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Using thin films of the Iayer compound galIium selenide, we have fabricated experimen-
tal structures which are nearly ideal for the study of tunneling currents. All of the param-
eters relevant to current flow in these structures can be independently determined since
single-crystal gallium seienide films have the properties of the bulk material and also well-
defined interfaces. A new analytical technique for determining the energy-momentum dis-
persion relation within the forbidden gap of a solid is discussed and applied to current-voltage
data obtained from metaI-GaSe-metal structures. The resulting E-k relation is shown to be
an intrinsic property of GaSe. Tunneling currents in GaSe are shown to be quantitatively un-
derstood in terms of this 8-k relation, the geometry of a given structure, and a simple model
of current flow via tunneling.

I. INTRODUCTION '

Although the basic concepts of tunneling are
firmly rooted in the early quantum mechanics, '
only recently has progress been made in gaining
a quantitative understanding of tunneling in solids.
Perhaps the greatest impediment has been the ex-
perimenta1 problems associated with the fabrication
of suitable structures.

Since the probability amplitude of a tunneling
electron is exponentially damped in space, s the
"forbidden" region through which tunneling is to
occur must be extremely thin (& 100 A) to favor
tunneling over other current-flow mechanisms. It
has not in general. been possible to cleave single-
crystal solids into films this thin and hence other
techniques of fabricating a thin forbidden region are
traditionally emp1oyed. Perhaps the best known

technique is the eontxolled oxidation' of a metal,
followed by vacuum deposition of counter el.ec-
trodes, thus forming metal-insulator-metal (MIM)
structures. Early studies of direct interelec-
trode tunneling in solids were conducted using struc-
tures fabricated by this or similar techniques. It
was observed that currents flowing in such struc-
tures were often temperature independent and ex-
hibited a nearly Ohmic dependence on applied volt-
age for small applied voltages. This sort of be-
havior is in qualitative agreement with the predic-
tions of simpl. e tunneling theory. However, when
attempts were made to obtain quantitative agree-
ment between theory and experiment, perplexing
discrepancies arose.

The theoretical model firstapplied to tunneling in
MIM structures' dealt explicitly with a symmetric
barrier potential; the forbidden region within this
potential was assumed to behave like a vacuum (ex-
cept for a dielectric constant different from unity).
In many cases the gross differences between theory
and expel iment couM be minimized by using an

"effective thickness" for the insulating film or an
"effective mass" for the tunneling electron. These
parameters were chosen specifically to bring theory
and experiment into agreement, could not be in-
dependently determined, and bore little relation to
the actual parameters of the structure under study.
Although this approach served as a convenient
method for classifying experimental data, it did not
provide a deep understanding of tunneling, or even
unequivocal evidence that tunneling was indeed being
observed.

Of course, it was realized that the chemical com-
position of the grown insulating film was not uni-
form, and that the metal, -oxide interface was in all
likelihood far from the idealized rectangular bar-
rier shape usuaQy assumed. In fact, nonsymmetric
curx ent-voltage cur ves were often observed for nom-
inaiiy symmetric structures (e. g. , Ai-A1~Q, -A1).
The extent to which these difficulties invalidated
the model was not clear, and hence fundamental in-
adequacies in the model went unnoticed. A large
stride toward overcoming the major experimental
difficulties was taken by McColl et al. 9 in the study
of thin mica films cleaved from bulk crystals. De-
spite crystal-to-crystal variation, great consistency
was observed in all measurements obtained on
structures fabricated from a given initial bulk crys-
tal. Parameters required to describe tunneling eur-
eurrents in thin mica films were in good agreement
with the corresponding independently measured
properties of the bulk mica. Yet, certain problems
remained, including an apparent systematic devia-
tion between theory and experiment. Careful anal-
ysis of the data indicated that characterizing the
quantum mechaI1ically forbidden region as if it were
a simple vacuum was probably a misleading over-
slmplif ication.

A successful approach toward the resolution of
this theoretical/experimental problem was taken by
Lewicki and Mead" "who studied current flow in
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thin amorphous films of aluminum nitride (formed
by plasma discharge nitriding). Working with

Stratton, '3 they recognized the importance of the
E-0 dispersion relation mithi. n the forbidden gap in
describing tunneling through solids, and mere able
to piece together an E-k relation for A1N by mea-
suring the thickness dependence of the tunneling
probability at several values of applied bias. This
experimentally determined E™krelation successfully
described many of the tunneling phenomena observed
in AIN thin films.

In this payer me report a synthesis and extension
of the previously described techniques. By choosing
to study thin films of the layer compound gallium
selenide, me can fabricate nearly ideal structures.
All of the parameters relevant to current flow in
these structures can be determined by independent
experiments. The thin gallium selenide film under
study is single crystal in character and therefore
has the properties of bulk material and also well-
defined interfaces. An improved analytical tech-
nique for determining the energy-momentum dis-
persion relation within the forbidden gap of a solid
(from appropriate current-voltage measurements)
is discussed and applied to data obtained from
metal-GaSe-metal structures. The resulting E-4
relation is shown to be an intrinsic property of
GaSe. Tunneling currents in GaSe can thus be
quantitatively understood in terms of this E-k re-
lation, the independently determined parameters of
a given structure, and a simple model of current
flow via tunneling.

