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The equation of motion for the averaged Green's function in an alloy couples the latter to the
Green's function for which the average is restricted so that the composition of one atom is
held fixed. The average Green'8 function may be regarded as the Green'8 function for a zero-
atom cluster, and it, is coupled to the Green'8 function for a one-atom cluster. There is thus
an infinite hierarchy of equations of motion 1n which the n-atom functions are coupled to
the (n+ 1) atom functions. The coherent potential approximation (CPA) of Soven corresponds
to truncRtlon 1n the equation of mot1on of the one-atom function. We have genel" Rl1zed the co-
herent potentiol theory to a theory of n-atom functions with truncation in the equation of motion
of the (n+ 1) atom function (CPn). The formalism is developed, and specific formal, results
are xeported. In particular, the existence of localized states in the band tails can be demon-
strated, but the transition region from localized to extended states is beyond the reach of a
cluster theory. The theory provides a systematic basis for quantitative improvement over the
CPA, and Rllows fox' R d1scussion of the effects of randomness ln the off-diRgonRl elexnents of
the Hamiltonian. The clus'tel" hierRrchy 18 formally solved to plovide R multiple-scattering
expansion of the average Green'8 function, where terms involving one, two, etc. , atom scat-
texing are grouped together. This expansion can be used to generate recently proposed gen-
eralizations of the CPA, but when used in conjunction with the self-consistent n-atom func-
tions of the CPn, it provides the best approximate averaged Green'8 functiox1 for which the
lowest-oxder cox'rections jnvolve the scattering from compact (n+1) .atom clusters.

I. INTRODUCTION

Apart from strongly ionic or molecular materi-
als or from simple metals, our present knowledge
of the electronic structures of condensed materials
is rudimentary except for crystals. There, struc-
tural periodicity leads to the remarkable simplicity
of the eleetronie wave functions expressed in the
Bloch-Floquet theorem and to the existence of en-
exgy bands. Our present concern is with the cor-
responding universal features of the electronic
structux es of disordered materials. Soven and
others' have developed the coherent potential ap-
proximation (CPA) into a quantitative tool for the

study of the electronic structures of simple alloys.
It yields, however, only banda of extended states
with sharp edges and shows signs of inaccuracy at
the band edges. In amorphous semiconductors, the
band edges must play R. central role in determining
the electronic properties. Moreover, on both the-
oretica, l and empirical grounds it seems highly

plausible that the electronic structure of disordexed
materials consists of bands of extended states with
tails of localized states which may, in fact, over-
lap. The character of the wave functions changes
from extended to localized at an energy E, near
each band edge, where the carrier mobility drops
abruptly. One of the central tasks of the electron
theory of disordered materials is to substantiate
or correct these models. 3 Accordingly, we have
addressed ourselves to improving the CPA quali-
tatively and quantitatively to the point where it can

conceivably contain such features as tails of local-
ized states Rnd Inoblllty edges. The 1 esultlng
quantitative improvement of the CPA would be use-
ful for simple alloys.

Electronic properties of a disordered material
which are associated with the entire system, e.g. ,
the density of states, contain within them a sampling
of all configurations in the system. In calculating
such properties, therefore, it is admissible to
carry out averages ovex an ensemble of systems
having Rll possible configurations. Various approx-
imations diffex in the way the ensemble average is
inserted into the stlucture of the eRlculRtlon. In
the CPA in paxticular, the average is carried out
in such R way that the effective potential experi-
enced by an electron is the same on each site.
However, localized states produced by a single
impurity are associated with the deviation of the
potential introduced by the impuxity from that, of
the perfect crystal. Similarly, localized states in
disordered materials are associated with the fluc-
tuations in the total potential, i.e. , with the vari-
ation in potential from site to site. This is readily
seen from the arguments of I,ifshitz, Kane, Hal-
pex'ln and +axe ZittRrtz and Langer~ Rlld pR1 tlcu-
larly of Zlman ln the context of a clRsslcRl percolR-
tion calculation. ' The CPA considers the response
of an electron to the potential at R single site. The
minimal improvement over the CPA would there-
fore be to consider the response of the electron to
the potential on two adjacent sites before averaging,
which allows for response of the electron to the
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difference in potential between the two sites. ' This
suggests in turn the possibility of considering the
response of the electron to a cluster of n atoms of
fixed composition and/or position treating the
rest of the material in an averaged way (CPn).

Hound states can result when the potential dif-
ference between the cluster and the averaged en-
vironment becomes large enough. One might hope
in this way to obtain some exact results by allowing
the clustex size to approach infinity. However, it
then no longer becomes possible to distinguish be-
tween an extended state and one localized on a
cluster. The vexing problem of the quantitative
description of the transition region between local-
ized and extended states, which is central to the
theory of disordered semiconductors, is therefore
inaccessible to the cluster approach. As we shall
discuss later, the difficulty is the same one en-
countered in the theory of phase transitions. 6

Nevertheless, one could expect to obtain improve-
ments over the CPA in the main body of the band
and some semiquantitativ'e results for the band tails
as well. Accordingly, we develop in the present
paper a systematic cluster theory of Green's func-
tions in disordered systems via a hierarchy of ap-
proximations containing the usual CPA as its lowest
order.

As Edwards notes, in oxder to obtain localized
states in the translationally invariant averaged
system, it is necessary to break the symxnetry in
some manner. This symmetry breaking is analo-
gous to that which is required, for instance, in order
to obtain ferromagnetism. 6 Thus, the use of a fixed
cluster of atoms is a particular choice of symmetry
breaking which is expected to accurately reproduce
some properties of localized states. In discussing
localized states in disordexed systems, Anderson4
similarly breaks symmetry by focusing attention
upon a specific lattice site. By focusing on a par-
ticular cluster of atoms me, of course, obtain re-
sults which are not translationally invariant. The
theories of Lifshitz and Ziman are also manifestly
not translationally invariant. No attempt is made
by Anderson, Lifshitz, or Ziman to restore the re-
quired translational invariance to prove that the
localized states are not destroyed when this in-
variance is reintroduced. It is therefore necessary
to introduce averaging procedures which restore
the requisite translational invariance. This en-
ables us to show that the localized states obtained
from the translationally noninvariant theory do not
become Mott-type extended resonances when this
invariance is restored. For this purpose only the
simplest averaging proceduxe is necessary. The
first and simplest approach, which involves ap-
propriate averaging over the random potential on
the cluster and the location of the cluster, provides
a great deal of insight as to the nature of bound

states in the band tails. Alternatively, the cluster
hierax'chy can formally be solved for the average
Green's function in a manifestly translationally
invariant form which is a highly summed vex'sion
of the usual multiple-scattering theories that have
been employed in connection mith the CPA. ' In
this expansion, terms are classified as involving
the scattering from m-atom clusters, m =0, 1,
2, . .. , ¹ Upon introduction of the approximate
self-consistent n-cluster Green's functions (CPn),
the resulting approximate averaged Green's func-
tion is such that the lowest-order corrections in-
volve scattering from compact (n+ 1) atom clusters.

II. CLUSTER HIERARCHY

A. Definitions and Conditional Averaging

We work throughout in the one-electron approxi-
mation. The disorder appears in the one-electron
part of the many-electron Hamiltonian, and all of
the basic modifications of the electronic structure
therefore occur already in the one-electron approx-
imation. Many-body effects can be inserted once
the single-particle problem is understood.

The Green's function 8 for an electron in a ma-
terial with a. given unaveraged configuration and a,

Hamiltonian Ho+ V is defined by

(2. l)
where Z is the electron energy, the representation
for g is left unspecified, and the right-hand side
is the unit operator. We assume that Ho+ V is
time independent, but the theory may be easily
generalized to include, e.g. , the time dependence
associated with atomic motion in a classical fluid.
In the Hamiltonian, Ho relates to some xeference
state about which the system fluctuates, and V is
the potential of fluctuation, which we take to be
1 andom.

For many electronic properties of the entire ma-
teria. l, it is sufficient to know only the avera, ge
Go(E) of g (E) over all configurations of the sys-
tem, i. e. , over the random potential V, as dis-
cussed in the Introduction:

(2. 2)

Here and throughout, () implies an average over
V. Equation (2. 2) suffices for the density of states;
conductivity would require ( 8 g ), the Hall constant
( g g g ), etc. ' We confine ourselves to ( g ).

However, in order to assess the nature of the
states which contribute to (8 (E) ) in a given range
of energy, whether localized or extended, it is
necessary to understand what particular configura-
tions of the random potential gives rise to them.
This can be done by examining the Green's func-
tions for a material in which the contribution to the
potential V of a cluster of atoms is fixed by speci-
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It is often convenient to specify separately one
atom n of an (n+1) atom cluster by the correspon-
dence n+ 1—n, n.

