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A detailed study of the change in hot-electron mobility with applied electric fields in n-type
InAs at 77'K is presented. Both theoretical and experimental results are presented. Elec-
tron-electron collisions are assumed to be sufficiently frequent to determine the energy and
momentum distribution of the electrons. The effects of ionized-impurity scattering are in-
cluded in the momentum balance equation, The nonparabolicity of the conduction band is in-
cluded in the theoretical calculation. The effect of the overlap integral which results in the
nonparabolicity is included in the manner of Ehrenreich by utilizing several terms of the scat-
tering matrix element. For low electric field (&15'0 Vjcm), a slight increase (approximately
10/g) in the mobility with applied electric field is observed. For higher electric fields

V/cm), a strong decrease in the mobility with applied electric field occurs. This de-
crease js observed up to the point of impact ionization at approximately 800 Vjcm.

INTRODUCTIOX

The mobility of hot electrons in polar semicon-
ductors has become of interest in recent years
with the production of III-V and II-VI compounds in
relate. vely pure form. Most of the past work in
III-V compounds has been for indium antimonide
(InSb) and gallium arsenide (GaAs). For indium
arsenide (InAs), some of the theories which have
been applied to InSb can be used, since these ma-
terials have approximately the same band structux'e,
In the present work, we calculate the transport
properties for n-type InAs at 77 K for applied
electric fields below that required for the onset of
impact ionization. There have been a few theories
for InSb develoyed by using various approaches,
and some of these may be, or have been, applied
to InAs.

One of the earliest theories for InSb was pre-
sented by Ehrenreich. ' He was one of the first to
include the nonparabolicity of the energy band,
doing so with the theory of Kane. Kane's theory
results from taking the interaction of the valence
bands and the conduction band through the k p
terms of the Hamiltonian. The k-independent spin-
orbit interaction is also taken into account exactly.
This refinement was necessary because the nar-
row band gap in these materials makes these in-
teractions too strong for perturbation theory to
yield accurate results. From these calculations,
the relation between the energy bands b(k) and
the crystal momentum Kk is no longer a simple
parabolic relation, but is more nearly hypex'bolic.
Ehrenreich confined his calculation to temperatures
above 200 K to avoid problems arising from crys-
talline imperfections, such as ionized impurities.
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The three major types of scattering for this tem-
perature range were found to be polar optical-
phonon scattering, electron-hole scattering, and
acoustic-phonon s cattering. The calculation in-
cluded an extension of the transport theory first
developed by Howarth and Sondheimer to the case
of nonparabolic conduction bands. This complex
approach is necessitated by the failure of the re-
laxation-time approximation for polar optical-
phonon scattering, which mas found to be the dom-
inant scattering mechanism over the temperature
range 200-500 K. Electron-hole scattering was
present at all temperatures above 150'K due to
the intrinsic behavior of InSb in this range and be-
came comparable to polar scattering at tempera-
tures above 500 K. This is a problem not en-
countered in InAs due to its larger band gap.
Acoustic-phonon scattering was negligible for all
temperature ranges considered.

Matz presented calculations for InAs which are
an extension of Ehrenreich's calculation, in that
he included the case for high electric fields. He
confined his calculation to temperatures greater
than 200'K, so that he considered only the effects
of polar optical-phonon scattering. In addition,
he included the change of the coupling constant for
polar scattering due to the decrease of the overlap
integral for the wave functions as the carrier en-
ergy is increased. The calculation yields a linear
relation for the drift; velocity versus applied elec-
tric field for electric fields below 1800 V/cm.

Another method, different from the theory given
by Howarth and Sondheimer, 3 has been presented
by Stratton. ' He presented a calculation of the
mobility of InSb for high electric fields, but below
impact ionization, assuming that electron-electron
collisions are sufficiently frequent to determine
the energy and momentum distribution of the elec-
trons. The electron distribution function in mo-
mentum space was assumed to be in internal equi-
libriumata temperature T, , which depends on the
applied electric field, and was greater than the
lattice temperature To. The temperature range
assumed was high enough to consider the effects
of polar optical scattering to be the only scattering
mechanism present. In this diffusion approxima-
tion the collision operator for polar scattering is
expanded in spherical harmonics, and the series
is truncated after the first two terms. A drifted
Maxwellian distribution function was assumed to
approximate the distribution function. After aver-
aging the collision operator over momentum and

energy, the average rate of momentum loss and

energy loss through collisions was equated to the
average momentum and energy gain due to the
electric field. From these balance equations, the
drift velocity and mobility were calculated as a
function of applied electric fields. For high tem-

peratures, the calculation yields a slight increase
in the mobility with applied electric fields {by a
factor less than 2) and for low temperatures yields
a large decrease (by a factor as great as 10) in
the mobility with applied electric fields. The cal-
culation is limited in that parabolic bands were
assumed and only polar scattering was considered.