II. THEORY OF TUNNELING IN MIM STRUCTURES

Current flow arising from the direct tunneling of
electrons from one metallic electrode to another
through an intervening insulating layer provides a
unique opportunity to study the quantum-mechani-
cal interaction of electrons with solids. A tunneling
electron interacts continuously mith the solid
through which transport is occurring; the details
of this interaction can be unraveled only if a great
deal of information about the experimental struc-
ture is available. Ideally, one seeks sufficient in-
dependent information about an experimental struc-
ture to construct an accurate (and hopefully simple)
energy-band representation. The potential barrier
through which tunneling is occurring should be mell
defined and experimentally controllable. Having
satisfied these criteria, a straightforward model
of tunneling can be constructed mith some assur-
ance that it is a reasonable representation of the
physical situation. In the discussion that follows,
we presume (and will, in fact, demonstrate in Sec.
III) that these criteria are fulfilled for the metal-
GaSe-metal structures discussed here, and that a
simple trapezoidal barrier potential is appropriate.

Discussions of tunneling are often based upon the

transfer Hamiltonian model. '"'" In this descrip-
tion an idealized tunneling structure, as schemati-
cally illustrated in Fig. 1, is divided into three
separate regions. For electrons with energies of
interest, two of the regions are allowed (elec-
trodes); the third region is unallowed (insulator).
Current flow arises when there is a net transfer of
electrons from one electrode to the other due to the
interaction of the tmo electrodes through the in-
sulator. This system is described by the quantum-
mechanical Hamiltonian

(2. 1)

(2. 2)

where M ~= ih J,~(Xe) and Z„~ (X~) is the matrix
element of the current operator between the states
ot and P integrated over plane 8, parallel to the
metal-insulator interface at some position X~ in
the insulating layer. " That is,

8 g(Xe) = J d S ' J~g(Xs), (2. 3)

Application of Fermi's Golden Rule to compute
the net rate of transfer produced by JJ~ gives

(2. 4)

where f(V) is the current from left to right for an
applied bias V; fz, and fs are the Fermi factors for
the left and right electrode, respectively; and &

and &z are the single-particle energies of the state
e and the state P, respectively. In deriving Eq.
(2.4), it is assumed that the electrodes are ade-
quately described by a single-particle formalism.

Evaluation of the matrix element J„~ for direct
tunneling in the standard way (see, for example,
Hefs. 2, 15-1V) yields an expression for the cur-
rent density

where H~ is the Hamiltonian for the left electrode
(see Fig. 1), Hs is the Hamiltonian for the right
electrode, and H„(tr ansfer Hamiltonian) contains
the interaction between the two electrodes due to
the insulating region. The transfer Hamiltonian
may be expressed simply in terms of basis states
ll o')J and ( I P) j; The set j I o')f is the set of single-
particle solutions of the Hamiltonian for the left
electrode and the insulating layer. These solutions
decay into the right electrode. The set (I P)) is a
similar set of functions for the right electrode.
Using this basis, H~ is given by the expression
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j(P)=— dZ 'e' d(Z P )(f (Z)-f (Z})exP —P P(Z Xe Z) dZ)
2& 8 j 1) I

Xl
(2. 5)

where k» is the parallel component of the wave
vector of the electron in the electrode. It is im-
portant to note that the exponential factor which
dominates this expression results from the expo-
nential decay of the electronic wave function in the
forbidden insulating region: k(E, k«, X) is the at-
tenuation constant. For single-crystal insulators,
k may be thought of, in band-structure terms, as
the complex wave vectorse, ig within the forbidden

gap. In general, k» is a function of the electron
energy E, the parallel component of the wave vec-
tor k„, and position in the insulator X. The de-
pendence on X is due to the applied potential, and

interface potentials which change the features of
the band structure of the insulator relative to the
electron's energy.

Jn Eq. (2. 5), g(E, k„) is a pre-exponential factor
which results from the matching of the wave func-

tions at the interfaces. Its exact theoretical form
will depend on the assumed boundary conditions.
Attempts at experimentally verifying the form of

g(E, k») from structure in the bias dependence of
the tunneling current have been unsuccessful. "
Since k, the function of interest, is insensitive to
the exact form or value of g(E, k„) we will take it
to be unity. This approximation is equivalent to
the usual %KB approximation.

Further simplification of Eq. (2. 5) can be realized
by noting the rapid variation of the exponential fac-
tor with k», This allows us to use the method of
Laplace to obtain a useful approximation for the
integral. Taking the dependence of k(E, k», X) on

k» to be given by

k(E, kii j X) = [0 (E, 0, X)+ ki) j (2. 8)

we have

j(V)= dZ exp -P Il P(Z, D, Z) dx I (f (Z) —fx(Z)] .
2mb Jx~

(2. 7)

Since most tunneling experiments are performed
at low temperature (to minimize thermionic cur-
rents), it is often a good approximation, and always
theoretically handy, to take the temperature to be
zero. This approximation makes sense if the nat-
ural width of the energy distribution of tunneling
electrons is appreciably greater than the width
added by the thermal tail on the Fermi distribution
in the source electrode. '

There remains one useful simplification of (2. 7)

$(x) = y(x) -E. (2. 8)

Reexpressing j(V) in terms of $(X),

to be discussed. The energy E may be related to
the spatial coordinate X such that k becomes a
function of a single variable $(X). This new vari-
able $(x) is the difference in energy between the
conduction band and the energy of an electron lo-
cated at X:

4(,x~) d( 4(xR)

j (V) = „dE xp —2 id
—k($) (d~idx ~(() (2. 9)

This expression, although somewhat approximate,
is of adequate precision and contains the basic phys-
ics of tunneling. A quantitative interpretation of
experimental data using this expression requires
(t) (X) [and hence $(X)] be known independent of the
measurement of tunneling currents.

