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The critical concentration for single-ion-single-ion energy transfer in ruby is calculated

using Anderson's method for transport between ions which are characterized by inhomoge-

neously broadened energy levels. The excitation on the chromium impurity is assumed to

propagate by virtue of superexchange interactions. Using a continuum approximation, we

find that the single-ion excitation is localized below concentrations of 0.3—0. 4%, a range

not inconsistent with that concentration at which a sudden change in the fluorescent lifetime

of ruby occurs.

I. INTRODUCTION

It is known that single-ion-single-ion energy
transfer in ruby allows for the destruction of lasex'
efficiency as the chromium-ion concentration is
increased. Imbusch' has shown experimentally
that this is caused by R-line excitations propagating
from single-ion site to single-ion site until they
find an ion-pair "sink" which drains the optical
energy nonradiatively to the lattice. The number
of chromium pairs increases as the square of the

Cr ' concentration, while the number of single ions
increases lineax ly with the Cx 3' concentration.
Therefore the ratio of the intensities of the pair
lines N, (V041 A) and Nz (7009 A) to the R line is
expected to increase linearly with Cr ' concentra-
tion. However, Sehawlow et al. ~ observed that the
ratio increases faster than linear and concluded
that pairs draw energy from the single ions. As
the Cr ' concentration is further increased, the
N lines become even more intense, the N-line in-
tensities becoming comparable to the R lines at
1% Cr ' concentration. Imbusch observed that N

lines exhibit a double decay time at a Cx ' concen-
tration of 0. 2%, at this concentration the N lines
initially decay rapidly with a decay rate identical
to that exhibited by the N lines at the much smaQer
concentration of 0. 044%. During the later part of
the decay period, however, the N lines exhibit the
much slower decay rate appropriate to the isolated
R~ line. From these data Imbusch concluded that

energy must be continually transferred from th|.
single-ion "bath, " by means of a single-ion-single-
ion energy-transfer mechanism, to the pairs. His
argument proceeds as follows: First, the single-
ion-pair energy transfer is nonradiative. There-
fore, only single ions close to pairs can transfer
excitation directly to the pairs. These single ions
will decay faster than the main body of single ions.
If no spatial transfer occurs (or occurs very slowly)
within the single-ion energy reservoir, this fast
decay rate should be exhibited in the later part of

the N-line decay curve, the intrinsic decay rate of

the pair lines being much faster than the decay rate
of the neighboring single ions to pairs. Because
Imbusch observed that, in fact, the decay rate in

the tail of the N-line decay curve is the same as
for that of the isolated R line, a sufficiently rapid
single-ion-single-ion energy- transfer rate must

be present.
As the Cr ' concentration is lowered, evidence

of single-ion-single-ion energy transfer disappears.
The 1ater part of the decay rate of the N lines is as
fast as the initial part —no slowly decaying tail is
evident for C& 0. 2%. In this paper, we contend

that this behavior can be understood in terms of a
sudden disappearance of single-ion-single-ion en-

ergy transfer, necessary to "feed" the N lines, at
concentrations below 0. 4% (the apparent discrepancy
with the above data will be explained later in this
section). This sudden disappearance of energy
transport as a function of decreasing eoneentration
is a result of the inhomogeneous broadening of R
lines due to the strain field, and the large mean
distance between the single ions, which we claim
localize the R-line excitation and inhibit single-
ion-single-ion transfer. According to a calcula-
tion of Anderson, below a critical concentration
of Cr ' ions, this localization is complete-no
single-ion-single-ion transfer can occur. It is
essential in such a model that the strain be micro-
scopic compared to the (approximately) six atom

spacing corresponding to the nearest-neighbor
chromium distance at the critical concentration
of 0. 4%, causing random distribution of energy
levels for all chromium sites.

Stated again for clarity, we claim Anderson's
most probable path diffusion model for inhomoge-
neously broadened systems results in a critical
concentx'ation below which single-ion-single-ion
energy txansport cannot occur. The scarcity of
pair sites requires this transport for any signifi-
cant degxadation of the single-ion fluorescent life-
time. Experimentally, it appears that the i.ntrin-
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sic fluorescent lifetime for the 8 line in ruby
drops abruptly above a critical concentration
(-0.4 at. %) of chromium ions. We argue that, for
concentrations belom this value, localization of
tbe single-ion excitation (in the sense of Anderson' )
obtains, and 8-line energy flow to the pair sites is
inhibited. For concentrations above this value, we
argue that the single-ion excitations are delocalized,
energy f lorn occurs within the single-ion system,
and the pair sites are able to drain off significant
8-line intensity as manifested in tbe sharply larger
value of the fluorescent decay rate and the sharp
rise in the N-line intensities.