Dykman and Tomchuk presented calculations
which expanded Stratton's theory to the case of
nonparabolic bands and included a calculation of
the distribution function rather than assuming the
Maxwellian distribution. However, the diffusion
approximation was still used, so that only the first
two terms fo and fq were calculated. It was ob-
served that mhen the electron concentration was
high enough, the exchange of energy between the
electrons was more rapid than the exchange with

the lattice, and the distribution function reduced
to a Maxwellian even in relatively strong fields.
The approach that Stratton and Dykman and Tom-
chuk present has the advantage over the approach
presented by Ehrenreich' and Matz in that there
is a possibility of considering more than one type
of scattering process at the same time.

Jones, Smith, and Beattie presented a theoretical
calculation of the drift velocity for InSb assuming
a drifted Maxwellian distribution. The procedure
used was to calculate the velocity as a function of
energy in k space and then take an appropriate
average using the drifted Maxwellian distribution.
With this and the energy balance equation, they
calculated the drift velocity as a function of applied
electric field. One of the main drawbacks is that
if there are competing scattering processes and

one is involved primarily in momentum relaxation
only and the other primarily in energy relaxation
only, there is no may to take into account the one

giving only momentum relaxation.
One of the newest methods for calculating drift

velocity as a function of applied electric field for
InAs and InSb was presented by Fawcett, Hilsum,
and Bees. They used a modj. fied version of the
Monte Carlo technique devised by Boardman, Faw-
cett, and Rees. The band shape adopted for InAs
was the nonparabolic one. ' There is one major
drawback to using this band structure for InAs in
that it was approximated using the fact that the
spin-orbit splitting of the valence bands of InSb
was much larger than the band gap. This is not
the case for InAs, since the spin-orbit splitting is
approximately equal to the energy gap, but Fawcett
and Ruch' have shown that the error introduced
is extremely small. Calculations of the drift veloc-
ity versus electric field show a linear relation be-
tween the two for applied electric fields below
1000 V/cm. These calculations were made for room
temperature (300'K), and they agree with Matz's
calculation below 1000 V/cm. One of the problems



in using the Monte Carlo technique to calculate
the distribution function and the drift velocity is
that the calculation is essentially an empty-lattice
approximation. Interactions with other electrons
which lead to randomization of the momentum and

energy axe not considered. These effects which

lead to energy diffusion, and consequently, a
Maxwellian distribution function, are of consider-
able importance" and must be considered, espe-
cially in the case where the electron concentration
is relatively high.

Along with these theoretical calculations, there
have been various experimental results reported.
Steele and Tosima' reported a linear relation for
the drift velocity versus applied electric field for
InAs at 300'K. The low-field mobility of the ma-
terial used was about 1.Sx 104 cm /V sec. This
is rather low for InAs, which suggests that a large
amount of compensating donors and acceptors gras

present in the crystal (N~, N, = 1 'OVcm3), with

consequent impurity scattering. Low-field Hall
measurements showed the carrier concentration
to be approximately 10' cm

Bauer and Kuchar'3 reported a decrease in the
mobility with an increase in applied electric field
for electric fields between 250 V'/cm and the onset
of impact ionization at approximately 800 V/cm,
but no detailed measurements were presented,
since they were primarily interested in measuring
ionization coefficients. This experiment was per-
formed at VV'K, which is lower than that of pre-
vious work. At this temperature, the effects of
ionized-i. mpurity scattering cannot be neglected as
was done in the previous theoretical calculations.
Experimental measurements have been presented
by the present authors' and show a slight increase
in mobility with applied electric fields for electric
fields less than 200 V/cm, followed by the strong
decrease observed previously. In fact, this me-
chanism i.s probably the dominant one at low elec-
tric fields for momentum xelaxation.

