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Photomagnetoelectric Effect in Graded Band-Gap Semiconductors
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The equation of continuity has been written for a graded band-gap semiconductor taking into
account the effect of band-edge gradients and the variation of the radiative recombination life--
time with position. The equation is then solved to give the value of excess minority carriers
at a point in such a specimen. The effect of surface states is included through the appropriate
boundary conditions. These expressions are deduced for a semiconductor which is space-
charge free as a result of inhomogeneous doping, i. e. , the doping being position dependent in
the direction of band-edge gradients. The resulting expression shows that the I~~ consists of the
usual photodiffusion term plus a component arising from a "quasifield" setup due to band-edge
gradients. Simplified expressions are obtained under the following conditions: (a} The gen-
eration of carriers takes place only on the front surface, and (b) the variation of the radiative
lifetime with position is neglected. In the latter case, the expressions for I~' are further
analyzed under the conditions of small and large band-edge gradients. In this case, the con-
ditions for sign reversal of I ' are discussed and it is found that spectral response of I ' de-
pends on whether the band-edge gradient helps or opposes the concentration gradient. A few
curves are plotted to exhibit the spectral response and the sign reversal of I~~.

I. INTRODUCTION

In recent years the study of graded mixed semi-
conductors has assumed greater importance on

account of successful attempts to grow single crys-
tals with graded composition. ' 4 Cohen-Solal
et al. developed a method of growing single-crystal
films employing an epitaxial technique which en-
abled them to prepare well-controlled mixed crys-
tals of CdTe and HgTe of graded composition. '
Van Ruyven and Dev reported results of optical
absorption and emission studies on graded zinc-
cadmium-sulfide crystals which they prepared.
With the practical realization of such crystals,
having slowly graded composition along a particular
direction, it js thus possible to exploit the unique
properties of these semiconductors characterized
by a position-dependent band gay.

Kroemer' suggested that the quasielectric field
proportional to band-edge gradients in these semi-
conductors could be profitably utilized to improve
the high-frequency characteristics of transistor
structures. This has been supported by the recent
analysis of Martin and Stratton. 6 However, theo-
retical interest in these graded band-gap semi-
conductors stems mainly from their possible applica-
tions in solar-energy conversion on account of high
quantum efficiency in a wide spectral range. Photo-
voltaic effects associated with a gradient in the
band gay have, therefore, been studied by several
investigators. Qf particular interest is -the

study of Cd„Hg, Te graded band-gap structures as
photoelectromagnetic detectors for near and middle
infrared by Cohen-Solal and co-workers. 3*9 In
addition, studies in electric-field-dependent lumi-

nescence spectra of graded zinc-cadmium-sulphide
crystals by Hill and Williams' have evoked greater
interest in this field.

Theoretically the band gap in a graded mixed
semiconductor can be calculated by the virtual-
crystal approximation, which consists in replacing
the actual potential centered on each lattice site
by a weighted average. The applicability of the
virtual-crystal approximation, which was earlier
applied to metallic alloys, to mixed semiconductors
is discussed by Parmenter. ' In a graded mixed
semiconductor, therefore, it is reasonable to ex-
pect a position-dependent band gap varying along its
length corresponding to the varying composition. ' '
Theoretical consideration of the electronic trans-
port through such a graded band-gap semiconductor
indicates that the parameters such as mobility,
effective mass, and recombination lifetime of
minority carriers would, in general, be position
dependent. Gora and %illiams, "in particular,
pointed out that in writing an expression for the
carrier current, one has to consider not only the
quasifield arising from the band-edge gradients,
but also the contribution to this field by the gradient
of effective mass. The term in the effective-mass
gradient arises, physically speaking, from the
effect of the density of states on diffusion. The
effect of the band-edge gradients on the diffusion
of carriers is discussed in a fundamental way by
Van Huyven and Williams. They have also re-
marked that apart from the above gradients, which
affect the electronic conduction of the graded band-

gay semiconductors, there would be a space-charge
field in these semiconductors. However, it has
been pointed out that by doping such a graded band-
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gap semiconductor inhomogeneously, it is possible
to make the semiconductor space-charge free, if
the following condition is satisfied:

3391

= k T —[1nNn(x)],dx dx

where g is the position-dependent electron affinity
and N~ is the position-dependent density of shallow
donors. These workers have identified the elec-
tronic band edge for an inhomogeneously mixed
crystal as the classical turning point of the plane-
wave part of (. This turning point occurs at dif-
ferent positions for different states within a band,
and therefore the band edge is position dependent.
Electronic transport in these graded band-gap
semiconductors is considered as the intraband
transition between the eigenstates of the complete
Hamiltonian. Thus they have shown that the term
in the gradient of the band edge in the transport
equation arises from asymmetric diffusion of
carriers.