B. Equations of Motion

The equation of motion for G~ is obtained by av-
eraging that for b, (2. 1), over the potential VN,

((E-H, —v, —v9;) g);=i . (2. 6)

Using the definitions of Sec. IIA, this may be re-
written as

(E —Ho —V;) G; —( Vg; b );= 1 . (2. 7)

In many cases of interest, the potential V is a lin-
ear superposition of contributions from each of the
atoms (or molecules) in the material so that

V=K v„-,
af Et7

and in particular

VN;= Z V-.
eEQ-n

(2. 8)

(2. 9)

fying the positions and compositions of the atoms
within the cluster and averaging those for all atoms
outside. We therefore decompose the potential into
a contribution from a cluster n (the symbol n im-
plies the specification of position and composition
of n atoms), V; and into a contribution from the
remainder of the N atoms in the material, V„",

V=V;+VI;. (2. 3)

Let () imply an average over only the parameters
of the cluster m and ( ); an average over those of
all atoms outside l, so that

())=()" ' (2. 4)

The Green's function for a material in which the
cluster n is specified and the rest averaged may
then be written as

(2. 6)

C. Proper Self-Energies

The proper self-energy o; associated with G; is
defined through

(E Ho——
, V," —o;) G", =1 (2. 11)

in the present formalism. Comparing (2. 11) and
(2. 10) shows that

where

Q o(0. )

m+5

Gg—= ( V- Gg - )

(2. i2)

(2. ia)

and the parentheses around the superscript n in

o&
' indicate that an average has been taken over

the parameters for atom n.
It is now convenient to introduce the general

scattering, or T-matrix T& relating G& to G& -,

Gg ".= Gg+ Gg T; G; . (2. 14)

The physical significance of T& will be made clear
shortly. Substituting (2. 14) into (2. 13) gives a
somewhat simpler form for o~ ',

~,")=(v-. + V-. G, rg ) (2. iS)

Comparing the equations of motion for G& and G&-
in the forms (2. 11) with the definition (2. 14) of
T& shows that T- may be related to an effective
scattering potential U- in the usual way that T ma-
trices are related to scattering potentials:

T"- = U- (1 —Gm U-) (2. 16)

where

U~ —V~ +g~ ~ o~ (2. 17)
t

The effective potential U- is simply the difference
between cluster potential and self-energy in the
equation of motion for the "perturbed" Green's
function G- - and that for the "unperturbed" Green's
function G-. More explicitly, U is given by

This permits simplification of (2. V) to U-= V- —o- + Z (o" - —o )
CM (o)
111 tX 111 II' (I

gf m, o.
(2. 18)

(E —Ho —VI) G; —Z ( V; G;- )"= 1 .
eK II

The set of equations of motion (2. 10) for cluster
Green's functions of all orders n has a hierarchial
form (Taylor') reminiscent of that occurring in
many-body theory in that the equation for G; con-
tains G;„.. The hierarchy terminates only at n
=N, when Gg = g. Explicit but approximate results
can be obtained by truncating the hierarchy at some
smaller n, and a specific and simple truncation
scheme is introduced and discussed in Sec. III.
We prepare for the truncation scheme and for a
few exact results developed later by introducing
the proper self-energy a (E) and related quantities.

(G-„-) -=G-. (2. 19)

Averaging (2. 14) over the parameters of o, and
inserting (2. 19) yields the self-consistency condi-
tion

( T-,-) —= 0, all m, o+m . (2. 20)

Before going on to discuss approximate truncation
of the hierarchy, we introduce a condition which
must be satisfied by T- within any approximation
scheme. Any lower-order Green's function must
be obtainable by averaging down a higher-order
Green's function, the cluster for which contains the
lower-order cluster, and in particular,
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III. TRUNCATION: GENERALIZATION OF CPA

We are concerned with an exceedingly complex
problem. An electron is moving according to a
Hamiltonian 00, which may be periodic or transla-
tion invariant, while being scattered by a random
set of scattering centers. The scattering potential
from each center may be strong, the centers may
be densely distributed, and the contributions to V

from each may overlap. One class of attempts to
solve similar multiple-scattering problems involves
replacement of the actual scattering potential by
a mean field having the translational symmetry of
the averaged system. Such an approach can be
exact in principle. The mean field then becomes
identical to the proper self-energy, e. g. , in Eq.
(2. 11) for Go.

' From this point of view, all mean
field theories contain approximations to the self-
energy of varying degrees of aecuraey. The sim-
plest approximation is to replace the random po-
tential V by its average ( V), the virtual crystal
approximation. 7 As long as the potential fluctua-
tions are sufficiently small, i.e. , V-(V) small
in some sense, for perturbation theory in powers
of V- ( V) to converge rapidly, the virtual crystal
approximation works reasonably well. For a den-
sity of scatterers, sufficiently low that multiple
scattering can be ignored and single scattering
treated exactly, the optical model works well.
Soven' has introduced a scheme, the CI&A (Taylor' ),
which combines the virtues of both of the above and
gives reasonably accurate results for high densities
of scatterers in the main body of the energy band
of a disordered alloy. However, all of the above
simplify the proper self-energy so greatly that the
resulting energy bands no longer contain tails of
localized states. Even the CPA, the most complete
of these, omits the spatial nonlocality of the proper
self-energy. Soven has shown explicitly that the
higher-order corrections to the CPA are largest
at the band edges, where such omissions are most
serious. However, higher-order perturbative cor-
rections which themselves preserve the analytic
structure of the lower-order theory will not lead
to the missing band tails.

There is ample evidence that these band tails
come from potential fluctuations, some of which
would be automatically included in the clusters
present in the conditionally averaged systems we
have discussed in the last section. For the cluster
Green's function G(&, only contributions to the self-
energy from the N-n atoms o. outside the cluster
o&

' need be replaced by mean fields. There is thus
some hope that bound states can be preserved in
an approximation scheme developed via the cluster
hierarchy. We therefore generalize the CPA to
describe the motion of an electron in the presence
of a specified, i. e. , unaveraged, cluster n and an

approximate but self-consistent mean field contrib-
uted by the remaining N-n atoms over which aver-
ages have been taken.

As a first step in developing our approximation
scheme, we rederive the CPA within the frame-
work of our cluster hierarchy' in a manner that
immediately provides the necessary clues to its
desired generalization. In addition, we give an
alternative derivation of the CPA' to illustrate how

its cluster generalization, which we subsequently
give, is superior to perturbative correction of the
CPA.

A. CPA

The CPA' is concerned with the totally averaged
Green's function G0, which may be regarded as the
zero-order member of our hierarchy of the cluster
Green's functions. In all the cases that we con-
sider, G0 has translational invariance. Since G0 is
related to the self-energy o- through

0

(E —
H(&

—(r5) G(&
= 1 (3. 1)

[cf. Eq. (2. 11)], where

(af )
O0 ~a ~0

o0 ' is independent of a up to a translation. The
problem reduces to finding the single operator
o0™.To do so approximately, it is sufficient to
truncate the cluster hierarchy at some point. The
equation of motion for G0 involves in addition only
G, . Thus, within the framework provided by our
cluster hierarchy, the least accurate kind of ap-
proximation would involve truncation at G, . This
is most readily effected by utilizing the correspond-
ing T matrix T0.

The T matrix by means of which G, can be con-
structed from Go according to Eq. (2. 14) is given
by

(3. 2)

T() =
U(& (1 G(& Uo )

where

Ua. V o(u& + Q (~(8& o((&&)

Ban

(3. 3)

(3.4)

g(8)~ ~(8)o'- ~oo ~ ~»P (CPA). (3. 5)

Insertion of (3. 5) into (3.4) yields

according to Eqs. (2. 16) and (2. 18), respectively.
Now o'&' is the proper self-energy from atom P
where atom a has its parameters fixed, whereas
in o00) the parameters of atom n have been aver-
aged over. It is physically reasonable that there
is a finite distance, a coherence length, over which
the effect of fixing atom n can persist. If one
supposes that coherence length to be less than an
interatomic separation, which means no persistence
at all, one can set
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U0 = V„- —0'0(e) (s. 6)

and insertion of (3. 6) into (3. 3) yields'

T o
= (V~ —(ro" ) [1 —Go (V„-—o'q~ )]' (CPA) . (3.7)

Finally, insertion of the approximate form (3. 7)
into the self-consistency condition

(T, ) =0 (s. 6)

following from (2. 20), yields the CPA. The co-
herent potential is clearly seen as an approxima-
tion to ~.

Within the present theoretical framework, the
CPA follows from truncating the cluster Green's-
function hierarchy at G& by ignoring the outward
persistence of the effect of fixing the parameters
of an atom o. upon the proper self-energy (Taylor' ).
This provides a clear mathematical and physical
basis for the CPA. It can be expected to work best
either when the fluctuating potentials are weak, so
that the outward propagation of the effect of condi-
tional averaging is also weak, or when the mean
free path, which relates directly to the coherence
length, is fairly short. A condition of this sort is
required for the validity of the generalizations of
the CPA that we shall introduce later. However,
at the mobility edge, the energy of the transition
from localized to extended states, ' it is the persis-
tence of the amplitude of a wave function over the
entire material which distinguishes an extended
from a localized state. ' Disti.1ctions of this sort
cannot be explored within a theory which ignores
correlations persisting beyond a certain distance.

Within the CPA, the average T matrix for scat-
tering off-site n with site g specified does not van-
ish as it should':

( T- ) &0 (CPA),

where'

(s. 9)

T- = (V- —o'(')™&)[1 —Go (V- —o(~) ')] ' (CPA) (3. 10)

and

Go= [ Go' —(Vg —o'(') ')] (CPA) . (s. 11)

The correction terms to Go which would make (3.9)
vanish are the lowest-order correction terms with-
in our cluster hierarchy. What may be regarded
as approximations to these have been found to be
significant near the band edges. '

We can see that averaging Eq. (3. 7) leads to an
a independent o0 ' up to a translation which is local
in space and is complex only within a bounded en-
ergy domain. The total self-energy o- is therefore

0
k independent, which leads immediately to sharp
band edges, i. e. , no tails of localized states.

