 0'"(- 3) and O"(2) obtained
from Eq. (10) and the Leech and Heissland data is
A = 5. 3&10 deg. '. This cannot be correct because

Ne, being heavier than ~ Ne, should exhibit smaller
anharmonic effects and thus have a smaller value
of the anharmonic coefficient A. This small dis-
crepancy is undoubtedly due to the large number of
approximations used in these calculations. A study
of the range of A has been made by Batchelder et
a/. for neon. Their conclusion that A is uncertain
by a factor of 2 is still valid.

As a result of the frequency shift given by Eq.

(9), the anharmonic thermodynamic quantities are
shifted relative to the corresponding quasiharmonic
quantities. In the case of the specific heat it can
be shown' that the anharmonic specific heat C'(T)
at temperature T is related to the quasiharmonic
specific heat C (T ) at slightly different tempera-
ture T by the equation

where

(12)

The quantity c is the quasiharmonic specific heat
in units of 3B. Thus if the quasiharmonic specific
heat is known as a function of temperature, Eqs.
(11) and (12) allow one to generate the correspond-
ing RnhRrmonlc curves. This was first done by
Batchelder et al. for natural neon. 37 We have taken
the quasiharmonic curves Q(20) and Q(22) of Fig.
5 and used them to generate anharmonic Debye tem-
perature curves using Eqs. (11)and (12). These
curves are labeled B(20) and B(22) in Fig. 5. In
obtaining B(20) and B(22), we took the anharmonic
coefficient A to be 5xl0 ' deg '. Equation (4) was
used to refer these curves to the crystal volume Rt

0 K. %e also include in the figure the experimen-
tal results of Fagestroem and Hollis Hallet and of
Penichel and 8erin. Por clarity only the high-
temperature data of these experimental curves are
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FIG. 5. Comparison of the temperature dependence
of the Debye temperature 8 from various theoretical
models and experimental measurements. Q(20), Q(22):
quasiharmonic calculations of Leech and Reissland
(Ref. 39); &(20), B(22): frequency-shift calculations;
GG(20): quasiharmonic calculations of Gupta and Gupta
(Ref. 48); X(20), X(22): present experimental results;
IN$(20): inelastic neutron scattering calculations of
Leake et al. (Ref. 52); oo, ~ ~: self-consistent phonon
calculations for ONe and Ne, respectively, using a
6-13 model potential (Ref. 51); &&,++: represent the
experimental data of Fenichel and Serin (Ref. 12) and

Fagestroem and Hollis Hallet {Ref. 13), respectively.
All curves refer to the crystal volume at absolute zero.

included in Fig. 5. At low temperatures the three
sets of experimental data are in good agreement
with each other.

It can be seen from Fig. 5 that the theoretical
calculations based on Barron's frequency-shift mod-
el give a better agreement with experiment than is
given by the quasiharmonic theory, especially at
low temperatures. Above 9 K, however, the fre-
quency-shifted curves begin to diverge from the ex-
perimental curves. The difference in the Debye
temperature at T = 13 K is 3 K, which corresponds
to a 5% difference in specific heat. This difference
increases rapidly with rising temperatures. Thus
at high temperatures the simple frequency-shift
model of Barron tends to underestimate the specific
heat. We note, however, that the percent difference
in the Debye temperatures of Ne and Ne predict-
ed by this theory does agree with present results
quite well throughout the entire temperature range.

Recently some quasiharmonic calculations on
natural neon by Gupta and Gupta have appeared in

which a Buckingham intermolecular potential func-
tion was used instead of a Lennard-Jones potential.
This potential is more satisfactory from a theoreti-
cal yoint of view but has not often been used because
of the calculational difficulties involved. The Debye
temperature curve for Ne calculated with this
model, ' using anharmonic potential parameters,
is shown in Fig. 5 as the curve labeled GG(20).
This curve is in remarkably good agreement with
experiment, even though anharmonic effects have
been taken into account only at absolute zero in fix-
ing the potential parameters. Below 10 K this'
curve deviates more from the experimental curve
than does the frequency-shift curve B(20), however,
above 10 K it keeps the same shape as the experi-
mental curve while the frequency-shift curve di-
verges. Above 11 K the quasiharmonic curve of
Gupta and Gupta is actually in better agreement
with experiment than is the anharmonic frequency-
shift curve.