The authors" have recently discussed the phpto-
voltage between the illuminated and the dark surface
of a graded band-gap semiconductor due to the dif-
fusion of electrons and holes down the concentra-
tion gradient of photogenerated carriers. In the
present paper an attempt is made to investigate the
photoelectromagnetic effect in a graded band-gap
semiconductor taking into consideration the sur-
face effects.

II. THEORETICAL

We consider a nondegenerate strongly n-type
graded mixed semiconductor sample with one face
exposed to a monochromatic radiation as shown
in Fig. 1. In order to derive a minority-carrier
transport equation, we follow the argument of Gora
and Williams" to consider the usual relationship
for finding the hole and electron concentration in
the graded band-gap semiconductor,

p = const && (m~~ ) exp[(E„—E&)/k T),

n= const&&(m„*)" exp[(E& E,)/kT], -
where E& is the quasi-Fermi level. Here mp „
and E„,now designate position-dependent effective
masses and band edges, respectively. Similarly,
the usual expressions for the hole and electron
currents can be written as

FIG. l. Energy-level diagram.

where

1 dE, 3kT dm+"-~+e
dx 2m dx

In the normal equation of continuity,

—=g —x -- —divt =k Ie ~" — ——divJsp & . -a ~ 9'-po)
tf n e Px 1 + Px~

p

(6)

we have to remember that p, Jp, in the case of
graded band-gap semiconductors, are given by
Eqs. (2) and (3), and further, that r~, the radiative
recombination lifetime, is also position dependent.
g„and ~„represent generation and recombination
rates, respectively, and I is the intensity of mono-
chromatic radiation at the front surface (x = 0).

Combining Eqs. (3) and (6), and assuming that
I'= p —po=n -no, we obtain the following equation
for excess minority-carrier concentration as a
function of position in the direction of composition
gradient:

BP 1 dE, dp, dP kTdp,
St v, "~ dx ~ dx dx ' e dx

d P
+ p =k Ie"" (7)'e "px'

where the effective field is now given by

1 dpv 3 kT dm~~

e dx 2 m,* dx

We also have
dn

Z„„=en P,+„+k T1J.„dx

(4)

(6)

It may be mentioned here that absorption coef-
ficient k& would vary with x as the band gap is varying
in this direction. However, if we restrict our-
selves only to the case of strong absorption, kq,
mentioned in Eq. (7), may be assumed to be the
suitable average absorption coefficient independent
of position.
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A. PME Short-Circuit Current I&

goshen the semiconductor is illuminated in the
x direction from the large band-gap side (see Fig.
1) and a magnetic field is applied in the e direction,
photomagnetoelectric (PME) short-circuit current
P~'in the y direction may be obtained under the
following simplifying assumptions: (a) The posi-
tion dependence of effective mass and mobility is
Deglectedy l. 6. ~

(b) The variation of band gap with position is linear;
one may write (see Fig. 1)

(c) lland-to-band recombination dominates over
other mechanisms; and hence, one may write the

following expression for recombination lifetime as
suggested by Gora and Williams":

l; = const &&(m~ )"'exp f(E, Z~)/fir—] = ae'",

Tlllls It ls observed fl'oxn Eq. (8) thRt tile cRI'I'181'

current is now made up of bvo parts: the usual dif-
fusion current, denoted by the fix'st term in the
Eq. (8), Rnd all Rddltlonal clll'I'slit dlle 'to tile qllRslf led
setup due to the ba, nd-edge gradient, denoted by the
second term in Eq. (lo.

The PME short-circuit current I,"may be written

I~ = f (ZI,„8l,+J„„8„)dx

Now substituting for Z~, = -Z from Eq. (S) Rnd re-
membering that tan&&-—p,&B and tan8„= —p,„8, me
have

)„-=(.„.u, )BeB,{p(0)-p(.)
~" Jl' pdx),

(9)
where & is the thickness of the specimen in the
x dlrectlon.