Assuming now the trapezoidal barrier potential
as shown in Fig. 1,

(2. 10)

and for an applied bias in the range —ft)& & V& (t)2,
Eq. (2. 9) becomes

(2. 11)

This equation is a suitable basis for interpreting
tunneling currents in structures known to have a
trapezoidal barrier shape.

To interpret tunneling I-V characteristics in
terms of k(t) (i. e. , the dispersion relation for the
imaginary part of the wave vector) Eq. (2. 11) must
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be solvedfor k($), given j(V) and the other parameters
in the equation. For certain values of barrier energy
and applied voltage, and for certain k(g) functions, the
distribution in energy of the tunneling electrons can
be accurately approximated by a single sharp peak.
In this ease, expression (2. 11)reduces to the familiar
simpleform usedby Strattonet al. , and the inter-
pretationn

may be accomplished by simple mathemati-
cal manipulations. However, in general, Eq. (2. 11)
must be solved without simplifying appr oximations.

Thus, one is faced with solving a nonlinear integr al
equation of the Voiterra type of the first kind. Numer-
ical solution is unavoidable.

Equations of the type given in Eq. (2. 11) are
usually solved by an adaptation of the well-known
Newton's method for obtaining the roots of a sys-
tem of nonlinear equations. ~' Basically, this tech-
nique consists of making an initial guess and then
computing corrections to this guess from the in-
tegral equation. For example, let

where j, ,(V) is the experimental current density
as a function of bias and 2 is a functional of both

j,„„(V)and k($). Obviously, Z will be identically
zero when a solution. is attained. I,et k, ($) be the
function which makes 2=0, that is, ko($) is the
solution. In general, ko($) is unknown. However,
some initial guess at ko(&) is made. This guess
k($) is related to ko($) by the equation

k(&) = k, (&) + 5k($),

where 5k($) is the correction required to make k(()
equal ko(g). Substituting (2. 13} into Eq. (2. 12) and

expanding in a Taylor's series about k($), we have

(2. 14)

where 5Z/5k($) is the functional derivative of 2 with

respect to k($). Neglecting higher-order terms in

Eq. (2. 14}, this equation gives a value of 5k($):

I

tion of (2. 13)], then one obtains a square matrix.
If this matrix has a determinant which is different
f'rom zero, then the finite set of numerical equa-
tions which replace (2. 13) has a unique solution.
This condition determines the range of V which will
give a unique set of values of ko on the mesh of $.
Thus, it is possible to test the uniqueness of the
calculated solution by computing the inverse of this
matrix. While this method does not provide a
rigorous mathematical test for uniqueness, it does
suffice for the problem at hand.

Numerical solution proceeds in a straightforward
manner. "'a4 Some difficulty is encountered in
solving the linear equation (2. 13) as a result of
numerical instabilities. These difficulties may be
overcome by the use of a powerful technique recently
developed by Franklin for converting an ill-posed
linear problem into a well-posed stochastic prob-
lem.

III. EXPERIMENTAL CONSIDERATIONS

A. Galhum Selensdc

xg-~ 0,„„(V},k(()) 2 (j. ,(V}, k(&)}, (2. »)

where 5g /5k($), if it exists, is the inverse of the

integral operator appearing in Eq. (2. 14). Exis-
tence of the inverse determines that range of j,~, (V)

which is required to specify 5k($) and ko($) over a
specific range of $. This point will be discussed
in more detail below.

Evaluation of 5Z/5k($) may be accomplished by
substituting k($}+5k((} for k($) in Eq. (2. 12} and ex-
panding in 5k($). The term linear in 5k($) gives
5Z/5k($). The result of such a calculation is shown

in Fig. 2, where the explicit dependence of 5Z/5k($)
on V and ( is shown. If the array in Fig. 2 is eval-
uated on a mesh in V and ( with an equal number of

points in g and V [as is done in the numerical solu-

Ideally one would like to take a well-characterized
bulk insulator, cleave it into thin sections (& 100 A

thick), and incorporate these thin sections into
MIM structures. Such an approach is not usually
feasible for a variety of practical reasons. There
does not exist, however, a family of solids (the
layer compounds) which is well suited to this ap-
proach.

Layer compounds are distinguished by their un-
usual crystallographic structure. Each layer
(typically several atoms thick), is strongly bonded

internally but only weakly bonded to its neighbors.
Hence, thin single-crystal films can be obtained by
pulling or peeling apart a macroscopic single crys-
tal. This technique for fabricating well-defined
MIM structures was pioneered by Foote and Kazan
and used by McColl in his study of current flow in
thin films of mica.