It is the purpose of this report to present ex-
perimentally and theoretically a detailed study of
the change in mobility versus applied electric field
for n-type InAs at VV 'K, for electric fields below
the onset of impact ionization. This temperature
is below the range considered in previous theoret-
ical work. Moreover, it is obvious that the ad-
ditional effect of ionized-impurity scattering must
be considexed. Theoretical calculations of the mo-
bility vexsus applied electric field are presented.
The momentum and energy balance equations are
used to calculate the drift velocity and electron
temperature of the distribution in the diffusion ap-
proximation. One difference in the method used
here from that presented by Stratton is that the
rate of energy and momentum loss for polar scat-
tering is calculated directly rather than calculating

the collision operator. The effects of ionized-im-
purity scattering are considered by adding the ap-
propriate average rate of momentum loss to that
of polar scattering. Also, the nonparabolicity of
the energy bands is included. The decrease of the
overlap integral is taken into account in the manner
of Ehrenreich, '

by utilizing several terms of the
scattering matrix element.

HOT-ELECTRON TRANSPORT THEORY

Many of the transport properties of a pure semi-
conductor can be explained in terms of the band
structure, which is the energy b (k) of an electron
expressed as a function of its wave vector k. The
major feature of the band structure of the III-V
compounds is known, but the detailed structure
has not been established to the same degree as for
germanium and silicon. The proposed band struc-
ture for InAs gras calculated using Kane's theory
with parameter values experimentally determined
by Matossi and Stern. " Since the transport prop-
erties of the electrons are determined from the
band structure of the conduction band, only the
conduction-band structure will be considered. The
band shape adopted for this is

where 8, is the minimum of the conduction band.
The momentum and energy balance equations

are set up assuming that the momentum loss of
the electrons is due to polar optical-phonon and
ionized-impurity scattexing, and that the energy
loss of the electrons is due to polar optical-phonon
scattering only. It can readily be shown that the
losses to acoustic phonons are at least an order
of magnitude smaller. Using these assumptions,
the balance equations are given by

d8 dS

~ field 4 yo C~ italy'

where the subscripts indicate the mechanism in-
volved in the term, The subscript "field" indicates
the change in the momentum and energy due to the
applied electric force; "po" indicates the change due
to polar optical phonons; and "imp" indicates the
change due to ionized-impurity scattering.

The equations for the change in .momentum and
energy due to the applied electric field axe quite
simple and are given by
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where -e is the charge of an electron, E is the
applied electric field, and v~ is the drift velocity
of the electron. The average rate of momentum
and energy loss for polar opticaL phonons andion-
ized-impurity scattering is not as easily obtained.
To obtain these equations some of the basic quan-
tities such as electron density and density of states
must be recalculated to include the effects of the
nonparabolic band struetur e.

Using the relation between k and $ given in (1),
the density of states becomes

N(Sldg=, (,') 8 (I+—
) (i

—),
(6)

where m, is the effective mass at the band mini-
mum at k= 0. It should be noted that the terms
added which are not present for the parabolic case
reduce to a value of 1 as SG becomes»8. A fac-
tor of 2 must still be added to (6) to account for
spin degeneracy of the states.

To calculate the electron density, a distribution
function must be assumed or known. For the ma-
terials with sufficiently high carrier concentration,
the distribution function becomes a drifted Max-
wellian,

f ($) = ae "o ~[1+ (pop/m, )'ooT, )j,
where Po is the average momentum, for nonpara-

bolie bands

mcv
(1 —2m, vg$ )'

in the direction of the applied electric field, and

T, is the equivalent electron temperature, both of
which are parameters to be determined. The form
of (7) for the distribution function is valid when

electron-electron interactions dominate the ran-
domization of the momentum. This is shown in

the Appendix to be a valid assumption for the ma-
terial used in the present experimental work for
electron temperature T, less than 287'K. For
simplicity f($) can be written as f= fo+ fq, where

f,=ae e'"o* and

x 1+ e &o e2$
g

Making the substitutions t = $/$a and a= $e/&oT, ,
Eg. (9) may readily be integrated to yield

n= —
2

- &' e' Kz —, 19

where Ko(a/2) is the second-order modified Bessel
function of the second kind.