The above derivation of the CPA imbeds it with-
in the hierarchy of cluster Green's functions that
we have introduced and provides a basis for its

generalization. An alternative derivation, which
we now introduce, makes clearer the connection
with Soven's original derivation. ' We develop the
exact Green's function 9 about some as yet unspec-
ified Green's function 80, defining thereby a T ma-
trix

~0+~0 T ~0 ~

g =(z-H, -Z. V~) ',
g, =(z-lf, -Z. w'"&) ',

(3. 12a)

(3. 12b)

(3. 12c)

where the W' ' and therefore g0 are as yet unspec-
ified but are not random variables. Equations
(3. 12) lead to the following explicit expression for
T:

T=V(1 g, -V) ',
v=2. (v: —iv'"') .

(3. 13a)

(3. 13b)

Averaging g in (3.12a) completely to obtain the ex-
act G0 leads to

Go= go+ go( T) go (3. 14)

Imposing the condition that the reference Green's
function 80 be the exact averaged Green's function

G0 leads to

(T)=0 (s. 16)

t„-=(V"—W' ')[1 —go(V" —W"')] '. (3. 17b)

We note that t„- depends only on single-atom quanti-
ties. If the V-„a,re all independent random vari-
a,bles, then

(T) =Z(t-) +Z(t„-) go (t", )'+ ~ ~ ~ . (3.17c)
u g/n

At this point, Soven determines 8" ' to be the co-
herent potential by imposing the requirement that
the single-atom t matrices vanish when averaged, '

(t„-) =0 (CPA),

so that'

(S. 16a)

Gp = Q0 + neglected terms of fourth
and higher order in t" (CPA) . (3.18b)

We see that ( T ) does not vanish in the CPA but

with the result that the reference potential W' ' be-
comes the exact self-energy o0"'. This 0'0 ' can,
in principle, be determined by the self-consistent
solution of

( T ) =0 =(Q„(V;—g('P&) [1 —Go+„(v„-—o~"&)]-'),
(3.16)

but it is practically impossible to do so. Instead,
and at this point we follow Soven by making an in-
dividual-atom t-matrix expansion of (3. 16) with Go

replaced by the as yet unspecified Q0, we write

(T) =(Z t„-+Z t-got + ~ ~ ~ ) (S. 17a)
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In our first derivation of the CPA, the key ap-
proximation was (3. 5) and the corresponding self-
energy was determined from (3.7) and (3.8). The
CPA can therefore be generalized to the corre-
sponding approximation (CPn) for a cluster Green's
function of order n (n&0) as follows:

oa'~-'~oa+', all P fK n, o. (CPn) (3. 19a)

ra =(V- -o';&) [1-G, (V- -oa")] '

(CPn),

(CPn) .

(S. 19b)

(3.19c)

As is shown in Sec. Dt; (3. 19c) is a single alge-
braic equation for each a within the coherence
range of the cluster n. This is, of course, an im-
portant simplifying feature in any attempt to per-
form numerical calculations. However, if the
oa ' in (3. 19b) and (3. 19c) were different for all
n g n, then the problem of the evaluation of Ga via
(2. 11) would be as complicated as that of evaluating
g of (2. 1) for a particular irregular composition
of the whole lattice, thereby making CPn intracta-
ble. In Sec. IV, we therefore prove that 0&

' dif-
fers only from its asymptotic value o&

' inside a
region about the cluster n whose size is of the order
of the coherence length. Therefore, for the cases
of interest where the coherence length is short,
the evaluation of Ga is of comparable difficulty to
the evaluation of a Green's function for an impurity
cluster (of the size of the coherence length) in a
pure crystal (with complex band structure). Be-
fore proving the above properties and demonstrating
other explicit results which imply the feasibility of
CPn calculations, we consider an alternate deriva-
tion of CPn which parallels Soven's derivation of
CPA '

that the leading terms are of fourth order in the
Finally, we see also that the CPA cannot be

improved near the band edges by direct calculation
of the higher terms in (3.18b) because all have the
same analytic structure and give rise to sharp band
edges. As noted in Sec. I, the cluster hierarchy
can be used to generate a summed version of the
t-matrix expansion of (3.17a). This expansion is
presented in Sec. VI, and its relation to the cluster
theory is discussed.

Although all calculations employing the CPA have
been performed when V can only have two values, '
the above general formalism is not restricted to
this case. Thus, the random variables V could
take on a large number of discrete values, or even
have a continuous distribution. Thus, the following
theoretical development is not limited to the case
of binary alloys.

B. Coherent Cluster Potentials

Alternatively, we can develop g about a refer-
ence function Q, defining thereby a 7&

~ =~a+~a&aBI

gg= 8 —00 —Vg — Hg~,

(3.20a)

(s. 2ob)

Ta=Ua(1 —&aftra)
'

U, = Z (V.--Wa"&) .
e +gj

(3.2Oc)

(s. 2od)

Averaging (3. 20a) over all but the cluster n gives

Ga=8a+~a&Ta)a~a. (s. 21)

A single-atom t-matrix expansion of T& gives

T~= & t~+ & t~ g-~t~&+
n QK 0, &81K 5

(3. 22a)

where

ta = (V; —R'a' ') [1 —8 a (V- —Wa"')] ' . (3. 22b)

The CPn approximation is

Ga~ 8 a (CPn),
with

(ta )' =0, all n EE n (CPn)

determining the cluster coherent potential

pa' '=oa ' (CPn) .

(3. 2Sa)

(3. 2Sb)

(3. 23c)

Thus, in the CPn ( Ta ) a does not vanish, but the
correction terms are once again of fourth and
higher order when the V-„are independent random
variables.

The criterion that the CPn be accurate is similar
to that for the CPA. Equation (3. 19a) implies that
the addition of site n to cluster n does not affect the
self-energy on site PEE n, n. This requires that the
effect of adding another atom to a cluster decay
rapidly away from the cluster, i. e. , that the co-
herence length be short. This in turn suggests
that quantitatively accurate results can be obtained
from the CPn for extended states when the cluster
radius becomes larger than the mean free path.
Since no difficulties exist in dealing w'ith long mean
free paths, fairly rapid convergence is expected
whenever the Cpn treatment is warranted, i. e. ,
in strongly disordered systems with short mean
free paths.

IV. PROPERTIES OF CPii APPROXIMATION

In this section, we assume that the CPn approxi-
mation (3. 19) has been made for a particular clus-
ter n.

A. Self-Consistency

The proper self-energy is obtained in the Cpn
from Eqs. (3. 19b) and (3. 19c). We now prove that
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— a" G8(Ta ) (Cpn) (4 2)

As the last term in (4. 2) vanishes according to
(3. 19c), it is identical to (2. 15) as required.

%e certainly do not expect the correct formal
structure of the hierarchy to be preserved for
m &n once the CPn is made. However, we can
show that "self-consistency, " i. e. ,

(T-')"=0, all m(:n, o. (Em (4. 3)

is preserved for all m(—n, i. e. , 0&m&n. Before
we can define the T'- which enters (4. 3), we must
introduce Green's functions G- of order lower than
the order n for which the Cpn is. carried out. This
done by the general form of the exact consistency
equation (2. 19):

G -=- ( G ~ )™(CPn) . (4. 4)

%e now prepare to obtain an equation of motion for
G - in the C P n by rewriting the equation of motion
of G~ [Eq. (2. 11)]as

(E -
H(&

—V-) G)) — Z V8 G&)
— Z ( Vg G&( ~ )

/+5-rn eg n

(4. 5)

To make explicit the introduction of the Cpn [Eq.
(3. 19a)] into G&,-, we relabel it as

G
&)

- &G f = [E—H8 —V; —o~ —(V- —v~( ')] ' (CPn)

(4. 6)
We see that an equation of the exact form [Eq.
(2. 14)] holds for Gg,

(4. S)G g = G t, + G 8 T g G g (CPn)

with T f, given by (3. 19b) and G&) by (2. 11)in the
CPn. Multiplying by V-, averaging over site a,
and using (2. 15) since, as shown by (4. 2), it holds
in the CP n, gives

«;Gk) =oi"'G8 (cpn), (4. 8)

which is structurally of the form (2. 13).
Vfe can now average down the equation of motion

(4. 5) in accordance with (4. 4) and get

(z-H, —v.-)G.-- Z (v;G.-;)'
8 $5-m

where

Z (V„-G-) =1
e EE 5,

(CPn), (4. 9)

it satisfies the equation of motion, or rather its
equivalent (2. 15), once (3. 19b) is substituted for
Tt, therein. We start by rewriting (3.19b) and then
averaging it:

( Tf )"=- ( (V„- —o't(, ') (1+G ~ T8 ) )
' = 0 (CPn) .

(4. i)
This may be rewritten as

o)( ) =( V„-+ V„- G, T g )"

G.--=(G, .-)'-- (Gg)™(CPn) . (4. 10)

At this point we can introduce lower-order 7.
' ma-

trices through

G"- —= G-+ G- T-G-, o, (IE n (Cpn) (4. 11a)

G-= F. -a, —V-—
e4m

(4. 12)

namely,

a( & =( V;+ V-G-T- )', all n$ m (CPn)
(4. is)

which has the same form as in the exact theory.
Similarly, comparing (4. 9) and (4. 12) leads again
to relations of the same form as in the exact the-
ory:
o("' G - = ( V„- G -; ) ', n g n —m (CPn) (4. 14a)

a'-" G-=( V-G-)", n(E n (Cpn) . (4. 14b)

Because T'- is defined as a scattering matrix
through (4. 11), it obeys the equation

T-" G "=U- G-;, (&( g n —m (CPn) (4. 15a)

T-G-= U-G™, c( (E n (CPn) (4. 15b)

From (2. 18) and the definitions of the self-energies
entering the Green's functions in (4. 15), we have

UI= V--g-'"+ ~ (o(8& —o(8&), nun —m (CPn)
ggm, e

(4. 16a)

V o( ) Q (o (8& og(&)
m e m m in

g(P m/e
o. (En (CPn) .