Gallium selenide ' is the particular layer



KUHTIN, McGILL, AND MEAD

eV

,'::; Electrode IIinsuloting
Layer

E lectrode I:.:.::.:::
* ~ \

~ \

'I

I

XL XB XR

FIG. 1, Schematic energy-band representation of an

ideal MIM tunneling structure in which electrode II is
biased V' volts with respect to electrode I. Q~, Q2 are
metal-insulator barrier energies; Q@) is the
(trapezoidal) barrier potential; ((X is the energy of an
electron tunneling from electrode I to electrode II, ref-
erenced to Q@); the spatial coordinate X is used both
as a. continuous variable and to denote distinct regions
of the structure.

The technique by which MIM structures containing
thin films of GaSe are fabricated is straightforward,
but worthy of mention. Single-crystal films of
GaSe, perhaps 10 p, thick, are peeled from a large

semiconductor chosen for this study. GaSe was
chosen because it is easy to work with, large single
crystals can be easily grown by the modified Bridge-
man technique, and prior experiments have well
cha, racterized the properties of bulk specimens. A

previous study3' of conduction mechanisms through
somewhat thicker (-500 A) GaSe films confirms
the advantages of utilizing this material for the fab-
rication of thin-film MIM structures. That study
provided an excellent example of contact-limited
thermionic current flow. The quantitative agree-
ment between theory and experiment which was ob-
served is good evidence that the bulk and interface
properties of GaSe are sufficiently well known to
make a tunneling study worthwhile. The following
are those properties"' ' of our "as-grown" GaSe
specimen which are relevent to tunneling currents
in thin-film structures: band gap E~= 2. 0 eV;
low-f requency dielectric constant &p —8 optical
dielectric constant &, ,= 7; Al-GaSe interface bar-
rier energy P„,= 1.08 eV; Au-Gase interface bar-
rier energy P„„=0. 52 eV; Cu-GaSe interface bar-
rier energy Qc„= 0. 68 eV; trap density N, & 10' /
cm3; carrier density at 300'K P-3 &&10'4/cm'.

B. Fabrication of MIN Structues

boule and electroded on one side by vacuum-evap-
orating aluminum from a tungsten filament at a
residual pressure of 10 ' Torr. Aluminum is
chosen because it adheres well to the rather inert
GaSe surface. The GaSe flakes are then bonded
with 100% solids, silver-loaded epoxy to a brass
block of convenient dimensions. The exposed sur-
face of the GaSe film is thereafter peeled away by
successive application and removal of Scotch trans-
parent tape (SM& 810). Care is taken to peel
off a continuous film of GaSe thereby avoiding
possible contamination of the GaSe surface with
adhesive from the tape. As the film thins, in-
terference colors become visible. With continued
peeling, the film becomes too thin to generate inter-
ference colors. At this juncture, it is, of course,
not at all clear to the expex imenter that any film
remains. The specimen is then again placed in the
vacuum system and gold ox coppex counter electrode
is evaporated onto the freshly exposed GaBe surface.
A fine wire mesh is used to define a regular array
of square dots, 4. 5~10 ' cm' in area, as counter
electrodes. The specimen is now complete and
ready for preliminary testing to determine if it con-

3~ rf'
SK(() -g I' dE

f,+E
f~+E-Vi

k(g')
I

FIG. 2. Functional derivative dZ/dk($), used in the
calculation of the energy-momentum dispersion relation
froin appropriate experimental current-voltage data, is
shown along with a diagram of the plane in voltage-energy
space over which this functional derivative is to be eval-
uated.
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tains MIM structures of appropriate and uniform
thickness.

C. Preliminary Calculations
~- ' ~-15x10- ~'"

8vk t ' t [cm ]
amp
eV

The properties of the single-crystal GaSe film
incorporated within metal-GaSe-metal structures
are known, and hence the shape of the potential bar-
rier presented by this insulating film may be cal-
culated. In the first approximation, the barrier
potential may be taken to be trapezoidal, as shown
in the inset to Fig. 4:

P (x) = P, + (P —P, —e V) x/t .
The presence of space charge in the GaSe layer,
and the effect of image charges induced in the elec-
trodes, may lead to the deviation of the barrier
shape from the assumed trapezoidal form.

Space charge distorts the shape of the potential
barrier because field lines originate or terminate
on the trapped charge. Using the worst case as-
sumption that all traps are ionized and assuming
that the space charge is distributed uniformly
throughout the barrier region, integration of Pois-
son's equation yields a modification to the barrier
(&P=eA', t /2&) which is less than 10 ' eV, and thus,
is totally negligible.

Electrons tunneling through the GaSe layer inter-
act with electrons in the two metallic electrodes.
This interaction can be modeled by adding, to the
expression for a trapezoidal barrier potential, the
potential due to image charges which one would ex-
pect (in the classical approximation) to be induced
in the electrodes. However, for typical values of
the parameters of a GaSe structure (thickness
equal to 70 A, dielectric constant equal to 8) the
error introduced in the F-k relation by neglecting
this modification to the barrier shape is small
(estimated to be less than 0. 015 A ' for the Ek-
relation derived from forward-bias currents).