8. PME Open-Circuit Field E&

PME 'open-circuit field E, may be obtained easily
from the equations for hole and electron currents
in the y direction as written below:

Jp, = pl(epZ, +, BJ~„), J'„,= p, „(enE, —BZ„„), (10)

a = const && (m~*)' 'exp[( —g —E~)/kr] = T~, (say),

fl = —o(/k r = —2&.

(d) Ha, ll angle is small, i.e. , tan8=8 and pB«l. ,

In steady state J&„+J~ = 0, and hence for weak
illumination one obtains from Eqs. (3) and (5),
following Cohen-Solal and Marfaing, the excess
calI'leI' current

dP 1 dZ, (6 —1) d
dx 2kr dx 2(5+1) dx

where & = no/po is the doping ratio and

D =(»/e) [II.u&(no+ad 0)/(nJI. +f III)]

is the ambipolar diffusion coefficient.
In the present case of a strongly m-type graded

band-gap semiconductor~ l.6, q No && po and tlo —+o p

the density of shallow donol s, the above equatloQ
may be further simplified by introducing the condi-
tion for a space-charge-free graded band-gap senli-
conductor as given by Eq. (1) and assuming that

irma» lnPO (within an accuracy of 10%) as follows:

PI 1 de I d=-&~„=eD~ +P ~ -'- ' + ——(lnNo)-

3 I' dE~
~ dg 2kT dx (8)

where J~„and Z~ are given by Eq. (8), subject to
the condition p,~a «1. To obtain E, for a steady
magnetic induction 8, one makes use of the condi-
tion that the total current in the y direction is zero, le

which ls expressed as fo110%s;

Substituting fl'onl eT„q Rnd
clyde

fl'onl Eq. (10), 0118

obtains

B(il„+p~) f, J~dx

f, o(x)dx+e(p~+ JI„)f, Pdx

eBD,(I, + p, „)[P(~)—P(0) 2~/t r f, P—dx]

f, o(x)dx+e(II, + p, „)f, Pdx

Thus the PME short-circuit current I~ and open-
circuit field Z, may be obtained from Eqs. (9) and

(11)) pl'ovlded Rppl'opl lRte VRllles of excess cRI'I'181'

density I', subject to the boundary conditions, are
substituted in these expressions. In order to obtain
the excess carrier density, the equation of con-
tinuity [i.e. , Eq. (7)] has to be solved under steady-
state conditioQ and slIQplifylng assuIQptlons Inen-
tioned earlier. In the absence of the external fieM
the equation of continuity may thus be reduced to
the form
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where

This may also be written as

dP dP
dX dX

where

A = h = —o(/k T, 8 = —e/ak Tp(„C= k,Ie/-k T i((, .
The above equation may be put into a recognizable

form of the Bessel equation by changing variable
x to z, where@=8 '",

d2 kTe P C ())~1(, 2) „( )
dg QPpQ g

The complete solution of this equation may be
obtained in terms of modified Bessel functions
as given below, '7

2 kTe ~2 1
((P,p 'Y(Dp7'po) 'YL(,

and making use of the property

I, (z ')K,'(z ') —I,'(e')K, (z') = i/~',

the Wronskian W(u„u2) is evaluated, which comes
out to be equal to -', . Similarly,

h(z)u, (z) d
4C

z'"I, (r, ')dz'+ P,.

Substituting these values of C, and C, in Eq. (14) and
making use of the relation IOK, +I)K0=1/z', we ob-
tain the following expression for P:

P = (4C/h') P-"~" [~'"+~'(P I,+ P,K,)

—mz'(Ig J z™1Kodz'+K(J e™1Iodg')]. (i S)

The two integrals may be evaluated for given
values of m, as shown in Appendix A.

or

P= C&u&+ C2u2,

2 kTe
C. Effect of Surface States

P„and P, in Eq. (15) can be obtained from the
boundary conditions. If s, and s2 are the front-
and back-surfa. ce recombination velocities, re-
spectively, then the following boundary conditions
may be written. At x = 0, z' = P:

1/2

Q QPp
dP(0) 3 P(0) dZ,

2 kTe 1/2

@2=A Kj g p
Q gjJp

and C& and C2 are functions of z, to be evaluated
following the method given below'8:

or

dP(0)
( )

3p, g, ()l

(is)

h(z)u, (z) 4C (s, /(, , )Cg= — dr+ Pj = -~ PC
( )

d P — p

z' K,(z')dz'+P„

P, = const, z' = Pz"', m = 2(k,/h —i),

At x= (o, g'= Pg+"/2:

N'(~)
( )

) p,,a)Dp d
——P (u

Introducing these boundary conditions, we can easily
obtainthe following values of P, and P2 (see Ap-
pendix B): When m is a positive odd integer,

S~— p'Ko(p)+ S+ ~' pK, (p) z'(~) m+ ' -S +p (~)yl p8"
r'VIp

F' (is)



8. K. CHATTOPADH YA YA AND V. K. MATHUR

()"«(())- 8 ~:'- "«(()) «'(t«)- ««+: -S «Z (-)I

«« — "+ ~' — «z(0) «'(t«)'««(«'(~))+ ~'~ -())«'(t«)(i(«'(t«))

sz'(~)'Io(z'(~))+ ~'W —6 z'(~)I, (z'(~)) P' If(0 P)+ 6+ ~
— PZ, (P)

P

()«(,())) -(()~ ' — («(, (()) «'(«)'((«(«'(«)) - ~' -8) «'(«)((, («'(«))

When I is a negative odd integer, Z(0 —) and Z(a& —)
will appear in the express&one. Here S,= e,(d/D»
Sz=sz(d/D~, and W=(d/I. ~.

P =z"'P, I,(Pz~')+z"'P, If,(Pz"') . (21)

The boundary conditions are (assuming quantum ef-
ficiency to be unity) at x = 0,

D. Position Dependence of c

It has to be remembered that in the case of the
gl aded band-gap semlconductorq 0' 18 also poSltlon
dependent in the x direction as shown below:

o = e(POV I +&op n) ~

Substituting for po and no from Eq. (2) and remem-
bering that E, and E„are position dependent in the
x direction, one may write

or

«jp„(0) = eI —eDp
— + -- = = —P(0)spe
dP(0) 2 P(0) dz,

~ ((«'(0) p(, ) (
8«,«)

dP((())
( )

3p.p Q

o(x) = o(0) e'"" .
uI. RESULTS WXD mSmSSIOXS

(2o)
which yields the following values of I', and P2.

P, = (I/&) [We"~ Z, (z'(~)) +If, (z'(~)) (S,—6»,W)]
It may be pointed out at this stage that the study

of short-circuit current due to the PME effect on
the basis of Eq. (9) involves knowledge of Py and

Pz which in turn depend upon the properties of the
series Z(0), Z(0-) and Z(&u), Z(~-). The ap-
propriate values of the series may, however, be
obtained only if sufficient information is available
to enable us to calculate the range of values of m
suitable for a practical semiconductor with a graded
band gap. The mathematical complexities involved
in the above general case may, however, be avoided
if the following conditions hold good.

(a) The generation of carriers takes place along
a plane at the front surface only, generation in the
bulk of the semiconductor being negligible. This
case corresponds to a very strong absorption at
the front surface so that the generation term in the
continuity equation may be neglected at all points
in volume of the specimen except at the front surface.
Thus Eq. (12) reduces to

Pz = (I/~) [We"~ Io(z'(~))+I&(z'(~))(S, —6», W) ],

where

~= [wI, (p) —(s, +6»,w) I,(p)]

x [We" & K (z'(&u))+ (S —6yI,&w) K,( (z)()()]

—[WIf, (P) (s, +6~I.,W)I—f:,(P)]

x [We"~'I,( (~z)) (S,+6'.,W)I, (z'(~))].—

The short-circuit current is given by

I,"=(u.+ V&) &eD&[Pi'A(p) e"'& Ii(z'(~))—

+6»~[ID(z'( )) -Io(p)]}

+ P,(K,(P) —e"~/If', (z'((u)) +6', ~

x [K,(p) -K,(z'(~))]]] .

Complete solution of this equation is given by
(b) The recombination lifetime 7~ is assumed to

be independent of position. The effect of position
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—(K S,+G—r(d)[S, +Gr~ (r+5—)~]e "'I, (22)

P~= —f(K-Sz+Gye)[S, +Gr(d —(r 5)&u]e-
kgI

p(x

where

- (S,+Gr(d+K) [Gy(d S, (y 5)(()]e()'~)(6]

(24)

~= [S, +Gy(d —(y+ 5)(d][Gy(d —S,—(y —5)(o]e'"~)

—[S&+Gy~ - (y- 5)(d][Gr(d S, (r-+ 5)(d-]e("'6)"

p, = —(D~/(d')(K'+ 2yI Q W —W') .