(4. 16b)

%e have defined the self-energy 0-'~' as follows:

+K(8) Gs (o(8) Gal )n III 8@n + (Cp ) (4. isa)

a~' ' G~a=( V8G8 ), t)Cn —m (CPn) . (4. 17b)

This in turn enables us to make -the definition

G"-= (E —H8 —V- „- —g-") ', o. (E n (CPn)

o&= Z o-(8& (crn) .
m ~

e~

Averaging (4. 15) over site o. gives

(TIE G )OI (TR)IM, G (UIIIG )III

nC n —m (Cpn)

(T- G-)"=(U-G-) o. (En (Cpn) .

(4. i8a)

(4. 18b)

(4. 19a)

(4. 19b)

G- -—= G-+G- T8 G-, p C n —m (CPn) .

(4. 1 lb)
The equation of motion (4. 9) and the T-matrix defi-
nitions (4. 11) enable us to obtain explicit expres-
sions for the self-energy 0'"' defined through
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Upon substitution of (4. 16) into (4. 19), the terms
containing V; —og' vanish because of (4. 14) and
(4. 18), as does each of the terms in the sum over
P. Equation (4. 19) vanishes identically; there-
fore, the self-consistency condition (4. 3) follows
in the CPn.

8. Locality of o& in CPA

One particularly simple model has been of great
utility in the study of disordered crystalline alloys,
e. g. , within the CPA. ' In that model, Hohas the
full translational symmetry of the crystal. The
fluctuation potentials V; depend on the particular
atom on a site and are independent random vari-
ables under the assumption of complete composi-
tional disorder. Finally, it is supposed that only
a single energy band is involved and the V„- are
local in the crystal coordinate, or Wannier, rep-
resentation for that band:

important property of CPn is proven in Sec. IV C.
The above proof of locality can be generalized

to include localization of V- to any subset of sites.
If V- is a matrix which ha, s nonzero elements only
for a set of z sites related to n so that it can be
represented by an x&r submatrix, o&

' and TI~ '

have similar x~ r representations. This allows
immediate generalization of the CPA and the higher
CPn to include randomness in the off-diagonal ele-
ments of the Hamiltonian. '

C. Asymptotic Limits of |",a~'& in CPA

Wave functions in a disordered system are either
extended with a finite-phase coherence length
(similar to a mean free path) or are localized; the
Green's functions must have finite range. Ignoring
the breakdown of translation invariance introduced
by the fixed cluster potential permits us to repre-
sent this finite range schematically by

(pI v.-Ir) =v-„5,„5„„. (4. 20a) (nIcaIP) = ga e "a ~/R, ~, (4. 24)

Here the vl are the amplitudes of the single-site
potentials, they are random variables and are not
necessarily restricted to only two possible vari-
ables. The Greek indices are here used to label
sites of atomic occupancy. We now prove that o~~'

and TI a,re similarly site diagonal.
Because V- occurs as the left-most factor in

(2. 15), (4. 20) automatically implies that

(pins'I » = 5.a (nina"'Ir ), (4. 20b)

and similarly,

(pI.-."Ir)=5., (nI.-."'Ir) (cPn)

from (4. 13). In CPn, Eqs. (3. 19b), (4. 6), and
(4. 7) permit us to write

c, r f = cf (v„- -oa"') .

(4. 21)

(4. 22)

Substituting (4. 22) into (2. 15) gives

(nIv" Ir)=(v-+v (nIG'In)v ) 5„

—(v-. (nI ca I
n) )"(nlo'a"'Ir)

( vs+ vs (n I Ga I n) v-„)'
~y0f &

1+(v„- (n I ca I
n) )

(4. aS)

so that oa ' is site diagonal. With (4. 23) estab-
lished, (3. 191) shows immediately that T a is simi-
larly site diagonal.

Even though crm
' is site diagonal, it is obviously

not site independent. It does not exist for the sites
E n and, because the specifying of the cluster po-
tential V destroys the translational invariance, it
must depend on the position of a relative to the
cluster. In order that CPn calculations be compu-
tationally feasible; it is necessary that the o~ ' are
site dependent only within a finite region. This

(nIC-I p) =g- e" "/R.8
R~g

Thus, according to (4. 24) and (4. 25), information
concerning the presence of the cluster must decay,
at least as e ""~~/R „ for quantities such as Ga,
T&, and o~ ', where y is a site in the cluster n and
n is far away. This suggests particularly simple
asymptotic limits, which we now proceed to ex-
plore. In particular, it is possible that all quan-
tities become independent of the presence of the
cluster n, asymptotically.

Let us suppose that such an asymptotic region
exists and examine the consequences of our as-
sumption:

m~n . (4. 25)

g(e) g()
~ oo

where 0„'"' is n independent up to a translation, and
hence

(nIcaIp)-(nIG„Ip), R „or R „- (4. 26b)

where G„ is translationly invariant and of finite
range. Let us write G„ in the general form

G„=(E—Ho-Z Wg ') ', (4. n)

(4. 26a)

where the 8'„' ' are invariant up to a translation.
We may define a T 'matrix as follows:

Ga- G~+ G~ Tm G~

f a~ (1 —GA. UaA, )

(4. 28a)

(4. 28b)

where R ~ is the distance between sites &and P, and

1/va is the coherence length. Since all lower-order
Green's functions G- may be obtained from G~ by
averaging down over n —m, (4. 24) implies that all
lower G- are of finite range, denoted schematically
by
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(4. 28c)
Now G& must equal G& asymptotically. Since G„
has finite range, this requires finite range and lo-
calization of T~, according to (4. 28a). Finite
range and localization for T~ results only from
finite range and localization for U&„, according to
(4. 28b). Equation (4. 28c) guarantees a local UL{

only if

o{"'
A

w ca.

(4. 29)

which implies that

gr {e) g{e)
A A (4. 30)

We note for clarity that by finite range we mean
that a matrix (o. lMI P)-0 as R,~-~, and by local
we mean that

(o. IM&IP)-0 as R,„or R()„-~ .

Turning now to the CPn, the self-consistency
requirement (4. 23) gives o„' ' site diagonal with

amplitude

(n, ) (5YP+57n (, Q I GA l 0) 5Z ) (Cp ) (4 31)I+(v; (nl Ggl o.) )~

where G„ is the asymptotic limit of GF;, Eq. (4.6),

G„'=[8—Ho —&g —(V; —og ')] ' (CPn) (4. 32)

oX=&~.~~"' (CPn) (4. 33)

Equation (4. 31) may be rewritten immediately as

o(a) ( V ~V G Te)u (4. 34a)(CPn ),
where

T '„= (V- —o( ') [1—G„(V„--o„"')] ' (CP n) (4. 34b)

(T~~)~ =0 (CPn) . (4. 34c)

(7a(
' —cr„( '+s„(R,„), yg n (4. 35a)

(~IGNI ~) = (~IGNI ~)+g~ «.,) (4. 35b)

be the definitions of s„and g~, which are taken as

Equation (4. 34) is identical in structure to the de-
fining equations of the CPA (=-CPO), (3.7) and

(3.8). Thus, we have shown that if the Green's
functions are assumed to have finite range and if
translation-invariant asymptotic forms are assumed
for all quantities, the CPn reduces to the CPA
asymptotically.

We now quote a result relating the relative rates
at which G& and oi™approach their a,symptotic
limits. Let

small. We have shown that

s„=0(g„) (CPn) (4. 36)

by a detailed analysis of the corresponding gen-
eralizations of (4. 34). In other words, oq") ap-
proaches asymptotic behavior faster than G)(.

The fact that the CPA o„' ' is the asymptotic lim-
it of the CPn 0~{, ' is important in any calculations
involving CPn. Thus, the CPn equations (3. 19)
could be solved self-consistently by initially using
0'~" for o&

' and then iterating. The first step is
merely a Koster-Slater impurity problem for the
cluster n in the CPA environment. Preliminary
calculations of this nature have been carried out

by Kirkpatrick in these laboratories. Since these
calculations have direct bearing on the existence
of localized states in the band tails, the above it-
eration scheme is discussed in Sec. VII. Alterna-
tively, inside of the CPA band, a&

' can be ex-
panded directly in a power series of CPA quantities.
This expansion, which is discussed in Sec. VC,
could be used to improve convergence.

Because the G-, m~n, are obtained from G&

by averaging down over n —m in the CPn, precisely
the same asymptotic behavior holds for all m Cn
and, in particular for Go. Clearly, at this stage
of development of the theory, no essential improve-
ment over the CPA is achieved by fixing the po-
tential associated with a localized cluster except
in the vicinity of that cluster. This, as we shall
see, allows for certain of the localized states, but
the CPn must be augmented before it yields a sig-
nificant improvement over CPA throughout the ma-
terial.