Being now assured that the actual potential bar-
rier within metal-GaSe-metal structures is well
approximated by the simple trapezoidal model, we
can make an estimate of the conditions under which
direct interelectrode tunneling is likely to be the
dominant mechanism of current flow. Bulk limita-
tions have been shown2' to be negligible even for
600-A films, and hence can be neglected here.
Thermionic currents have an exponential dependence,
on barrier height and temperature2'

J =Je
UL 0

where J'0= 120T~ amp/cm2 and ke is Boltzman's
constant. Tunneling probability (and hence tunneling
current) increases exponentially with decreasing
tunneling path length'

J,= J,e--2kt

where k k /2m~= E (parabolic band approximation)

Assuming /=0. 5 eV and t=10 6 cm, JO=106 amps/
cm . Tunneling will be the dominant mechanism
of current f.low if J~ & J,„, i. e. ,

2kt »J -P/AT
0 0

This expression is a condition on both t and T.
Since the thickness dependence of the tunneling
probability is its most striking feature, it is worth-
while working at as low a temperature as possible,
thus extending the thickness range over which tun-
neling is the dominant current-flow mechanism.
The lowest barrier with which we are concerned is
$„„=0.5 eV. Taking k=0. 4 A ' (E= —,

' eV, m*= 1}
as a rough estimate, tunneling is thus expected
to dominate for t«100 A at 77'K and for t«30 A
at 300'K.

D. Measurement Technique

An important experimental question is the tem-
perature at which current-voltage measurements
are to be made. Room ambient is convenient,
but the interface barrier energies in GaSe struc-
tures are sufficiently low that thermionic currents
are expected to be dominant except in extremely
thin structures, thus unduly restricting the thick-
ness range over which measurements can be taken.
Liquid-helium temperatures are ideal for elimin-
ating thermionic currents, but the inability to tem-
perature-cycle GaSe MIM structures wjthout me-
chanically destroying them, and the need to sample
many structures to assure reliable data, make
working in this temperature range extremely dif-
ficult.

As a workable compromise between the limitations
of room-temperature and liquid-helium environments,
a measurement technique for use at liquid-nitrogen
temperature was evolved. The specimen, bearing
substrate is entirely immersed in liquid nitrogen
after fabrication, and remains immersed through
the entire measurement process. Viewing of the
specimens to locate suitable individual structures
for probing (with a fine gold wire) and measurement
is accomplished with a specially constructed "under-
nitrogen viewer. " This viewer2~ is an evacuated
thin-walled stainless-steel conical tube fitted with
sapphire windows at either end. The thermal con-
ductivity of this viewer is sufficiently small that
one end can be immersed under the surface of a
liquid-nitrogen bath, and permit viewing of objects
therein, without excessive bubbling or boil-off and
without frosting at the exposed end. With this viewer
a given specimen could be probed for a period of
several hours, and many structures investigated.
Care was taken to choose a fine springy probe wire



KUHTIN, McGILL, AND MEAD

with a rounded top to avoid mechanically damaging
the structure under test.

E. Selection of Structures

Preliminary measurements consist of determin-
ing the capacitance of each MIM structure on a given
substrate to ascertain which structures have insula-
tor thickness within the interesting (& 100 A) range.
Questions of insulator uniformity, the validity of
the trapezoidal-barrier approximation, and the
dominance of tunneling as the mechanism of current
flow, must be answered before detailed analysis is
undertaken. These questions are coupled and may
be simply resolved. Assuming the simple trape-
zoidal-barrier model (Fig. 1) with an arbitrary
E-k relation in the forbidden gap of the insulator,
the simple ideas of an exponentially damped wave
function lead to a tunneling probability which de-
creases exponentially with increasing tunneling
path. Near zero bias, the tunneling probability is
inversely proportional to the tunneling time RC and
is given by'

thickness, as determined from capacitant;e mea-
surements, is weighted only linearly by thickness
variations. Hence, for every apparent thickness
it is possible to observe RC time constants sub-
stantially below that corresponding to a uniform
insulator thickness. Clearly, a specimen selection
technique is required to prevent a morass of con-
fusing and self-contradictory data from being sub-
jected to detailed analysis. The technique is sim-
ple. One merely selects those samples bounding
the experimental half-plane of lnRC-vs-t measure-
ments. A large number of specimens must be ex-
amined, but if tunneling is indeed the mechanism
of current flow, a well-defined bounding line will
eventually emerge. '0 If this line is indeed straight,
and its intercept of the expected magnitude, then
the trapezoidal-barrier assumption may be assumed
valid (particularly if calculations of the expected
barrier shape, using the known parameters of the
bulk material from which thin-film structures are
fabricated, predict this simple barrier shape, as
is the case for metal-GaSe-metal structures).

RC= (2mek/e) [1/k($)j e '"" .

Hence, near zero bias the natural logarithm of RC
should depend linearly on insulator thickness t with
proportionality constant 2k($) where k($) is the
average value of k encountered in the tunneling path
corresponding to an incident electron with zero
transverse momentum and energy equal to the metal
Fermi energy. Therefore, experimental observa-
tion of a zero-bias tunneling time which is exponen-
tially proportional to insulator thickness t is good
evidence that tunneling is the dominant mechanism
of current flow and that the trapezoidal-barrier
model is appropriate.