Polar Optical-Phonon Scat tering

Since our interest is in the high-mobility polar
compounds, where the scattering process is com-
paratively weak, the calculation of the matrix ele-
ment may be carried out for a weak-coupling co-
efficient between the carrier and the phonons.
Thus, perturbation theory may be used to describe
the interaction. The matrix element for this case
was first derived by Frohlich' and Callen" and ex-
tended by Ehrenreich. ' The matrix element ob-
tained by using only s-symmetry wave functions
may be written'

~

(k~ q~ H„~ k) ~'= (27rh'eEQ/Vmq') (N, + ,'+ ,'5N, ), --

where

—me S(do 1 1«o= '
a

~o is the longitudinal optical-phonon frequency,
&o and e are the dielectric constants for zero and
infinite frequencies, respectively, and 5N, =+ 1
for phonon emission and absorption, respectively.
Ehrenreich' presented a correction for the matrix
element taking into account the admixture of the
P-symmetry wave functions. This admixture of
valence wave functions to the conduction-electron
wave function arises due to the k p interaction.
It is precisely this admixture due to the conduc-
tion-band-valence-band interaction which leads
to the presence of nonparabolicity in the conduction-
band dispersion relation. The matrix element can,
in general, be written in the form'

fi = {apop/m, ho~, )e '"o

If the density of states from (6) and the distribution
function from (7) are used, the electron density
can be calculated from

(o) (&) 2 (2)
II& a=0~ I +n&I a+n III I

where
g

$a(1+ $/$a) '

(13)

(14)

n= f X($)fo($) d$, (6)

where it is assumed the energy is measured from

$, in (1). Equations (6) and (7) substituted into

Eq. (8) yield

Ehrenreieh' points out that H~, '„' are generally all
of the same magnitude with the exception that H„(,„)

is 0 for polar scattering due to the symmetry.
Then, to first order, the transition probability is

where l
H' '

I is given by (ll), and the second
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term represents the correction terms for the non-
parabolic bands. This correction term is effec-
tively the result of the overlap integral. From
the argument that the H~"~' have the same magni-
tude, 1 H 'H' ') canbe replaced by the magnitude
of I

H' 'I without introducing much error. In

practice, we use this approximation by letting
H' ' = M' ' and using A. as an adjustable parameter.

The probability per unit time of a carrier being
scattered is

'/'=(»«)&(]~I(k+q &~-ll&l»&~)l'

x 5(81+t[t N& 1 —8]2 t Nq)

+ )(R-q, X&+1~If~k, X, )~'

x 5(8( gt „~„—8( I „)) (16)

where the first term is the transition probability
due to the absorption of a phonon and the second
term is the transition probability due to the emis-
sion of a phonon. The summation over phonons
shown in (16) may be converted to an integral over
the variables q, g, 8, with the k direction taken
along the polar axis. The general approach is
that given in Conwell, "and yields a solution of
(16) as follows:

t (2m, )'"8"'(1+8/gtt)" ' gtt Rttt(1+28/gt+2»/gt))

2(8 —k(pp), 8(1+8/8e)+( II lt)( It 8
sin)t' 8/8 /8 )

—
1) (17)

1/v„= (1/r„)(1+27) ), (16)

where 1/v is the complete probability of scat-

Equation (17) gives only the contribution from
the first term of the matrix element. Since the
magnitude of the second term is two times the first
term, 1/v„can be written in the form

tering per unit time.
The rate of change of carrier energy due to polar

optical scattering can be obtained from h&0 times
the probability of a phonon being absorbed minus
S&0 times the probability of a phonon being emitted.
Using this fact, the rate of change of carrier en-
ergy can be found from (16). Carrying out the iri-
tegration over q, as above, yields

d8 (1+2'')2eZpk(up
1

2(8+k(dp) .
h 2 h(1+8/8o)

dt [Rm, g(1+8/gt)] ' 8 Rttt(1+28/gttgttt/8 ))

2(8 -I((up) . „, 8(1+8/8a)

The average rate of energy loss per electron is
found by taking an average over energy using a
drifted Maxwellian distribution, as before. This
average is defined by

2 ' 2eEpS(2)p(e"P "8 - 1)
m, 8'"k,T, e'aZ, (a/2)

N(8)f (8)—dS d8
dt 0 ' dt

N(8)fp(8) d8 . (20) (g) (
2(gtg'tt,

)) ( Rg)

Substituting (6) and (7) into (20) and changing the
liinit on the integration term for emission, (20)
becomes

q(8) e-""p'.d8
dt

q(8) / (t 18/(tprg d8 (21)1+28/8,

where

8(1+8/8a)
Rttt(1+28/8 +2 /8, ))tt

The various quantities are defined as follows:
xp=fg(dp/kpT; x, =h(dgkpT„a = 8a/kpT, . The sec-
ond integral is a result of the correction term on
the matrix element. The argument of the inverse
hyperbolic sine is simplified by making the assump-
tion that the arcsinh is a slowly varying function of
g; therefore
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g/k(do= sinh'q,