V. AVERAGE GREEN'S FUNCTION: ECPn

The physical quantity of interest is the average
Green's function (g) = G, . An approximation to G,
is obtained directly by stopping the CPn at level

0, i. e. , by using the CPA. It was argued in Sec.
IIIB, however, that the higher x, the more accurate
the CPn can be expected to be, at least within the
cluster. We therefore used a prescription for cal-
culating a lower-order Green's function {"'-",
m( n, (Go"' in particular) from a G; obtained via
the CPn. The simplest prescription involves only
averaging down, i. e. ,

G{n) (G )n-m G( 8) (G )if (Cpn) (5 1)

which is discussed in detail in Sec. IVA. However,
the CPn singles out a particular set of atoms or
sites n through the approximation on 0',»-'„, all
P(E n, o.'and all o.+ n, Eq. (3. 19a). The use of the
CPn in (5. 1) does not yield a translationally in-
variant approximation to G~ as is required. The
cluster n could have been taken anywhere so that
averaging Go"' over all clusters translationally
equivalent to the original one restores its transla-
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tional invariance. Next, there is nothing special
about any particular cluster configuration for fixed
n, so that Go" should be averaged in addition over
all cluster configurations of n atoms in which the
relative separations of the atoms or sites are suf-
ficiently small that the cluster does not decompose
into two independent parts. %e would then have

G,'""=Q,- PIG,"' (cPn) (5. 2)

(cpl),
(5.3}

since P; is the probability for specifying one site
out of a total of N sites or 1/N. Taking matrix
elements, we get

(&I Go"'I ~) = (~l G. l
~)+ (1/N)

where

x ~.~(pl &G.& Ir) - (J3I G~
I
r) I (CP1), (5.4)

(Pl &G-. &
I &)...-.„.:=(Pl G.

I
~) (C») (5 5)

The asymptotic Green's function G„ is just the CPA
result according to Sec. IVC. Let R, be the dis-
tance beyond which asymptotic behavior is mani-
fested. We obtain from (5.4) that

(0) ~G) r) oft(P,-r; Ro)/Nj(PI G
I
~) (CPl),

(5. 6)

where AG is Go" ' —G„and X(P, y; Ro) is the number
of sites satisfying R~~ or R„&RO. Thus &G -0
and Go" -G„as N increases to infinity. In other
words, no calculation of Go based on a translation-
ally invariant form of the simple CPn can yield a
result different from CPA if n remains finite as
N goes to infinity. We require therefore for non-
trivial results a subtle generalization of the aver-
aging process used thus far. In Sec. V, we develop
such a generalization and examine its properties.
In Sec. VI, an alternate approach which results
directly from the cluster hierarchy is discussed.

for the averaged Green's function, where the sum-
mation is over all clusters of order n as stated
above. In (5. 2), P; is the probability of a given
cluster n in an ensemble of all possible configura-
tions.

To examine how Go"" differs from the CPA re-
sult, we deal explicitly with the case n = 1. %e have
from (5. 2)

G,'"'=2 .P-.&G-„& =(I/N)Z. (G;&"

A. Fma1 Averagmg

Gg-=G" " (5. 7)

has the asymptotic properties of CPn as given in
Sec. IVC. The presence of the specified clusters
y and m imply a local nonzero value of U; ~ of '

(4. 28c) and (4. 30) in the region around the clusters
g andm,

(n~ U; ~~ o-) ~0, R„„&R„rei or m (5. 6)

where R, measures the range over which the self-
energy o' -' differs from the CPA. By (4. 35) and
(4. 36), R, & Ro, where Ro is the range used in (5. 6).
For R» & 2RO, ~C1 and p, Cm, the 0", - just differs
from 0„' ' only in the two disjoint regions R, and
R &R, about the subclusters 1 and rn. Specifi-
cally,

(e)
G; "=G,"+G; Q U; "G;" (CPn),

n, B(Rg
(5. 9)

where U; - is defined as usual by (5. 9), so that
upon taking matrix elements

It is clear from the above arguments that in order
to obtain a Go"" which is different from the CPA
it is necessary to allow for the possibility of having
specified clusters everywhere densely distributed
throughout space. The total size of the specified
cluster divided by N then remains finite when
N- ~. Since it is impossible, practically as well
as formally, to do CPn in the limit n -~ in the
general case, we must consider only certain special
cases. For a single compact cluster n, it is ex-
pected that Go provides an improvement over the
CPA in the region of the cluster n, an assertion
which is amplified in Sec. VII where localized states
are discussed. Thus, the CPn Go"' has nontrivial,
but finite, information content above that contained
in the CPA G~ '. However, this information con-
tent was lost in (5.4) because it was spread out
uniformly over infinite space. %e now show how
the information content of Go"' can be made macro-
scopic in the sense that the improved approximation
to Go, say Go"', which is solely determined by the
G',"', differs from Go

' in a totally nontrivial
manner.

First, it is convenient to consider the case of a
single cluster n in CPn, where n is divided into two
disjoint subclusters 1 and m. If we take 1 and m
each to be compact, then

(&I G-, ;I»= (&I Grl r)+ ~ (PI Grl ~)(~l U'r,
".'I ~)(~l G-f.=l ~) .,„...„,», (Ol Gfl H -(CPn) .

1

(5. 10)

In particular, for Rz~, R» & Ro, and therefore
R,~&2RO, (5. 10) gives

(Pl Gl, -~&) = (Pl GII x) Ra~ R,~&RO R~~ '2Ro
(5. 11)

t

Thus, in the neighborhood of the subcluster 1,
G; "-Gg which must just be the CPl result since
& and m are beyond each other's range of influence.

Therefore, given the CPn G", for all n, we auto-
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G'"'= P P-G"" (CPni)
n &-&

f',

(5. ia)

is a compositionally averaged Green's function,

matically have the G'" ' ' for R,",~ 2Rp, and hence
G '"~'"""&'"', provided Rs&, n, & 2Rp for all i and

j, where n; and n& represent arbitrary clusters of
size n. G'"~'"~""'"&'"'therefore has specified in-

0
formation about clusters distributed densely
throughout space, so that a final averaging which
leads to a translationally invariant approximation
to Go does not reduce to the CPA as in (5. 2). It
now remains to specify the optimum distribution of
the clusters n»n»- ~ ~, n& . . . in space and the
nature of the final averaging to provide translational
invariance. First, we require the clusters (n;} to
be as compact as possible to minimize max(o. '~,

p;En;)R, , g, Second, we want to obtain the maxi-
mum amount of information content in Gp "~" which
is related to

W=l.im(1/N)Z; &(o.';, p;;R,) as N-~ . (5. 12a)

This is, of course, accomplished by choosing
min(o. ,E n„P,E n, ) R, , q, = 2RO to allow the clusters
to be as close as possible to each other. Thus,
specifying n, establishes a cell of size Rp about n»
and n~ is then placed in a neighboring cell of size
Ro, etc. , until space has been filled. If N(R, ) is
the number of sites in such a cell, the total and
optimal number of cells is N/N(RO). Since any
cluster n; could be centered in the ith cell, we must
first average over the composition and type of
cluster n&, provided it is kept centered in the ith
cell so that its range of influence does not extend
into neighboring cells. Thus, we have the extended
CPn approximation (ECPn)

g P~ G""'" (E'CPn), (5. 12b)
( )

~

analogous to (5. 2). Finally, the translational in-
variance must be restored; however, in (5. 12b)
after averaging over n, in the center of each of the
cells, all of the cells are equivalent, so that a
translational-invariant averaging implies only a
spatial averaging over all translationally equivalent
sites within a single cell subject to cyclic boundary
conditions. Thus, we first average over the com-
positions and the shape of n; in the center of cluster

Then cyclic boundary conditions are applied to
the ith cell, and finally a translational average in-
side this ith cell is performed with these cyclic
boundary conditions, i. e. , we average over all pos-
sible positions of the cell origin subject to the usual
cyclic boundary conditions.

Kohn' has also utilized a similar but less com-
plete notion of periodically repeating a particular
disordered configuration of limited spatial extent.
Thus, if

G',"'=(Z-H, -Q. o")-' (ECPn) (5. 15)

by the equivalence of averaged cells.
From the discussion in Sec. IV C, it is clear that

the asymptoptic nature of CPn is related to the
finite range of G„. Thus, Rp must be the order of
magnitude of the coherence range R, = maxR~ for
which (a i G„l p) e0. (See Sec. V B for a more ex-
plicit discussion. ) The latter is of the same order
as the mean free path l for the CPA, and therefore
the approximate magnitude of Rp ean be obtained
directly from the CPA from the exponential decay
of the off-diagonal elements of G„as in (4. 24) for
G„and Ro =-I/x„. It should be noted, however,
that as the energy approaches the band edges, 3 - ~
and the above prescription would require that
Rp ~. %'e would there be dealing with infinite
compact clusters ln;). The region near the band
edges is thus inaccessible to our present theory.
However, since bound states are described approxi-
mately in the theory (see Sec. VII), we can use it
as a means of interpolating between the main body
of the band, when it can be expected to hold, and the
tails, where it is qualitatively correct, through the
difficult transition region. The theory ean be ex-
pected to be most accurate as W of (5. 12a) ap-
proaches unity, i.e. , when the radius of the largest
compact cluster which can be treated is of order
the mean free path or greater. %e note that the
case L- ~ is reminiscent of regions near critical
points where infinite-range correlations, fluctua-
tions, etc. , must be included in any proper theory.

B. k Dependence of 0

Because of the lack of translational invariance
of Gp~i', it is clear that the self-energy associated
with Gp"t' within cell i is not site diagonal. There-
fore, the o' ' in (5. 14) and (5. 15) are no longer
site diagonal at &, so the complete proper self-
energy o«r-„= g„o'"' is now k dependent, thereby
introducing an improvement over the k-independent
o p in CPA.