In addition to a tunneling time experimentally
proportional to insulator thickness, the zero-thick-
ness intercept of this plot should be within an order
of magnitude of (2m&k/e) (1/k) = 10 "sec. Major de-
viations from this value require further investiga-
tion. Having thus identified (by simple measure-
ments performed on the structure under study) tun-
neling through a trapezoidal barrier as the mechan-
ism of current flow, this technique can be refined
and used to select uniform-thickness structures
from the multitude incorporating an insulating film
of nonuniform thickness (i. e., those having cleav-
age steps).

Consider the physical situation. The experi-
mental specimens consist of nominally 5-20 layers
of GaSe. A cleavage step of one or more layers
will drastically affect the spatial distribution of
current under a given counterelectrode since cur-
rent flow via tunneling is exponentially weighted

toward thinner films. However, the apparent

Al-GaSe-Au
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FIG. B. Plot of lnRC (measured near zero bias) vs
apparent thickness t (as calculated from measured struc-
ture capacitance). Only data for those structures with
the largest experimentally observed RC time constant
is shown for each apparent thickness. These data cor-
respond to structures having the most nearly uniform
insulating layers, as explained in the text. Since a.

straight line is a good fit to the data, direct interelec-
trode tunneling is indicated as the dominant conduction
mechanism. Typical error bar, shown on one data point,
corresponds to the scatter in counter-electrode
area, as measured photographically.
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FIG. 4. Current-voltage curves, for both directions
of applied bias, of a number of Al-GaSe-Au structures.
Solid symbols represent experimental data obtained on
structures whose apparent thickness was calculated
directly from the measured structure capacitance. The-
oretical curves (solid lines) were calculated from the
@-k relation of Fig, 5, the known properties of GaSe,
and from the tunneling model of Sec. II |.Kq. {2,11)].
Agreement between theory and experiment is seen to be
very good. Inset to this figure shows the schematic en-
ergy-band representation of Al-GaSe-Au structures.

is possible. This voltage range (V & Q„V&P„
see insert to Fig. 4) ls known s P'v'L01"'L since the

metal-GaSe interface barrier energies are known

from prior experiments on bulk specimens. The
data of Fig. 4 (solid symbols) correspond to struc-
tu168 rRnglng ovex' 57-97 A ln 1QsulR'tox' thickness.
The data of Fig. 4 were used as input to the nu-
merical inversion program discussed in Sec. II
to obtain approximate &-k curves for GaSe. In-
version of the I-V curve for ea.ch thickness yields
an E-k curve. These E-0 curves were extremely
similar and hence were averaged to obtain an ovex'-
all best-fit &-k curve, shown in Fig. 5. This
energy-momentum dispersion relation is parabolic
near the valence pand, as expected, and departs
from parabolicity toward midgap. The implica-
tions of this E-k curve are di.scussed below, after
its accuracy has been established.

The theoretical I-V curves in Fig. 4 were cal-
culated directly from the ~-k curve of Fig. 5, the
known parameters of GaSe (Sec. III), and the
simple tunneling theory of Sec. II as represented

2.0

IV. RESULTS AND INTERPRETATION

A. Al-GaSe-Au Structures

Flgul 6 3 shows the zero-bias tlIQe .coQstRnt of
a selection of Al-GaSe-Au structures plotted vs
apparent GaSe thickness (as determined from
capacitance nieasurements). The data shown was
obtained from those specimens of highest xesis-
tance and hence of most nearly uniform insulator
thickness. These data, form a straight line over
a wide thickness range, and hence direct tunneling
through a trapezoidal barrier is indicated as the
dominant mechanism of current flow. The slope
of this straight line gives a good estimate of k($)
as indicated by Eg. (3. 5). The error bar shown

on one data point is representative of the error in
apparent thickness arising from scatter in the
actual area of individual counter electrodes as
formed in the specimen fabrication process. This
random error is the most important uncertainty in
this series of experiments since the thickness
enters calculated currents in the exponent.

Figure 4 presents detailed current-voltage data
obtained on structures of uniform thickness (selec-
ted according to the px'ocedux'6 discussed ln the
previous section; see also Fig. 3). Data was ob-
tained over that voltage range, for each bias di-
rection, for which dix'ect interelectrode tunneling

0
0 .I0

k (A-')
.I5

FIG. 5. Experimentally determined energy-momen-
tum dispersion relation within the forbidden gap of GaSe.
This relation is an average of the &-k relations deter-
Inined by numerically inverting each experimental I- V
curve of Fig. 4. Since only that portion of the E-k re-
lation from the valence band up to Q&+ft)& is active in
determining the tunneling currents within a given MIjg
structure, the use of aluminum and gold as electrodes
limits the range over which E(A) may be calculated to
that shown |,'i. e. , Q~~+ft)'~„= l. 5 e&). &his relation is
parabolic near the valence band, as expected, but pos-
sesses rather little curvature for & & 0. 6 eV.
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FIG, 6. Experimental current-voltage curve of an
SS-A (as determined directly from the measured capac-
itance) Cu-CaSe-Au structure is shown by the solid sym-
bols. The solid curve is calculated from the E-k rela-
tion of Fig. 5, the known properties of GaSe, and the
tunneling model of Sec. II [Eq. (2. 11)]. Agreement be-
tween theory and experiment is excellent thereby indi-
cating that the previously determined E k re'Lation is in-
trinsic to GRSe. Inset shows a schematic energy-band
representation of the Cu-GaSe-Au structure.