It is tempting to try to apply Barron's frequency-
shift method described above to the curve of Gupta
and Gupta in order to see if it results in even better
agreement with experiment. However, this is not
possible because when the GG(20) curve is extrap-
olated to absolute zero; the resulting value 8"(-3)
so obtained is almost identical with the experimen-
tal value e~~'. This causes the anharmonic coeffi-
cient, and consequently, the frequency shifts, to
vanish.

The excellent agreement between these calcula-
tions and experiment leads one to question the use-
fulness of the Lennard- Jones potential in describing
the forces between neon atoms. It is usually tacitly
assumed that this potential provides an adequate
description of these intermolecular forces, and the
reason that satisfactory results are not obtained is
blamed on the inadequacy of the dynamical theory
rather than on the inadequacy of the Lennard- Jones
potential, i.e. , on the fact that instead of using a
proper anharmonic theory at all temperatures, a
quasiharmonic theory is employed with anharmon-
icity introduced only at absolute zero in the calcu-
lation of the potential parameters. The fact that
precisely the same dynamical theory with a differ-
ent intermolecular potential (i. e. , the Buckingham
potential) yields good results would seem to indicate
that it is not the dynamical theory which is at fault.

A very promising anharmonic theory of solids
which is currently much in use is the self-consis-
tent phonon model. ' In this model the solid is
assumed to consist of a collection of yhonons whose
frequencies are determined self-consistently. No
assumption is made about the smallness of the am
plitudes of atomic vibrations. This overcomes the
major weakness of the Born-von Karman theory.
An effective Hamiltonian of the -harmonic-oscillator
form is assumed. The coupling parameters are
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FIG. 6. Isotopic differences in the specific heat at
constant pressure for Ne and Ne. : present re-
sults &&&&: Clusius et al. (Ref. 10) oo 6-13 theory of
Goldman et al. (Ref. 51); ~4:6-12 theory of Goldman
et al. The solid curve is in a smooth fit of the present data.

left as variation parameters which are determined
by minimizing a trial free energy. An iterative
process yields the self-consistent frequencies as
well as the polarization vector. The calculations
have employed a Lennard-Jones intermolecular po-
tential.

The self-consistent phonon model was first used
to calculate the thermodynamic properties of the
NGS by Gillis et a/. The results did not agree with
the experiments, and, included only ~ONe. However,
improved calculations based on this model have been
made by Goldman et al. "who computed C& and C~
between 7 K and the triple point for solid Ne and
3~Ne using 6-12 and 6-13 model Lennard-Jones
intermolecular potentials. It was not possible to
extend these calculations below 7 K because the
method involves using temperature derivatives of
the free energy, which varies very slowly at low
temperatures. In order to compare the results of
Goldman et al. with those discussed earlier, their
C~ values have been converted to Debye tempera-
tures and then corrected for thermal expansion.
The 6-13 results are shown in Fig. 5. The open
circles correspond to Ne and the closed to ~~Ne.

The data derived from a 6-12 potential deviate more
from experiment and are not shown on this diagram.

The results of the self-consistent phonon calcula-
tion are in good agreement with experiment at in-
termediate temperatures. However, the shapes of
the curves differ from the experimental ones and
diverge from them at high temperatures. This di-
vergence is less pronounced than that of the fre-
quency-shift curves B(20) and B(22).

In Fig. 6 we show the isotope effect in the specific
heat. The figure includes the calculations of Gold-
man et al. , the present experimental results, and
Clusius's data, . The agreement between the calcu-

lations of the self-consistent phonon model and

present results is very good. Although the 6-13
potential data lie closer to the experimental curve
than do the 6-12 data, they are both within experi-
mental error.

Finally, we compare the present work with the
inelastic neutron scattering data of Leake et al. ,

'2

who obtained dispersion curves for a single crystal
of natural neon in all principal symmetry directions
at 4. 7 K. The experimental data were represented
by smooth curves derived from a force-constant
analysis using a Born-von Karman model. A Mie-
Lennard-Jones intermolecular potential model was
used, and the analysis was carried out to second-
and third-nearest-neighbor approximations. The
density-of-states curve which was calculated from
the force constants was used to find specific-heal
and Debye temperature curves. The Debye temper-
ature curve which results from the second-nearest-
neighbor approximation appears in Fig. 5, labeled
INS(20). The inelastic neutron scattering curve
shows the best agreement with the present experi-
ment. The agreement is quite good throughout the
temperature range shown. Above 8 K the two curves
are within the experimental error of the present
work. At high temperatures the inelastic neutron
scattering curve remains flat and does not rise
rapidly with temperature as do the theoretical
curves of Barron and GoMman et al.