C. Corrections to CPA and ECPn

Inside the CPA band, because of the finite density
of states for the CPA, we can make a formal
power-series expansion of the CPn Gf of (4. 6) in
terms of the CPA G"„of (4. 32):

Ga = G~+~ G~ ~~(o') G~+ (5. 15)

where g~.e, implies that the clusters n, are "cen-
tered" in i as discussed above then let Gp&' be that
part of Gp"~' in cell i, so that the translational av-
erage of G'„"' subject to cyclic boundary conditions
ls

(Go"") '=Z —Ho —Q (x'" in i (CPni) (5. 14)
egi

and, finally,
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where X is the formal expansion parameter and where

IfL (n) = ~&~+{&~"-(&a"' (5. 16') g(@;0) g(e)
A (5. 17b)

by (4. 28c} and (4. 30). Substituting (5. 16) into the
self-consistency equation (4. 23) for nI{'& and using
the CPA result (4. 31) gives a power-series expan-
sion of v~

' in terms of the CPA,

(&; &) g ( vc7 I (n I Ga I p) I (Um —0'g )) ({)() —o~ )
1+o'„(n) G~ ~ n)

(5. 17c)

n(0(& Q n(m; J & ){J
&=0

(5. 17a) is the magnitude of the first-order correction,
while

n'™'"= ~ &~;(nl G:I p) (pl G:l»(yl GXln) (~.--n„"')&™(~--o„"')(~-„-~„'"')
8, T

+ 2 (v.-h(~ht:;$e)h' (v.--~"')) v(s'"-~( '" r(~-. (~3& hoI) (~a-~"') I&+~"'(~l~ I~I)'
846, Z' 8FK

(5. 17d)

is that of the second-order correction, etc. Be-
cause of the finite coherence length in the CPA
band,

(nl G~ I p) ({„--= g~ 8 """'/ft (( (5. 18)

so that

„= s,{„"e'"~".~&/~'.„PC n (5. 19a)

n{u;2) - 0((y(u&1) ) ~s(2) e{-3~ARot(&)/Il3 pg nI( R~8.~ ~ 5 IR e8&

(5. 19b)

etc. , which is merely a reflection of (4. 35) and
(4. 36). Convergence of the expansion (5. 17a) in-
side the CPA band thereby implies that the asymp-
totic range Ao of CPn be of the order of the coher-
ence range of the CPA. The use of (5. 17) might
therefore be a useful computational aid, given the
CPA.

We can also examine the lowest-order corrections
to CPn to give an indication as to the expected con-
vergence properties of the ECPn approximation (see
also Sec. VI). The examination of the lowest-order
corrections in CPn proceeds directly as in CPA.
Using the a,lternate definition of CPn embodied in
(3. 22) and (3. 23), and assuming that the Vg are in-
dependent variables, the lowest-order correction
to (y) Gz

&

1 y ') is the fourth-order contribution

&yf G ln) l(nlG, f p)l' (nlGal»«IGaly')
0. /8 e, 8$ 5

){&(T )') &(7 )') (5. 20)

where all higher-order terms which involve only
two-site scattering can easily be incorporated, as
is done by Soven (see also Sec. VI). Because of
the finite coherence range of G& (4. 24), the only
contributions to (5. 20) occur in the region R ~,
Jt«&1/({;, where )=y, y', )=n, P. The maximum
terms in the summation occur for nP~ yy', but

even for such terms the argument of the summand is
still complex in the region of nonzero density of
states because it contains the quantities ( (T {()&'

(and n —P) and (nl G&{l P) (and n —P). For large
enough clusters n, the summation runs over a num-
ber of terms with essentially random phases, and
therefore is usually expected to be small. Near
the band edges, Eq. (5. 20) should be an extremely
useful and delicate test of convergence.

Far enough from the cluster n, when y, y', and
all significant n, P are in the asymptotic region,
Eq. (5. 20) gives

(ylG~ln) l(nlG I
p)l' &(T~)'& &(T~)'&'

e88 e, ,8$ 5

(5.»)
etc. , for higher-order two-site scattering terms,
thereby giving contributions which are independent
of n.

VI. AVERAGING VIA EQUATIONS OF MOTION:
MULTIPLE-SCATTERING THEORY

In Sec. V, we obtained an approximate Go from
CPn by averaging G{( and using the asymptotic prop-
erties of CPn to provide a translationally invari-
ant result, the ECPn for Go. This approach re-
quires the evaluation of G& for some set of suitably
chosen compact clusters n. There is, however, an
alternate manner of utilization of the information
contained in (G&, CPn, all nj to produce a transla-
tionally invariant approximation to Go.

This alternate approach of averaging can be used
in conjunction with the CPn to provide recently
sought generalizations of the CPA. This averaging
procedure can also be used to provide a formal
general solution to the hierarchy which should prove
to be quite useful. As this method produces a
theory which is more complicated than the CPn,
only the general formal development is presented
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here. Clearly, a more thorough discussion is
merited; however, such a treatment is beyond the
scope of the present work which places emphasis
on the localized states in the band tails and the
accompanying improvements over CPA. Rather
than presenting the most general form of the formal
solution to the hierarchy, the simplest solution is
first obtained, then the generalizations and their
properties are briefly discussed.

Assume that we are given a complete set of GP'
in CPn for all n. Then from the equation of motion
for all possible Go, from (2. 10),

(Z-a, -V, ;}G,'"&- Z (V.-G,",'.-"& =1, (6. l. }
e$ 5- i

where the superscript (n) implies that a quantity is
obtained directly from CPn and the superscript
(tEIE} implies that it ts obtained from the CPn via
the hierarchy. Note that the terms in

( V„-G&+1 '-") are of finite range because of the fi-

njte coherence lenght of Go and thepresenceof V- on
the left .Since these terms in ( V- )' are given
by the CPn, (6. 1}is an inhomogeneous equation for
G&"~&} for all n -1. The solution is, therefore,

(5- i, al }G'~'=g 1+g " Z (V-G 1'-
& (6 2)

CK@ 5, ~1

where

ga-l = (~ —&o —Vo-l}
' (6. 3)

is the Green's function for the impurity cluster
n —1 in the unperturbed crystal with band structure
given by Ho. Slmllarly~ by substltutlng the solution
(6. 2) into the equation of motion for G& i, we get
an inhomogeneous equation for G& ~', all n —2, which
is easily solved formally. Continuing this pxocess,
we can arrive at the approximate Go""'. However,
the above solution of the hierarchy is, in principle,
exact and is therefore examined before discussing
the approximate solution. This process provides
an explicit recipe for evaluating G~ from the exact
G~ for all n, i. e. ,

Go=go+go E «.-, g;, & ~+K ~ go «; g.-, «-. g-.,-.,&"&
~

~I +t M

+g' + ~ &~ « g (V g-- (Vg- - )) o& '+
cg c280f1 c CG301

+ g (V g V g . . .V G ) 1 o II (6 4)~1 3'" ~e]o i~ 1 o
' ' '

o n Ot iPO o
' ' ~

o S1

where G;=(g)„-. We can alternately take n=N, with

GN-gN = 8 to obtain an exact multiple-scattering
expansion of (g), where terms are classified as
involving scattering of 0, j., 2, 3, . . ., N sites with
the random potentials V-, . To our knowledge, this
multiple-scattering expansion has not previously
been used, but it is similar in spirit to the usual
T-matrix expansion, merely being a more highly

summed version. For comparison, we can intro-
duce the set of conditional scattering matrices

=V (1 g- - V)-0fi -1
i-1 i-1 i (6 6)

to desex'lbe the scattex'lng-off & ~ ln the px'esence of
the "impurities" n, ~ n, , Using (6. 5}, Eq. (6. 4)
can be rewritten as

Go=go+go~«" &"go+go~ ~ «&go«; &"og;, ) &

%1 01

(xaam

Ct1

+go + ~ ~ (t 'go(t, g", (t")",)"g-,-, ) ') '+ ~ ~

e1 +2~~1 &3e+&, 3

go(t"'got-'. t- -' - g- - V- G- -) ~"'"
~1- ~1"'on-3 ~1" ~n-8 ~ff Dl1" ann

Sio i=1' .'''o8 Silei 1o ~
~ al1

(6. 6)

where the last term has been left in terms of G;.
Equation (6. 6) is exact for G~ exact, and for n = N,

the last term is
~It

W

Thus, (6.4} and (6. 6) can be viewed as an exact

expansion in the scattering-off individual atoms
or sites in the presence of clusters of all possible
sizes in the background. The expansion (6. 6) could
probably be quite useful for low impurity concentra-
tions, since in this case (6. 6) is an expansion di-
rectly in, powers of the impurity concentration.
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The approximation Go""' to Go is then obtained
from CPn by using the CPn G&" instead of the exact
GI in (6. 4) and/or (6.6). In using (6. 4) or (6. 6)
in conjunction with the CPn, it is necessary to have
G 'for all possible n. However, as discussed
in Sec. V, when the cluster n is composed of dis-
joint parts, say 1 and m, which are asymptotic
with respect to each other, G; - may be obtained
from the CPl G; and the CPm G-, etc. The num-
ber of different clusters n for which the CPn must
be obtained is thereby limited. This is to be con-
trasted with the approach of Aiyer et al. , where
fully self-consistent scattering by pairs of defects
is treated. In the latter case, it is necessary to
evaluate Z (R) and G(R) (in their notation) self-
consistently for all possible pairs of scatters.
However, for a sufficient degree of randomness,
G(R) is expected to have finite coherence length RD,

so that for R &Ro, the pair of atoms would represent
independent noninterfering scattering centers as in
the CP2.