(21) becomes

K(8) /k T, =x, , $G/koT, = a,

$(1+ g/ga)
ko/o(1+ 2$/$ a+ k(oo/ga)

can be approximated by g/k(oo. Using this as-
sumption and making the substitutions

In order to complete the polar contribution to
the balance equation, the rate of loss of crystal
momentum by the carriers to the polar optical
phonons is needed. This computation is simplified
in that only the component of the momentum along
the field direction need be calculated. Starting
from perturbation theory, the rate of momentum
change is given by

= N(doA 2G, (q) e "8"~ 'qsinhq coshq dq
dS

0

~Q

+ 2G2(q)q sinhq coshq dq

dp= —„'Z [kq, l (R+(I, f)/, , la,.'lk, x,)l'

x 6(g;,;,„, g„-,„)

where

Gq(q) = 1+ (4x,/a) (cosh q+ sinh q)

+ (4x,/a ) cosh'qsinh q,

Gz(q) =(x,/a)[sinh q+ (2/a) cosh qsinh q].
The integration of this may readily be carried out
and the result is

(22)

where

2 T, eo ~ '/o eEok oN, e"8' (e"o-"8 - 1)
g 2/a &8/afar ( /2) 8

4i 2 x 1
g, (x, ) =2+ —

I 1+— —~+
a() a 2 2ax, '

2x& 2 x 2
go(xd) = '

l
1+— +~ 1+

a I, a 2 x,a

qs = (ka/k)q cos8, (24)

where k~ is the wave vector parallel to the electric
field. The value used for cos8 is that which makes
the argument of the 5 function in energy vanish
and is

cos6 = +—+ g 1+—+q @&om, ~~ h&o
k 5kq c c

\

where the upper sign is for phonon absorption and
the lower sign is for phonon emission. Changing
(23) to an integral and integrating, the momentum
rate of loss is

—= (1+2'q )eEo —[F&($+A(oo)N,
CfP 2 P'g

dt P

"(g~-' ~,.i-g~, ~ )] (23)

This is converted to an integral in the same man-
ner as in (16). Integration is also carried out in
the same manner with q~ given by

and K„ is the modified Bessel function of the sec-
ond kind of order v. where

+F,($ -k~,)(X,+1.)], (26)

2(8 *8tee) 8(1+8/8 ) *8~e(le 28/de+ 8ete/de))'e
$(1+ g/ga)

h(oo . „2 $(1+g/ga) 1 1
$(1+ g/go) k(oo(1+ 2$/go+ N(oo) 2 2

The average rate of momentum loss per electron
is found by taking an average over the energy using
our drifted Maxwellian distribution. The spheri-
cally symmetric term fo($) yields no contribution
to the average momentum. The drift momentum
arises from the f,($) term in (7). The average
rate of momentum loss is then

x($)f,($)—dg .dP 1 dp
dt no 0

' dt

=Ap e"0 "~+1 F (g)e o 8dg

where

~ (e'e * 1) Pe(8)e ee" dd), (28)
0

Substituting the above e(luations into (2V) and using
the assumption already stated for arcsinh gives the
results as
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4eEm, v, (l —2m, v, /h z)
'/o

P 3(2m )1/zg 1/z(k T )o ea/off (a/2) i/ )
-x 8 inh+2(e"II*'-i)f G~(q)e* '""'qsinhqcoshti/t)),

0

(»)
where

Go(q) = 2 1+ ' cosh2q+:~ sinh 2q
4xe '.

2

a a

S(b)=~o(~) ~i+' '~o»nh-~—
2x 1 xx 1+ ' cosh2q + — ~ sinh 2q
a 2 a

i:,(/)= (()+i)td,)/ ()+/ )(i+ g ')

Making the same substitutions

xe = 1(do/koTs / xo = k(oo/k oT /

h/mo() = sinh'q, a= 8,/koT„

Eq. (2V) becomes

( = A/, (k(do) (e"o "e+ 1) Go(q)e "~ ' "
dq

0

x
xsinh q cosh q+ 2~ sinh q cosh qa

2', 4+ ' sinh q cosh q

Go(q) = 1+ ' cosh2q+~ sinh 2q
4x, x~

x . 2 2
+~ sinh q 1+—cosh qa a

The integration is straightforward and the rate of
momentum loss is found to be

so-s&+] + + g ~ + [+~+ g

2x & 1) x „„&4 8 x ') 2x, 3 3 x~ ~x 3

a ~ a&
o 2 ( a a 2~ a a 4 ' 2 2a a 2+ 'Ii+ —~ii, ~- ~ (e*o-*+i) ))+-+-i x, , )+ ' -+- & ' + i+- &a