IV, CONCLUSION

In comparing our experimental results with var-
ious theories of lattice dynamics we conclude that
purely quasiharmonic theories are not satisfactory.
Present anharmonic theories agree much better
with experiment, although the results depend

greatly on the intermolecular potential used. For
example, the introduction of anharmonicity at ab-
solute zero in fixing the intermolecular potential
parameters yields results which are in good agree-
ment with experiment only when a Buckingham po-
tential is used. The Mie- Lennard- Jones potential
does not give good results in this case. When an-
harmonicity is included at all temperatures, as in
the Barron and self-consistent phonon models,
agreement with experiment is good below 14 K when
a Mie-Lennard-Jones potential is used. However,
at high t'emperatures (above 14 K) a discrepancy be-
tween theory and experiment arises which increases
with increasing temperature.

We conclude that existing anharmonic theories
are appropriate for the description of the NGS.
However, it is likely that better agreement with ex-
periments would result by using an improved po-
tential function rather than the Mie-Lennard- Jones
potential. In particular, more calculations using
the Buckingham potential in the style of Gupta and
Gupta would be most welcome.
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The Raman spectra of the mixed halide KCl~ „Br„were studied as a function of concentration.
First-order Raman-active phonons of &@ symmetry were observed at approximately 120 and
145 cm ' at x &0. 3. Above this concentration, the 120-cm"' mode disappeared, leaving the
higher-frequency band only in the first-order spectrum. This band was found to shift linearly
with concentration and the extrapolation of the straight-line fit intersects the pure-crystal
axes at values close to that of the pure-crystal TO(X) phonon. At the KBr end of the concen-
tration range, the first-order spectrum resembles the pure-crystal density of states. The
first-order spectra of the T2 symmetry were also studied. These reflect the pure-crystal
density of states at both ends of the concentration range. The crystals were also investigated
by small-angle x-ray scattering for evidence of clustering. No clusters smaller than (30)3
unit cells were found. Because of the comparable intensities of the first- and second-order
spectra, it was not possible to arrive at perfectly conclusive results.

I. INTRODUCTION

This paper describes the results of an investiga-
tion of the Haman spectra of KCl, ,Br, for 1 ~ x —0.
Mixed crystals of alkali halides have been studied
extensively by x-ray and thermodynamic tech-
niques. ' The results of these studies most rele-
vant tothe present work are the following: (a) KCl-
KBr system forms a homogeneous series of con-
tinuous solid solutions at all temperatures. (b) The
system obeys Vegard's law, i.e. , linear dependence
of the lattice constants of solid solutions on compo-
sition, the agreement being to within 0. 08%. The
optical phonons of KCl& „Br„have been studied by
Mitsuishi using thin-film transmission measure-
ments and by Fertel and Perry from a Kramers-
Kronig analysis of the ref lectivity spectra. Mitsui-
shi finds a linear variation of the TO frequency with
composition while the results of Fertel and Perry
show a nonlinear variation.

Several theoretical models have been proposed
to describe the behavior of phonons in mixed crys-
tals. The first such attempt by Matossi consid-
ered a linear diatomic chain model of a 50-50
crystal AB, „C„with nearest-neighbor force con-
stants only. This model predicted two modes which
are weakly Raman active or inactive depending upon
whether the structure of the mixed crystal is peri-

odic or statistical, and one mode which is Raman
active in either case. The virtual-crystal model
of Langer, " in which all masses and force constants
are taken as averages weighted by the mixed crys-
tal composition, gives only qualitative results and
predicts a linear variation of phonon frequency
with composition. These models are one dimen-
sional. However, the qualitative results are simi-
lar for one-, two-, and three-dimensional lat-
tices. ' Verleur and Barker" considered a model
based on short-range clustering to account for the
two-mode behavior of semiconductor mixed crys-
tals. In their model, a one-mode behavior would
result when the frequencies of the pure end mem-
bers are close to each other. The random-element
isodisplacement (REI) model of Chen, Shockley, and
Pearson" considered essentially a unit cell contain-
ing one unit of AB, „C„and then assumed random-
ness, i.e. , each atom is subjected to forces pro-
duced by a statistical average of its neighbors and
no effects of order are present. The Gruneisen
constant enters the model calculations as a param-
eter, the force constants I'» and Il„~ at x= 0 and
&=1 are related to the optic frequencies of the end
members AB and AC, and a third force constant
Il ~z is used as an adjustable .parameter.

This model has been altered in the modified ran-
dom-element isodisplacement (MREI) model of