by Eq. (2. Il). The exceptionally good agreement
between theory and expex'iment as illustrated by
Flg. 4 ls evidence that the model of Sec. II 18 ad-
equate to describe tunneling in Al-GaSe-Au struc-
tures, since the E-k curve is highly over specified
by the data. That is, each I-V curve contains
enough information to uniquely define the E-k re-
lation over the relevant portion of the forbidden
gap. The observation of quantitative agreement
between current-voltage curves measured for a
mide rage of insulator thickness, and theoretical
predictions based on a single E-k rela. tion, in-
dicates a complete self-consistency of the theo-
retical model with the experimental situation. As
a consequence, we are mell assured at this point
that direct interelectrode tunneling is the dominant
mechanism of current flow in Al-GaSe-Au struc-
tures and that a single E-k dispersion relation ac-
curately describes the tunn, cling phenomenon over
a wide range of insulator thickness. Further ex-
periments are rqquired to assure that the E-k re-
lation thus far obtained is an intrinsic and funda-
mental property of GaSe.

8. E-k Dispersion Relation

A crucial test of the validity (as indeed a funda-
mental and accurately determined property of
GaSe) of the E-k relation of Fig. 5 is the quantita-
tive-prediction of tunneling currents in structures
other thag the Al-GaSe-Au ones from which this
relation was determined. For example, a tunneling
electron in a Cu-GaS6-Au structure encounters a

lO'

0-2
O

(0-3

l.5—

I.o

Io' —'
i

.2 .4
V (volts)

0 I I

0 .04.08, t2 .L6 .20
k(w ')

FIG. 7. Figure presents both the experimentally de-
termined &-k relation of GaSe, and also a common two-
parameter appr'oximation {Franz s tw'o-band model), and
compares the tunneling currents predicte'd by each.
Sensitivity of the J- Vcurve to small changes in the E-k
relation may be gauged by comparison of the deviation
between the two E(k) curves and the corresponding J(V)
curves.

range of k for each applied bias which is quite dif-
ferent from that in an Al-GaSe-Au structure. As
may be seen in the inset of Fig. 6, the band dia-
gram of a Cu-GaSe-Au structure is distinguished
from that of an Al-GaSe-Au structure by the low
O. 4-eV Cu-Ga, Se barrier energy.

The known properties of GaSe in conjunction
mith the E-0 relation of Fig. 5 are, as previously
discussed, adequate to permit calculation of the
tunneling current-voltage curves to be expected in
Cu-GaSe-Au structures. The result of such a cal-
culation (as in Sec. II, with no adjustable param-
eters of any sort) is shown in Fig. 5 along with
data obtained on an experimental structure. The
thickness used in this calculation is (as throughout
this paper) determined directly from the measured
capacitance of the experimental structure. The
agreement between theory and experiment, shown
in Fig. 6, is excellent evidence that the E-k re-
lation previously determined for GaSe is a funda-
mental and intrinsic property of GaSe.

The accux'acy to wh1ch the energy-momeIltQm.
dispersion relation of GaSe has been determined
in this series of experiments may also be gauged
by the comparison, presented in Fig. 7, between
the experimentally determined E-k cuxve and a
common analytic approximation (Franz's two-band
model: m*„=O. OV, m*, =0. 35). The inset shows that
the experimentally determined E-0 relation (solid
line) and the two-band approximation differ only
slightly. Yet the experimental I Vcurve (sol-id
circles) is seen to be in distinctly better agree-
ment with the predictions of the actual E-k curve
than with those of the approximation.
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FIG. 8. Energy distributions of tunneling electrons and corresponding band diagrams for two Al-GaSe-Au structures.
Distributions were calculated using the techniques of Sec. II and give insight into the origin of tunneling current, . All
distributions Rre plotted on lineRr scRles 80 that R v18uRl e8tlmRte of the w1dth of the distribution is Meaningful, The
number beneath the peak of each distribution indicates the absolute magnitude of that peak relative to the peak of every
other distribution in the figure. For the 97-~ structure, the width of the distribution (shaded curve) diminishes rapidly
with increasing applied bias. However, for the 57-L structure rather broad tunneling distributions are noted at aii bias
values. This distinction occurs because the thicker the sample, the more strongly the current distribution is weighted
toward low values of k. The lack of appreciable curvature in the E(A) relation for E&0.6 eV (see Fig. 5) gives rise to
unusually broad tunneling distributions near zero bias, even for relatively thick specimens of GRSe.

C. Energy Distribution of Tunneling Electrons

Having at our disposal an accurate F--k relation,
the physics of electron tunneling may be more

fully appreciated by using the previously discussed
computer program to numerically calculate the
energy distributions of tunneling electrons.

Energy distributions of tunneling electrons are
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shown for several values of applied bias in Fig. 8.
These distributions have been calculated for Al-
GaSe-Au structures having thicknesses at the ex-
tremes of the range studied; the calculations span
the range of biases over which direct interelectrode
tunneling is possible. For reference, a band dia-
gram is shown for each bias condition. The number
benea. th each distribution (solid curve) is the rel-
ative magnitude of the peak of that distribution.
Each distribution is drawn on a linear scale so
that a visual estimate of its width will, be meaning-
ful.