Now the study of the PME effect may be divided into
the following two sections according to the magni-
tude of band-edge gradient. In what follows we
study, analytically, the effects of various factors,
namely, band-edge gradient, front- and back-sur-
face recombinations, bulk recombination, etc. , on
the spectral response of the PME short-circuit
current. As the photogenerated carriers in a graded
band-gap semiconductor have to move under the
action of various fields, the possibility of observing
sign reversal in the direction of flow of the PME
short-circuit current, as in the case of homogeneous
semiconductors, ~ ' exists. Conditions under which
sign reversal in I, may be obtained are, therefore,
discussed.

1. Band-Edg e Gradient Small [(yL&) «1]
Thus we have

dependence of v~ may then be considered qualitatively
as the recombination rate for a nondegenerate semi-
conductor which may be assumed to increase with
decrease in band gap (8 e ). Thus, for the
case shown in Fig. 1, this will result in a steeper
density gradient of minority carriers.

The complete solution of Eq. (12) is then

2 -kyx(„+6&„(dk&Ie+""
D (K2. 2KWyL —Wq

'

(22)

where K= k&(u and

(p,~
o('+4kTe p, /r, ),

2PTPp

Introducing the boundary conditions [Eqs. (16) and
(1V)] we can easily obtain the following values of
P, and P2 from Eq. (22):

P& =~OS, + Gr(d+K} [Gy(d - S2 —(r+ 5)(u]e'""'"~kI
P)A,

5= —(1/I, ,)(1+y'L, ,')"'= —(1/L, )(1+-.' r L,'),
therefore,

y+ 5= - (I/L, )(1 yL-, ), y - 5= (I/L, )(1+yL, ) .
The expression for I, may be obtained from Eq.
(9) and (22) as shown below:I"

= P, (l —e'" '")i 1—
(u, + V.)BeD, '

(. r 5-

k'e (1 —e'""') (1—y+6

1, k, l(K+6kL, W) ke"'e

)(p~+ p. „)BeD~ P, W e —e

kgI(K+ 6rLq W)

PgW

since W is likely to be more than unity (e.g. , W =4
or more) as bulk recombination has been assumed
to be high in most cases. Thus, sign reversal in
I~ will occur when

K= —67LpR'. (26)

Physically, this means that sign reversal takes
place when the diffusion of photogenerated carriers
in the positive x direction is balanced by the carrier
motion due to band-edge gradients in the opposite
direction, effects of surface recombination velocities
being negligible. This condition may also prove to
be a simple tool for the measurement of (dE«/dx)
in a semiconductor specimen.

(b) If surface recombination is dominant over
bulk recombination, then, under the assumption
of strong absorption, we have K»1, W'and

S„S~»W. Thus Eq. (25) reduces to

I
(p„+p, )BeD~

1 — [1+6YLe(1 —e" e eeek W)))
kgI ( K+Si
Pi ),

When R'«1, sign reversal occurs if

GrL, = WS,/(Z-+S, ) .
If, however, 8" is greater than unity, so that

(2V)

I&2(l —e- «)(k,+ 6y)
D~(K + 2K wrjp —w )

We now consider the following two cases:
(a) Under the assumption of strong absorption,

if bulk recombination in the semiconductor specimen
is found to be dominant over surface recombination,
we may write K» 1, R' and S» S2 «5". On the basis
of these simplifying conditions, the expression for
I„, a,s given in Eq. (25), may be reduced to
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e»e, condition for sign reversal will be given
by

therefore, be obtained as

6y-L, = (K S,-)/K .
2. Band Edg-e Gradient Lw ge (yL~ » 1)

gee then have

6= —y[l+ l/2(yL, )'].

Therefore,

y+ 5= y/2(-yL, )'=0, y - 6 =2y.