'~
I. (30)

p= e(~)/m, . (31)

In using the momentum and energy balance equa-
tions, the mobility is given by

Ionized-Impurity Scattering

We now turn our attention to ionized-impurity
scattering, the dominant momentum relaxation
process at low electric fields. Ionized-impurity
scattering has a momentum relaxation time; there-
fore, the mobility can be written as

energy dependence of the velocity. The velocity
is given by

v= (1/h)V, 8(k) . (34)

By using the energy relation from (1), (34) becomes

+ (
RB) (35)

In the Brooks-Herring formulation of the relaxation
time for ionized-impurity scattering, 7 is'

I =ev& (32) Z'e
lnP (36)

Equating (31) and (32), the average rate of momen-
tum loss can be written as where

dp mvz (33) p = 4me eko T v'/'I/, e N/ .

Using (35) in the last two equations gives

(3'7)

The procedure for calculating the scattering
time r for nonparabolic bands is the same as for
parabolic bands except for the calculation of the

1 z'e 'iv, (1+2$/SG)'
16v(2m, )'"e'h' '(1+ h/&a)'" (38)
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FlG. 1. Plot of normalized mobility versus applied

electric field for polar optical-phonon scattering alone,
for a fixed value of &=3.5 and (a) ED=2100 V/cm, (b)

E() —- 1800 V/cm, and (c) ED=1700 V/cDl.

FIG. 3. Plot of normalized mobility versus applied
electric field for ionized-impurity and polar optical-
phonon scattering, for a fixed value of A. =3.5 and for {a)
Eo —-1700 V/cm, (b) E0=1800 V/cm, (c) E0=1900 V/cm,
and (d) Eo—- 2100 V/cm.

The averaging function used for calculation, ( 7')

is given by

Assuming that the ln function is a slowly varying
function of 8, it can be brought outside the integral
and the energy-dependent terms replaced by their
appropriate average. The resulting integral for
(40) is

I.O

0.8 0.9-

0,4

0,2 0.6

0
IO'

~ ~ I a

IO

E ~ a . a a

IO

ELECT R IC F IEI D ( V/cm)

~ J I ~ ~

IO

I s S ~

IO

ELECTRIC FIE,LD (V/cm)

FIG. 2. Plot of normalized mobility versus applied
electric field for polar optical-phonon scattering alone,
for a. fixed value of Eo——1800 V/cm and for (a) A, = 6. 5,
(b) A, =3.5, and (c) A, =O.

FIG. 4. Plot of normalized mobility versus applied
electric field for ionized-impurity and polar optical-
phonon scattering, for a fixed value of Eo ——1800 V/cm
and for (a) A, =5. 0, (b) X=3.5, (c) A, =2, and (d) A, =0.
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where 8 is Z e 4N, in(p')/16m(2nl, )'"c'. Carrying
out the integrations, we have

)1/8 g I/Z

z '~lg '12(koT, ) Ka(a/2)

8 sexp c 2
SE

c E 0 '

l 3

(43)

For simplicity and ease of showing, first assume
that polar optical-phonon scattering is the only
scattering mechanism. Using Eqs. (22), (30), and
(2)-(5), we get

(45)

Solving for the electric field, one obtains

(46)

The mobility is defined as

P=&g/& ~ (4&)

Figures 1 and 2 give a plot of p, //I, versus applied
electric field, mhere p, o is the lorn-field mobility
and the lattice temperature is assumed to be V7 K
for various values of the coupling constant Eo and
the parameter I,. The lom-field mobility p.o is
32&&104 cm /V sec. There is almost an immediate
falloff of the mobility with applied electric field.

With the aid of a computer the effects of ionized-
imyurity scattering can be included using the same

where a, and E, are exponential integrals and re-
lated to the incomplete y functions as

E„(z)= z" 'r(1 -n, z) and n„(z) =z " '1'(1 -n, z).