We should note also that the multiple-scattering
expansion used by Takeno is a more highly
summed version of the exact form of (6. 6) withn=¹

The exact expansion (6. 4) and (6.6) for n =N is
expressed in terms of the bare Green's functions

go, and it is well known that it requires quite elab-
orate calculations to get even the CPA from the
usual T-matrix expansion. Thus, we can reex-

press the exact expansion in terms of perturbed
propagators, thereby making connection with re-
cently suggested extensions of the CPA. The
simplest improvement of the propagators is ob-
tained by considering the unspecified complex self-
energy 0, which is written formally as a sum of
potentials originating from each site

o=Z, o( ' (6.7)

y-= [E —Ho- V- —o-]

and the perturbed conditional T matrices

(6. 11)

(y o(n())[1 y (y o(ci'())] &

(6. 12)

the expansion (6. 6) can be obtained in partially
dressed form as

The cluster hierarchy (2. 10) can be written exactly
as

[E-H, —V-„- o„-] G; — Z ((V-„-o'(") G;.-)'= I
e'en

(6.8)

where
Z o(a) (6. 9)

Equation (6.8) follows directly from (2. 10) because

(&(n) G )0. —o(n) G„ (6. 10)

since 0' ' is taken as independent of the specifica-
tion of &. Defining the perturbed Green's functions

G()=y()+ y()Z (& ') 'y()+y()Z Z (v" y(o&;, )"2y-, ) '
at y 0(g at 2~ 0!g

+y, Z Z Z ( y,(:.'y (:--' )-"y- -) q")+".
1

e)y l ly ~ ~ ~ ynn)AQ/y ~ ~ ~ yfM]
4 ~i

w

yo(~" y 7"-' ~.-".!..-, y.- ...„- (V.- -o"")G„-....- )""'"' . (6.13)2

(6. 14)

as the seU-consistency requirement for o' ', and
taking

G, =y, (CPA) . (6. iS)

The lowest-order corrections considered by Soven
are the two-site scattering terms, and these are

If we choose n =N, the last term in (6. 13) contains
w

(I'- &""')G-e = &I"r G@i~- (6.13')

while for the CPn approximation Go""',

(0 ]'"Iff)
W WM

fM
~ ~ ~ 0)

n 0f ~ ~ ~ 0)

in (6.13). The simple CPA is obtained from (6.13)
by requiring

(r )) (=0

just the third term (with ~ (y, (v~~)'2y- ) of (6. 13).
An improved approximation to the CPA has been
suggested by Schwartz and Suzuki using multiple-
scattering and diagrammatic techniques, respec-
tively. " In this approach, the self-energy o is
determined by the self-consistency requirement
that all average single- and two-atom scattering
vanish, i.e. , in terms of our expansion

(
w

r )+v ) yo Q (v- ) y" =0 (CP2A).
e2~el

(6. i6)
This approximation is similar in spirit to that of
Aiyer et al. ,

' and as mentioned in relation to that
work, because of the finite coherence length Ro of
yo, with a suitably chosen v, for R & Ro,

1
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(o. ,~yp~ o.2) - 0, R , & Rp

(6. 16) becomes

(6. 1V)

w

(7 "&+r 'yp
e2 & e]&e] e2 & Rp

(r -. "') "'y- ) & = o

(C P2A). (6. 18)

Note that the restriction in (6. 18) to R„, &Rp re-
duces the apparently intractable summation over
all possible pairs to a summation over a finite num-

ber of pairs. In highly disordered systems, where
Rp is quite small, (6. 18) may even be tractable.
As Suzuki noted, a next approximation would be ob-
tained by self-consistently determining 0. such that
all one-, two-, and three-atom average scatterings
vanish, etc. ' We note again that the finite coher-
ence length of yp, etc. , restricts the summation
over na and o., in the three-atom term of (6, 13) to
those which satisfy R, „R 2„&Rp.

However, we now note that the introduction of the
proper self-energy of (6. 7) into the hierarchy as in

(6. 8), is far from the most general use of perturbed
propagators. The o„- in (6. 8) makes specific ref-
erence to the cluster n only insofar as it does not

contain contributions from atoms on n. Further-
more, the same 0' ' is used in the auxiliary propa-
gators y„-, yg g, ~ ~ ~, yp. Such a choice is, of
course, motivated by a desire to obtain the exact
proper self-energy of (G), so that if o'" were cho-
sen to be the self-energy of t"0 in any approximate
theory, the result is a self-consistency requirement

s„-= Z s, '&
eEE if

(6. 19)

be a decomposition of the nth auxiliary proper self-
energy into contributions from each site in some as
yet unspecified manner. sg ' depends upon the ran-
dom potential Vg of the cluster n, but not upon the
random potential of the site e. Furthermore, in

general,

s~" vs-'', o. , P(En, m, all n, m (6. 2o)

so that there is maximum freedom of choice of
is/&, all n, o.I to speed up convergence and maintain
internal self-consistency. Defining the new per-
turbed propagator s

I- =(Z-H, —V.- - s„)-', (6. 21)

the exact cluster hierarchy can formally be solved
to give the exact cluster series

for the approximate proper self-energy. However,
on physical grounds it is expected that the proper
self-energy, say sg ', of the exact 6; would differ
from that (i. e. , sp ') of the exact Gp in the neigh-
borhood of the cluster n, This arises because the
information concerning the specification of the clus-
ter n propagates over distances of the order of Rp.
Thus, we expect greater accuracy and rapidity of
convergence of the multiple- scattering expansion
if the approximate proper self-energy s„» reflects
this dependence.

Explicitly, let

G, =r„r, Z ((v,, -»,''&r, ,&», r, Z (v, , -»&»&r, , E ((v, , -»'...»Ir-„„-,& ~)"
e] ea e24 e]

W W

+ 0r Z (V- —s' ~')r- Z (V- -s-"") r- - p ((V- —s--'"3&) I- - - ) p 3 'i+. . .
0 e] e2 e] e].e2 e3

—
e&e2 e] e2e3

ey e2~ el e34 of] y e2

+r, Z (V" —s' '&)I'- ~ ~ ~ (V- —s-('&&) G- - )'&'' ' '& (6 22)
e~ &i=],, ~ ~ ~, k e~ 0 e~ ]p ~ ~ ~ ef

where Gp is the exact cluster Green's function.
Because of (6. 20), it is more convenient to leave
(6. 22) in terms of .the potentials V- —s" than to
introduce conditional T matrices as in (6. 5) and

(6. 12). However, (6. 22) can still be considered
to be an exact multiple-scattering expansion. [Note
that we are free to choose k = N, and then in (6. 22)
Git = g, the unaveraged Green's function. ]

For the case k = N, the freedom of choice of s-,
m = 1, ~ ~ ~, n, enables us to make all the terms of
the exact series (6. 22) involving 1, 2, ~ ~ ~, n atom
cluster scattering vanish for any choice of rg.
However, we now demonstrate how the use of the

CPn approximation in (6. 22) can be used to ex-

plicitly generate the oPtimum aPProximation in which
Gp= 1 p and terms w'hich involve scattering-off clus-
ters of size n+1. The final result, therefore, is
an explicit recipe for the evaluation of sp from
quantities obtained self-consistently from Cpn, as
well as an explicit representation of the lowest-or-
der corrections. Consider the term in (6. 22) in-
volving scattering-off n-atom clusters. A sufficient
condition for the vanishing of this term is that the
average scattering-off of the nth atom vanishes,
i. e. ,

((V",—s;",')rg. f; )"= 0, all n —1. (6. 23)
e+ n-],
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A sufficient condition for the vanishing of (6. 23) is
that the summand vanish for all o. :

~rt

((V- —s' & )I"- - - -) = 0 all n —f o. $ n —f
t 2

(6. 24)

If I;-; " were taken as the CPn G g' =, '~,) then by
(4. 14a) and (4. 4),

((V"—s',»)f)r;.I ") =o'g ',-(n —1, n)Gg' f'"
- s~&")IGp;-'"&, (6. 26)

where Ggf ' and o''s I (n —1, n) denote the (n —1)
cluster Green's function and proper self-energy as
obtained from CPn-K, i, e. ,

r (n„-l, n) idn-l, s)is

~',",n-y, & -'. 6. 26
8&n-&

Thus, if we take

s". .'=o'.".'(n —1, n), all n- 1, n6n —1 (6. 27)
I1-1 n-I

then (6. 24) and (6. 23) are satisfied identically, so
that the n-atom scattering term of (6. 23) vanishes
identically. We note that if the site n is asymp-
totically far from the cluster n- & so that a~I

&

(n-l, n) is sensible independent of n —1,

(6. 28)

This is the CP1 approximation in which there is
direct account of correlations between site n and

its neighbors which are within the coherence range.
We note that ln Older 'to obta, ln s» ~) all n —1)
a~n —&, the CPn G', 'is required for all n. How-

ever, because of the asymptotic properties of non-
compact clusters (5. 11), there are only a finite
number of translationally inequivalent clusters n to
be considered.