(a) For strong absorption and bulk recombination
dominant over surface recombination, i.e. ,
K» 1, W and W»S„S2, we can reduce Eq. (25) to
the following simplified forms if anothex assumption.
yL&W»S„S2 is allowed to be made. Thus, if 7 is
positive,

I, k&I(K+6yL~W) l l
((((, + p„)Beo, p, K 2yL, W

2k'(K+ 6yL~W)

which is normally satisfied. In this case, there
is no possibility of sign reversal. If, however,
yis negative, so that 2e & « l/2yL~W and
(l+ W/yL~)8 r «1/K, the expression for I„"maybe
written as

Isc I
(

'
)

= ——— (K+ 6yL~W);

the condition for sign reversal for this case may,

Thus, sign reversal takes place when

(z/s, )l 2yLpW= l + (2O)

Results given above may now be summarized:
(i) An expression for the current due to photo-

generated carriers in a space-charge-free graded
band-gap semiconductor has been derived. A sim-
plified expression for the PME shoxt-circuit cur-
rent thus obtained may be conveniently used to
study the effects of front- and back-surface re-
combination of the semiconductor specimen. This
may be found to be especially suitable in the study
of spectral response of the short-circuit current
and its dependence on the type of substrate material
and the conditions under which the semiconductor
specimen is grown.

(ii) It has been pointed out that under certain
conditions sign reversal may be observed in the
PME short-circuit current as in the case of a
homogeneous semiconductor. ' The condition of
sign reversal (P., = —Gy) as shown in Eqs. (26) and

(b) Again for strong absorption and surface re-
combination dominant over bulk recombination we
have K» j., 8' and 8» 8~ » W. If, in addition, we
assume that S„S2»yI~W, Eq. (25) may bewritten
as

(
" = — ' (+ (2yl ~W+ —((+8&IpW)) . 'I~ k1I 2K

p,p+ p, „aeap p1 1

bi

FIG. 2. Spectral response of PME
short-circuit current I~ for small band-
edge gradients. In curve a&. S'=10, 9&

——1,
82 —- 1, pL p

——+ 0. 1; curve a2.. 8' = 10, 8& ——1,
~2 —1, p+p —0," curve 63.' +—10,
&&

—-l„pI p= —0. 1,«curve 5»..~=10, S~ —-50,
8&=50, pLp—-+0. 1; curve 5~. @=10,
8, =50, 8, =50, yf.p=O; curve&, : 8 =1O,
8

g
= 50, Sp = 50, yL p

= —0. l.

jo
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FIG. 3. Spectral response of PME
short-circuit current I~' for large band-
edge gradients. In curve a&. W= 0. 1, S& ——1,
S2 ——1, yI&-—+100; curve a2.. 8'=0. 1, S1=1,
S&

——1, &I&———100; curve b&. 8'=0. 1,
S&

——50, S& ——50, )IL& -—+100; curve b2.
~'=0. 1, S,=50, S, =50, yL~= —100.

IO

10 i4

(29) may prove to be a very useful tool in the deter-
mination of band-edge gradients as this involves
measurement of only one parameter, namely, the
absorption coefficient k, .

A few typical curves for large and small band-
edge gradients are shown in Pigs. 2 and 3. For
small band-edge gradients the value of ~ was taken
to be 10 /cm, while for large band-edge gradients
'Y was taken to be =10'/cm. It ma, y be pointed out
here that even such large band-edge gradients do
not violate the condition mentioned by Gora and
Williams" for continuous variation of band edge.
According to them if there is a change of 1/q in com-
position over 100 atomic spacing, the band edge can
be considered to be continuous. In practice y =10'/
cm have been realized by Cohen-Solal et a/. ' in
thin films of CdHg Te of graded composition.

APPENDIX A

(a) When m is a positive odd integer, we have

J z"I,(z')dz' = I,(z')z'" —(m —1)z'™1I,(z')

+(m —1)'J z' 'I0(z')dz'.

This is a recurring formula, hence we obtain

J z "I,(z')dz'= I,(z') [z'"+(m —1)'z"

+ (m —1)'(m —3) 'z' '+ ]

—I,(z') [(m —1)z™1
+ (m —1)'(m —3)z ™2

+ (m —1)'(m —3)'(m —5)z™2+ ] .

If m is even the series will utlimately consist of the
integral fI,(z')dz', values of which are tabulated.

Similarly, we have

J z'"Z, (z')dz'= -Z, (z') [z"+ (m —1)'z' "-'

+ (m —1)'(m —3)'z'" '+ ]

-&0(z') [(m —1)z '™1

+ (m —1) (m —3)z'"

+ (m —1)'(m —3)'(m —5)z™5+ ].
In this case also, if rn is even, the last term in the
series will consist of fK0(z')dz', values of which
are tabulated.