The ionized impurities are fixed in the lattice
and the collisions of the electrons with the ionized
impurities are essentially elastic. Therefore, the
change in the electron energy during the collision
is negligible. The average rate of energy loss can
then be taken to be

procedure as for yolar scattering alone. Figures
3 and 4 give a plot of /I//I, versus applied electric
field using the effects of both ionized-impurity scat-
tering and polar optical-phonon scattering for an
ixnpurity concentration of 2~ 10' cm 3. The lom-
field mobility po is 6. 10x10' cm'/V sec. Figure
4 was computed uslllg 1800 V/cnl fol' the coupling
constant Eo, which is lomer than that calculated
using (12). The reason for this is that the admix-
ture of p-symmetry wave functions decreases the
coupling between the electrons and polar optical
yhonons. Figure 5 is a comparison between She
present results and calculations assuming para-
bolic bands and calculations assuming nonparabolie
band structure, but not including the correction in
the matrix elements due to the admixture of the
p-symmetry wave functions.

The samples used in obtaining data mere cut
from 1-mm slices of n-type InAs. The electron
concentration mas 2. 0~ l0'6 cm 3 and the electron
mobility was 6x 10 cm /V sec at V'7 'K. The sam-
ples mere cut from the slices into rectangular bars
with the use of a wire saw. The cross section
was approximately 0. Bx 0. 8 mm . The cross sec-
tion gras first reduced by grinding the sample mith
a 600 grit slurry mix. After the sample cross
section had been reduced to approximately 0. 3
~ 0. 3 mm in this manner they were chemically
etched in the solution: 1 H30, 1 HzO&(30%), 1 Hq SO&

(98/0). The etchant removed any damaged surface
caused by the mire sam and by the lapping process.
The final samples had a cross-sectional area of
approximately 0. 25&& 0. 25 mm . The sample
lellgttls val'led fl'0111 3.0 111IQ 'to 10.0 Innl, alld the
sample impedance varied from 3 to 10 0, depend-
ing upon the length.

Electrical contacts mere prepared by soldering
a fine copper wire to the end of the sample using
tin or indium metal. A metting solution of 3
NHSCl (1 M), 2V ZQClz (1 M), 100 HqO was used to
aid in soldering the contacts.

The samples were mounted in series with the
center conductor of a 5. 3-0 strip line which mas
terminated with a 0.4-Q resistor for monitoring
the current through the sample. A coaxial delay-
line-type pulse generator was constructed to sup-
ply the electric field needed. The pulse generator
is a combination of a high-voltage de yomer supply,
eight coaxial cables connected in parallel (the
length of which determines the pulse length), a
coaxially mounted mercury-metted relay, and a
timing circuit for triggering the relay. The out-
put impedance of the pulse generator was 6. 5 Q.
The low impedance was accoxnplished by connect-
ing eight 52-Q coaxial cables in parallel. The
rise time of the voltage pulse generator was ap-
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FIG. 5. Comparison of the three theories: (a) nonpara-
bolic, &=3.5, E0=1800U/cm; (b) nonparabolic, X=O,
calculated Eo, (c) parabolic, calculated Eo.

proximately 12 nsec.
The strip line with the sample mounted is im-

mersed in a Dewar flask of liquid N2 to reduce the
sample's lattice temperature to VV 'K. A diagram
of the complete experimental arrangement is shown
in Fig. 6. For these short pulses (100 nsec), mea-
surements of the voltage across the sample and
current through the sample were taken using a 350
psec rise-time dual-trace sampling oscilloscope.
The output of the sampling oscilloscope was con-
nected to an x-y plotter to allow a permanent rec-
ord of the I-V curve to be recorded. In Fig. 7,
an I-V plot of a typical sample is shown.

In Fig. 8, a plot of p/p, o versus applied electric
field for two samples is shown. The third curve
is for one of the samples with the voltage applied
in the reverse direction to detect any effects due

to contacts.
At low electric fields (& 150 V/cm) a slight in-

crease in mobility is observed with increasing
electric field. This increase is explained by the
assumption that ionized-impurity scattering is the
dominant momentum relaxation mechanism in this
fieldrange. For higher electric fields (& 150 V/cm)
a strong decrease in the mobility with increasing
electric field is observed. This decrease is due
to polar optical phonons becoming the dominant
momentum relaxation mechanism. As pointed out

previously, polar optical-phonon scattering leads
to a mobility an order of magnitude smaller than
for acoustic-phonon scattering, so that the latter
may be neglected.

