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A new third positron lifetime (-1.3 nsec) component grows as the square root of the Ca2'

concentration. It is attributed to the diffusion of positrons (diffusion constant D+(KCl) = 6 X10
cm2 sec ~) until annihilation at free-cation vacancies introduced by Ca2' doping.

Recent experimental evidence on metals and in-
sulators has shown that positrons can be trapped
in crystal defects to form annihilation or A centers
where they annihilate with experimentally distin-
guishable characteristics if they encounter, on the
average, electrons of lower density and lower mo-
menta than in the bulk of the crystal. ' In such cases,
positrons offer a method for the study of crystal
defects. The present paper contributes further
evidence through measurements of the dependence
of positron lifetime spectra on the positive-ion-
vacancy formation in alkali halide crystals, intro-
duced by Ca2' doping to preserve charge neutrality.

A Na2~ positron source. was sandwiched between
a pair of KCl crystals, and the positron lifetime
spectrum was measured in a standard fast- slow
delayed- coincidence apparatus with an instrument
resolution of 360 psec and a decay slope of - 1&& 10
psec '. Five pairs of KCl crystals with various
Ca~' concentrations were studied. The method of
preparation and assays of other impurities are
given by Sibley and Russell. ' The coincidence spec-
tra were analyzed by a least-squares computer
routine, leading to three distinct lifetime compo-
nents (I„,1'„), v=1, 2, 8, where f„ is the component
intensity normalized such that I, +I, + I, = 1, and I"„
the associated decay rate or, equivalently, I'„'is the
lif ctime.

The results are summarized in Table I. A sig-
nificant trend with Ca" concentration appears in
I3. If one attributes components 2 and 3 to two

types of defects at low concentrations, in which
positrons are trapped for times that are long com-
pared to I"&' and I', ', the respective rates Kp and

K3 of positron capture in these defects can be de-

rived from simple rate equations, with the result

I'2 and I", are then the positron annihilation rates
characteristic of these A centers. The annihilation
rate in the crystal bulk y, is given by

These derived quantities are also listed in Table I.
The content of impurities other than Ca ' and the

thermal history of the crystals' are sufficiently
equal that one can attribute K, -constant to positron
traps inherent to the crystals. Only K, varies sys-
tematically with the Ca ' concentration. At room
temperature, most of the cation vacancies neutral-
ize the divalent impurities by association on ad-
jacent lattice sites. They should be ineffective as
positron traps. A small concentration n„ is avail-
able as isolated cation vacancies for A-center
formation. For our crystals one finds4

(g/Z )1/ e 2E~/22T-

where C is the concentration of Ca' ions, Z, = 12
(the cation coordination number), E, the free ener-
gy of association between a Ca~' ion and a cation
vacancy on nearest lattice sites, and kT = 2. 5&&10 3

eV at room temperature.
By linear-regression analysis, one finds K, -C

with a correlation coefficient of 0. 994 (Fig. 1); the
correlation coefficient for K, -C is only G. 923. The
slope in Fig. 1 is ~2/C"2=(2. 8+1.0) x10 2

[nsec (ppm)'"I '.
The slope can be discussed in terms of two lim-

iting cases of the same physical situation: (i) The
positrons interact weakly with the lattice and probe
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TABLE I. Characteristics of positron lifetime spectra in KCl:Ca. The data, averaged over several runs, are
reproducible to +5%. Rates are given in (nsec) . Crystal designations refer to compositions listed in Ref. 3.

Crystal Ca(ppm) I~ I g I2 F2 I3 I'3 ~C K2

0302 0 0.50 4. 80 0.48 1.88 0.02 0.69
0413 II b 0 0 55 5 04 0 43 1 89 0 02 0 51
0613 II 60 0.54 4.73 0.36 l.90 0.09 0.77
0613 III 90 0.46 4.34 0.44 l.84 0.10 0.83
0621 III 400 0.35 4.41 0.46 2.14 0.19 0.86
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FIG+ 1s Positron captule rate &3 vs square root of Ca
concentration in KC1. The indicated errors are upper
bounds.

it as free particles of effective mass m,*, velocity
v., and wavelength X = k/m,*e„»R; R - (-,'a) being
the effective vacancy radius comparable to the lat-
tice constant a(KC1) = 6. 3A. Then,

&3= PKCi&f ~+Os~

where p«, is the reciprocal KCl unit-cell volume
and o„ the positron-capture cross section of the
vacancies. Approximately, o„=v(X+R)2$; the
trapping coefficient $ depends on the positron wave
number inside (K,) and outside (k, ) the vacancyto
lowest order in k, as t" = 4k,/E, For m f = m, one
finds o„- 4&&10 '4 cm or e, g„= 5~10 cm sec '.
(ii) The positrons interact strongly with the anions
and diffuse by random walk from site to site until
they either annihilate, after a time y,', in the crys-
tal bulk or are captured by a cation vacancy at
the rate

where D, is the positron diffusion coefficient. From
the slope in Fig. 1 and Eq. (3), with E, =0.3 eV, 3

it follows that the values of v,o„or 4~AD, must be
of order -2. 5x10 9 cm'sec '. Approximation (i)
in KCl seemingly is inconsistent with this result.
(However, one should expect it to apply, e. g. , in
metals. ) Therefore, we attribute ~, to the diffusion
of positrons to Ca '-induced free-cation vacancies
whel e they annllHlate with the llfetlIQe I 3 = 1.3
nsec. Subject to the large effects of errors in E„
the diffusion constant for this process is D,(KCl)
=6x10 3 cm sec '.

This number is instructive. Since D, = (a/M2)'
x(Z, 7) ', a thermalpositron dwells in a unit cell for
a time 7'-3x10 '4 sec. The positron visits (&y, )

'
10 unit cells, covers some 0/(0 2 7'pq) 5 x 10 A

on its random walk, and diffuses over a mean
distance (2D,y, ')"2-2x 102A before it annihilates
with an electron in the crystal bulk. Still, while
in a crystal ceQ, the positron can form a nearly
stable Wheeler compound Cl e' of binding energy
E'=3. 74eV in the sensethat the dwell time 7 is some
10 times longer than the eigentime k/E = 2 x10 '
sec of the compound.

The question remains as to the nature of the de-
fects appearing as component 2. Apparently here
positrons probe traps of concentration
(v2/p«, 4vRD, ) -30 ppm which, if voids, must
be smaller than the vacancies introduced by Caa'

or otherwise bind positrons less tightly than either
an anion (where y, '- 0. 3 nsec) or a cation vacancy
(where 1"3'= 1.3 nsec) to cause a I'z'- 0. 5 nsec
such that y, & I"2 &I'3.

W. A. Sibley kindly provided the crystals for
this investigation. The authors benefited from dis-
cussions with P. W. Levy and A. Schwarzchild.
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