(b) When m is a negative odd integer, we have

zimI (zi)«0(z )z I1(z )z 1 sm+2I (z i)d
(m+1) (m+ 2) (m+1)'

Similarly, we have

f m+1 + ~m+3 Im+2
&

t m+4I l

(m () (m+()'(m+)) '
(m ~ ()' (m+8)'(m+()' )
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f K (z')z' ' E,(z')z ' 1z'"K,(z')dz'=
( )

+
( ), +( ), z ' "Ko(z')dz'

~ ~ ~ ~ ~ ~
~

Z
(«)31 rm+3 &m+2

&
r m+4

+ K
(m 1) (m+1)'(m+3) ' (m+1)' (m+3) (m+1) )

APPENDIX 8

(a) When m is a positive odd integer, we have

I, (z') fz'™1Z,-(z')dz' where

Pm 6 1 g 0
yL 5'

=I,(z')g, (z')[z'™1+(m —2)'z' "+. .]

-K,(z') [(m —2)z' '+ (m —2)'(m —4)z'" '+ ~ ~ ~ ]J,

If, (z') fz™II,(z')dz'

=Z, (z')Q, (z') [z' -'+(m —2)'z"-'+" ]

-I()(z') [(m —2)z' +(m —2)'(m -4)z'" '+ ~ ]$ .

Adding, we have

Ig(z') fz I™1K,( )zd z+K, ( )zf z' 'I, (z'-)dz'

Z(O)= [m(m -2)'P" '+m-(m -2)'(m -4)'P -'+ ]

Sg

yL pW'

+m(m -2)'(m -4)p -'+. . .] .
At x=~,

z' = pe~""= z'(&u),

say,

Pl 8 (M) 10(8 (m)) + ' —3) 8 (m) 11(Z (R)i

= ——,[(m —2)z' '+(m —2)'(m —4)z' '+ ~ ~ ~ ] .8'

Therefore, from E(1. (15), we have

P=~ P-"~'"(~ +[m(m —2)z"-'2& ig
6 Z =0 32

~ ( -2)'( -4) ™4."]
+ z'(P(I, (z') + P,K,(z'))] .

Substituting the boundary conditions, at x = 0, we
have

Z((u) = [m (m —2)'z '((u)

+m(m —2)'(m -4)'z'((o)™4+. ~ ~ ]

+ —6 mm —28
yL pR'

+m(m —2)'(m -4)z'((d)™4+ ] .

«g 3'«, (3)+ 3+ 3'm )
3—«i(3)

yLp W'
Thus, values of P& and P~ may be found from Eqs.
(31) and (32) following the usual method.

(h) When m is a negative odd integer, we have

rm rm+3 m+1 r m+3

«(z')fz -'«, (z')3z'=1, (z') «, (z') - + g, . ~ +«, (*')
g + s. 3)~"m @ps+ 2) m m ~en+2

z' zl zl Im+3

«, (g )fg 1, ( ')«z'=«, (z't) '1„(g') + . , ~ —1 (z'), ~ g, 3)s )m m jm+2) m m jm+2
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Adding, we have p
m+2 $(Z(0-)= —m P +, + ~ ~ ~ +m 6+

Pl yLp W'

t, (z )f'z 'tt(az') cz' ~ tt, (z')fz' l(z') 4z'

m m4
1 z' z'
z' m m'(m 3} )'

At x= &, we have

p
ttz

p
tt)42

m m'(m+ 3) )J
'

Therefore, from Eq. (16), we have

Im / m+2
4C 2„i„,mP= P—&~ z' —m +
b2 m m (m+2) ')

+z'[P,l, (z')+P,If, (z')] .

z '(tz) ta (z '(at)) a (
—

6) z '(v)ta (z '(tz))

—P~ z (&u)~%0(z '((d)) — z —6 z '((d)ff', (z '(u&))

Substituting in the boundary condition, at x= 0, we
have

+ z (Iz) m+ -6) +Z(tz —
z

)=6, (34)
yLpW

I, P'f, (P) 6+ -~'~ PI, (P)
yLp $V

—Pa 3'll (3) (a6 a6'~ 6tt (3)
yLp%

where

((g) m42

6(aa-)= —m z'(tz} +, + .)rfL

where

+ P m — 6+ ' +Z(0-) =0, (33)
yLp8'

yLpW m m m+2

Values of I', and P2 may be obtained by solving
Eqs. (33) and (34) given above.
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