Considering first the thicker (9'7-A) structure,
it is clear that the nearly flat part of the E-k curve
(see Fig. 5, E & 0. 6 eV) leads to rather broad tun-

neling electron distributions at low bias. However,
as the bias is increased the relevant portion of the
&-k curve is extended toward E= 0 and hence the
tunneling distribution becomes very peaked about
the source-electrode Fermi level. This peaking
is exactly what is expected because the exponential
damping of the electronic wave function heavily
weights the transmitted distribution toward small
values of k. At small insulator thicknesses, how-

ever, the weighting toward low k is correspondingly
less. Therefore, in thin structures, electrons at
all possible energies contribute to the tunneling
current, even at high bias. The degree to which
this contribution is significant depends, in general,
on the curvature of the E-k relation. For GaSe,
this curvature is rather small for large energy,
and consequently, electron tunneling through mid-

gap can be a major contribution to the total current.
It is interesting to note that the approximation tech-

nique of Stratton et a/. ' which is based on adistribution
of carriers sharply peaked about the Fermi level of
the source electrode would have been inadequate
and inappropriate for the calculation of tunneling
currents in GaSe. This conclusion could have been
inferred from the lack of self-consistency which
would have resulted had that approach been used,

but may be directly drawn from Fig. 8. The
numerical technique of Sec. II includes all con-
tributions to the total tunneling current and hence
is more general than the technique of Stratton et
al. ' in the sense that no assumption need be made
about the nature of the E-k curve.

V. CONCLUSIONS

We have studied current flow in MIM structures
incorporating single-crystal films of GaSe less
than 100 A thick. The dominant mechanism of
current flow in these structures is direct inter-
electrode tunneling through a trapezoidal potential
barrier. Mentification of this mechanism is based
on quantitative comparison between experimental
data and theoretical predictions calculated from
the known properties of bulk GaSe.

The E-k dispersion relation within the forbidden

gap of GaSe was calculated from a small subset of
the data obtained and is shown to be intrinsic to
GaSe. Knowledge of this relation, the properties
of the bulk insulator, and the geometry of a given
structure are sufficient to quantitatively predict
tunneling currents and their dependence on applied
bias, insulator thickness, and metal-insulator
barrier energy. We therefore conclude that a
single one-electron model of tunneling is an appro-
priate and sufficiently accurate description of
current flow in those physical situations where the
criteria for its applicability are fulfilled. These
criteria are straightforward and can be examined
a Priori if the structure under study is well defined
and the relevant electronic properties of its con-
stituents are known.

Tunneling measurements provide a direct tech-
nique for measuring the energy-momentum dis-
persion relation within the forbidden gap of an
insulator. This relation represents fundamental
information about a given solid which cannot be
obtained by other methods.
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A detailed study of the change in hot-electron mobility with applied electric fields in n-type
InAs at 77'K is presented. Both theoretical and experimental results are presented. Elec-
tron-electron collisions are assumed to be sufficiently frequent to determine the energy and
momentum distribution of the electrons. The effects of ionized-impurity scattering are in-
cluded in the momentum balance equation, The nonparabolicity of the conduction band is in-
cluded in the theoretical calculation. The effect of the overlap integral which results in the
nonparabolicity is included in the manner of Ehrenreich by utilizing several terms of the scat-
tering matrix element. For low electric field (&15'0 Vjcm), a slight increase (approximately
10/g) in the mobility with applied electric field is observed. For higher electric fields

V/cm), a strong decrease in the mobility with applied electric field occurs. This de-
crease js observed up to the point of impact ionization at approximately 800 Vjcm.

INTRODUCTIOX

The mobility of hot electrons in polar semicon-
ductors has become of interest in recent years
with the production of III-V and II-VI compounds in
relate. vely pure form. Most of the past work in
III-V compounds has been for indium antimonide
(InSb) and gallium arsenide (GaAs). For indium
arsenide (InAs), some of the theories which have
been applied to InSb can be used, since these ma-
terials have approximately the same band structux'e,
In the present work, we calculate the transport
properties for n-type InAs at 77 K for applied
electric fields below that required for the onset of
impact ionization. There have been a few theories
for InSb develoyed by using various approaches,
and some of these may be, or have been, applied
to InAs.

One of the earliest theories for InSb was pre-
sented by Ehrenreich. ' He was one of the first to
include the nonparabolicity of the energy band,
doing so with the theory of Kane. Kane's theory
results from taking the interaction of the valence
bands and the conduction band through the k p
terms of the Hamiltonian. The k-independent spin-
orbit interaction is also taken into account exactly.
This refinement was necessary because the nar-
row band gap in these materials makes these in-
teractions too strong for perturbation theory to
yield accurate results. From these calculations,
the relation between the energy bands b(k) and
the crystal momentum Kk is no longer a simple
parabolic relation, but is more nearly hypex'bolic.
Ehrenreich confined his calculation to temperatures
above 200 K to avoid problems arising from crys-
talline imperfections, such as ionized impurities.