Now that 1„» and sl ", have been specified, I'„-
&

is given by (6. 21), but we can choose s; z such that
the term in (6. 22) which involves scattering-off of

(n —1) atom clusters also vanishes. A sufficient
condition for this term to vanish is

w

((V- —s';";~r„-; -)' =0, all n-2, nqn-2

ox'

s'. ' = (V" I"; -,",)"((I';;,;) ) ', all n —2, o) 6 n —2 ~

n-

(6. 30)

By induction, all terms involving I-atom scattering
3. &m &n, can be made to vanish by choosing

s" =(V"r" -) ((r" "„)') ', aU. m, num.
(6. 31)

In particular, (6. 31) along with (6. 27) for m =n,
gives an explicit prescription for the evaluation of
a translationally invariant approximation to Go,

namely, Io, from the CPn, for which the lowest-
order corrections involve the scattering-off of

(n+ I) atom clusters. This lowest-order correction
could, in principle, be evaluated once some approx-
imation 1;,&

is chosen. By taking 1 g" in texms
like ((V"—s'„- ')rs, "„) to be Gf' ', we could make
the (n+I) atom scattering vanish. However, as this
procedure is not invariant, i. en ) a is treated dif-
ferently from n, it simply relegates the (n+ 1) atom
scattering formally to the higher-order scattering
terms.

For arbitrary I'„- (all n ), the recipe (6. 31) for
m = 0, . . . , n —1 makes all the ( I, . ..,ri)- at omclus-
ter terms in the series (6. 22) vanish. From (6. 22),
we see, however, that the optimum choice of I"g is
that which represents the best approximation to the
exact G„-, and this i.s taken as the CPn G'g) .

As in the case of ECPn, it would be desirable to
utilize the information which is contained in CPn
more fully by considering a set of specified clus-
ters of size n which are distributed densely through-
out space. The set of G„-',,'"2,"'' '&&„' ' ' so obtained
could then be introduced into the expansion (6.22).
If the summations are then restricted to involve all
translationally equivalent cluster distributions of
this type, the above formalism could be used to
generate a set of I"", etcn ) for which all scatter-
ing-off of these types of clusters vanishes. How-
ever, because of the asymptotic properties of the
clusters with respect to each other,

~n

P' G~~].) ) nfl~ ) P' G(Rg J,) '+) (6. 32)

and all these higher-order n-atom cluster terms
also vanish in (6. 22) when the simple CPn G'; ' is
chosen for I'g. Thus, the corrections arising from
m atom scattering, m & n+1, imply scattering
from compact clusters only.

The averaging via the equations of motion has
been shown to lead to some highly compact and
flexible exact formulations of multiple- scattering
theory. When used in conjunction with the CPn,
it provides a formal solution to the problem of cor-
rectly accounting for the scattering-off of all com-
pact n-atom clusters. This averaging procedure

, would appear to be superior to the ECPn since the
former does not have the underlying analytic struc-
ture as the latter does. Thus, CPnh should be ca-
pable of providing renormalized band edges in addi-
tion to localized states; however, because of its
more general analytic structure we cannot formally
give explicit proofs of these expected results.
CPlh or CP2h calculations would therefore be of
interest, although they are not necessary for the
px'e sent development.
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VII. REMARKS ON BOUND -STATES

A central problem in the theory of the electronic
band structure in disordered systems concerns the
existence and nature of bound, or localized, states
in the band tails. In the CPn approximation, and
hence in ECPn, the existence of such bound states
in the band tails follows directly from the asymp-
totic properties of CPn and the known properties
of CPA.

In CPn, if we obtain Go
' from Gg via the simple

averaging

G(s ) (G(iT) &n (V. 1)

detl1 —G„(E)Us„(E)l=0, (V. 3)

where Us&(E) is given by (4. 28c) and (4. 30) and,
because of (4. 29), is a matrix of finite rank cen-
tered around the cluster n.

We already know that ImGO(E') is nonzero only
within bounded ranges of E according to the local-
ization theorem. " In the regions outside of the
CPA band for which ImG„(E') vanishes, we have

Imo„(E') =0. (v. 4)

In energy regions which satisfy (7. 4), we shall now

demonstrate that Us„(E' & is also real. Solutions
to (V. 3) can therefore occur for real energies E',
thereby leading to bound states which are between
the CPA band edges and the limit allowed by the
localization theorem The .finite extent of Ug „(E')
already implies the localization of these states.

From the self-consistency equation for o g" (E)
in (4. 23), it is clear that o~; '(E) is continuous
across any poles in (n ] Gs (E) [ n). The only singu-
larities that may occur in og~

' (E) come from the
vanishing of the denominator in (4. 23) and require

(nlGs(E)ln)=-I/(nl&'~"(E)ln)=o. (V. 5)

where in the case of the one-band model used in the
CPA, the averaging in (6. 1) is discrete, (with v,
not necessarily limited to two values) so that any
localized states, i. e. , discrete poles, which occur
in Gg for any composition n also appear in Go '.(&) ~ ~

Similarly, any discrete poles in any G'g' also must
occur in Go" ~' of (5. 13), even if there are states
in Go"" which are everywhere dense in that partic-
ular energy range. Thus, it is sufficient to con-
sider the existence and nature of bound states in
Gg only in the CPn approximation.

The poles oi Gs(E) are determined by the solution
of

detlG'(E)
I
=o .

Because of the asymptotic limits of CPn as dis-
cussed in Sec. IVC, we can convert the infinite-
rank determinant of (7. 2) to one of only finite rank
by multiplying ('7. 2) by detl G&(E)). The result is
jUSt

This can only occur at isolated points, say between
bands, but can be discounted as a general occur-
rence in the band tails. In practice, (4. 23) can be
solved self-consistently by taking as the first ap-
proximation

~aO

(,,)( (v- +v-(nlGg (E) In)o-&
1+(o" (n I G„'I (E)In)&~

where
-1

Ga'(E) = E —Ho ox —-Z (Va ox')
jfEn, e

(V. 6)

(7. v)

g(1)- 7
O

( +~1)

at+ n

(v. 8b)

Using (7. 8) in the right-hand side of (4. 23) gives a
second approximation to Og ', 0'„- ' ', which can be
used to generate a Gg' ', etc. , until self-consisten-
cy is achieved.

Note that (7. 7) just gives rise to the Slater-Kos-
ter problem for an impurity cluster n, which is
embedded in a lattice whose band structure is given

by the CPA. Outside the CPA band edges, since
o„(E') is real, the only singularities of (V. '7) can
be simple poles for real E. Preliminary calcula««

tions of (7. 7) by Kirkpatrick have indeed demon-
strated the existence of these poles. Therefore,
(V. 6) implies that oq '" (E+ie) can have at most an
infinitesimal imaginary part, whereupon

G "=[E-a -o'-"-V--(V o' '"-)]-' -(V 8)

can only have simple poles for real E in this region.
Since we assume that the asymptotic properties im-

ply that self-consistency may be achieved to any

desired accuracy in a finite number of steps, we

may conclude that o'~ '(E) is real (apart from an in-
finitesimal imaginary part).

Thus, in CPn, eve have demonstrated the exis««

tence of bound (localized) states outside of the CPA
band edges, butin the energy region allozoed by the
localization theorem. The relationship between

(V. V) and the usual Slater-Koster problem immedi-
ately provides insight into the parentage of these
states. In the case of the binary random alloy
problem, numerical calculations are feasible and

mill exhibit the bound states in detail.
Although (V. 3) provides the conditions for exis-

tence and then the description of the bound states,
it does not directly provide any information as to
their stability as the size of the cluster n in-
creases. In other words, as n increases, in CPn
do these states remain bound, or do they become

«4

is the zeroth-order approximation to G; . Then
using (V. 6), we obtain a first-order G$,

Gg(l) [E ff (l)(E) y (y teil))] -1

(V. 8a)
where
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extended resonancelike states '? Given a bound

state in CPn+ m, where the state is localized com-
pletely on m, with n completely surrounding m,
clearly this state will be totally unaffected (i. e. ,

remain bound) by increasing the size of the cluster.
On the other hand, if a bound state in CPn extends
outside n into the surrounding medium, it may be-
come extended or stay bound as the size of n is in-
creased. A little reflection immediately provides
expected cases of both types.

Our inability to treat increasingly large clusters,
in general, limits CPn from determining where the
transition from extended to localized states occurs
and from determining the analytic properties of
the electronic structure in this region. Thus, the

energy region about F, is analogous to the critical
region on a thermodynamic phase diagram since
the long-range potential Quc tuations ultimately
determine the character, bound vs extended, of
the states in this energy region. This analogy
between E, and a usual critical point also is clear
from the classical viewpoint of percolation theory. '7

As we pass from CPn to ECPn, we note that
bound states in CPn, which are localized over a

spatial region which is smaller in size than Ro,
must also remainbound iri ECPn. As in (5.10),
two such bound states, on clusters l and m, are
totally independent, and therefore there is no tun-

neling or hopping between these states. In the
region near the CPA band edge, however, the ex-
tent of the bound states becomes &0, so that in

ECPn bound states on neighboring clusters may
overlap slightly. Hence, there is the possibility
of "percolation" to extended states, and therefore
ECPn will contain a transition energy, depending
on cell size, which will only become accurate as
the ECPn cell size and n ~. By analogy with
critical points in ordinary statistical mechanics,
it is probably necessary to have a separate theory
to describe accurately the region about &,. The
ECPn therefore provides a theory which extrapo-
lates through E, (and the band edges), but is ex-
pected to be accurate in all other regions. Thus,
ECPn is reminiscent of mean field theories (with
or without the summation of the "dominant" dia-
gr™)'aof ferromagnetism, etc. , which work well
everywhere but in the neighborhood of the critical
point.
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