Figure 8 also shows a comparison between ex-
perimental results and theoretical calculations.
As in Fig. 3, the value of the coupling constant
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I 0 ~ T ~o0

0.9 .
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Iii/I ercury we t ted
relay
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o ute r conduc ter

insula tion
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FIG. 6. Experimental arrangement.
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FIG. 8. Comparisons of theory and experiment:
- theory; O sample I 1; )( sample L2;+ sample L2,
electric field reversed from first.



is 1800 V/cm and the magnitude of the correction
term squared H~o' for a matrix element is 1.75
t1mes H» .(0)

CONCLUSIONS

Figure 8 shows a comparison between exper1-
mental results and theoretical calculations. The
agreement is very good for the low electric fields,
below 100 V/cm. In the range where ionized-im-
purity scattering is still dominant, theoretical
calculations of the Inobility do not increase as
rapidly as the experimental results indicate. This
suggests that ionized-impurity scattering might
increase faster than T3 as is the case for a para-
bolic band structure.

At high electric fields (& 150 V/cm) polar optical-
phonon scattering is dominant. Theoretical cal-
culations of the mobility do not decrease as rapidly
as the experimental results indicate. Several
reason8 fol' this ale posslbl. First~ the app1oxl-
mations made in solving the integrals for analytic
solution mould introduce some error. Second,
the assumption of the matrix element derived for
parabolic band structure instead of an exact matrix
element, taking the effects of the nonparabolicity
of the conduction band into account, mould introduce
the largest error into the calculations. Third, the

. assumption of a drifted Maxmellian distribution
function alloms more electrons at high energy than
mould be expected for the nonparabolic band struc-
ture, even with the electron-electron coQisions
randomizing the energy and momentum of the elec-
trons.

APPENDIX A: CALCULATION OF CARRIER
CONCENTRATION NEEDED FOR ASSUMPTION OF A

MAXWELLIAN DISTRIBUTION

The rate of energy exchange betmeen the elec-
trons is given by Stratton as

where rationalized mks units are used. Carrying
out the averaging integral, we obtain a function
for the average rate of energy exchanged as

~ ~

1+2&oT,/h g
dg 2m, 2oe' go e o 'oo eK, (ge/2koT, )

(A2)

The criterion for the distribution functiontobe Max-
mellian is given by Stratton. If the. rate of energy
exchange between electron-electron interactions
is greater than or equal to the energy loss to the
lattice due to electron polar optical-phonon inter-
actions, then the distribution function is Maxwellian.
This leads to the inequality

db 8'"e'0'o'o'. Z (h /2y T )(2
e dt ya 1+2koT /Se

(AS)

where {d8/dt)„ is defined in (22). For the ma, -
terial used in the experimental work {AS) yields
the result that the distribution Sanction is Max-
mellian for electron temperatures below 300'K.

'H. Ehrenreich, Phys. Chem. Solids 2, 131 (1957).
2E. D. Kane, Phys. Chem. Solids 1, 249 (1957).
3D. J. Howarth and E. H. Sondheimer, Proc. Roy.

Soc. (London) A219, 53 (1953).
40. Matz, Phys. Rev. 168, 843 (1967).
5R. Stratton, Proc. Roy. Soc. (London) A246, 406

(1958).
I, M. Dykman and P. M. Tomchuk, Fiz. Tverd. Tela

8, 1343 (1966) [Sov. Phys. Solid State 8, 1075 (1966)].).
'G. Jones, G. Smith, and A. R. Beattie, Phys. Status

Solidi 20, K135 (1967).
Fawcett, C ~ HQsum, and H. D. Rees, Solid State

Commun. 7, 1257 (1969).
A. Boardman, W. Fawcett, and H. D. Bees, Solid

State Commun. 6, 305 (1968).
~OW. Fawcett and J. Ruch (unpublished) .

See, e. g. , I. B. Levinson, Fiz. Tverd Tela 6, 2113
(1964) [Sov. Phys. Solid State 6, 1665 (1965)]; W. P.

Dumke, Phys. Rev. 167, 783 {1968).
'~M. C. Steele and S. Tosima, Japan. J. Appl. Phys.

2, 381 (1963).
36. Bauer and F. Kuchar, Phys. Letters 30A, 399

(1969).
R. C. Curby and D. K, Ferry, Phys. Letters 32A,

237 (1970).
~5O. Madelung, Physics of III-V Compounds (Wiley,

New York, 1964), p. 69.
6H. Frohlich, Proc. Roy. Soc. {London) A160, 230

(1937).
~~H. Callen, Phys. Rev. 87, 1394 (1949).
~8E. M. Conwell, High Field Transport in Semieon-

du, etors (Academic, New York, 1967), pp. 155—160.
9R. A. Smith, Semiconductors (Cambridge U. P. ,

Cambridge, England, 1964), p. 150.
H. Ehrenreich, Phys. Chem. Solids 9, 129 (1959).