The possibility of localization of an excitation
propagating in an inhomogeneously broadened sys-
tem was first studied by Anderson. He investi-
gated in specific terms the motion of an electron
in a.n impurity band making quantum jumps from
a donor (acceptor) site to another donor (acceptor)
site whose energy levels (ground states) are ran-
domly distributed because of Coulomb interactions
mith randomly placed charged centers. He argued
that tbe electron will be localized (and no longer
mobile) at a particular site, should the inhomo-
geneous midth exceed by several times the site
transfer interaction strength (the exact require-
ment depending upon the crystal structure and the
number of nearest neighbors).

The efficiency of the single-ion-single-ion inter-
action depends on two factors: (i) the concentration
mhich determines the mean distance between im-
purity centers and (ii) the width of the inhomoge-
neous broadening which "detunes" the resonance
frequency of the interacting sites. According to
R model of Anderson, localization of the excitation
on R single ion is expected for concentrations below
a critical value, increasing for increasing inhomo-
geneous b1 oadening.

To calculate the critical concentration, me use
Anderson's most probable path method. ' He chose
the self-energy part [V, (s), see Sec. II, Eq. (6)]
of the Green's function as a suitable quantity to be
studied and argued that if the most probable value
of the imaginary part becomes zero as Re(s)-+ 0,
then localization obtains. Lloyd, homever, has
shown that by taking the average value of the full
Gl e'en 8 function Qo localization 18 po881ble for
any type of interaction. This difference of opi.Dion

arises in the folloming may: The probability distri-
bution of ImV~ (8) as Re(s) + 0, is not sharply
peaked at its average value, unlike other quantities
such as the density of states. This is because an
infinitesimal fraction of sites contribute an infinite
amount to lim[imV, (s)] as Re(s)-+0. Ttus can be
seen even from the first term of the series for
V, (s) [Eq. (6)]. For transfer interactions falling
off faster than I/x~, lim[ImV, (s) ] as Re(s)-+ 0
will have zero value with almost unit probability

for most of the configurations of the random im-
purity energy levels. This means that me will
almost always have localization (keeping only the

first term of the series for tbe sake of argument).
However, due to an infinitesimal fraction of sites
which possess energies which cause the denomi-
nators to vanish, the average mill be nonzero,
leading to a conclusion that transport obtains. This
is due to the fact that the averaging process smears
out the discrete poles on the imaginary axis into
a branch cut which will cause a finite discontinuity
of the self -"energy term at the imaginary axis. This
results in a nonvanishing value for lim[ImV, (s)] as
Re(s) -+ 0, leading to a, delocalization. This is,
homever, an erroneous conclusion resulting from
the incorrect assumption that the average is a xeP-
xesentative value. ' Put another may, because me

are interested only in how often the experiment tells
us lim[ImV, (s)] as Re(s) -+0 is zero (localization)
and nonzero (delocalization), it is meaningless to
take the average; the weighted average of zero and

nonzero elements is always nonzero, obscuring the
fact that for the overwhelming majority of configur-
ations lim[imV, (s)] as Re(s) + 0 is zero when
localization is dominant.

Our result exhibits localization of the 8-line ex-
citation below a chromium concentration of - 0. 3-
0. 4/0. We believe that this can explain the concen-
tration dependence of the R-line decay time in thin

ruby samples as shown in Fig. 1.' It is seen
there that the Qoureseent lifetime decreases ab-
ruptly for concentrations greater than approxi-
mately 0.4%. However, ' Imbuscb's data. of 1V-line

double decay at 0. 2/o of Cr ' concentration imply
that some 81ngle-1on-81ngle-1OD energy transfer
is present even at this concentration, although the

weak N-line intensity shows that the rate is very
small. The presence of this weak residual single-
1OD-81ngle -:.10D 1IlterRct10Q below the c11tlcRl con-
centration may possibly be due to other types of
interactions (e. g. , long-range magnetic dipolar
interactions). However weak these may be, they

abvays result in energy transport, according to
Anderson's theory. %'e contend that the dominant
energy-transfer mechanism is the exchange inter-
action, which being short range in character, will
exhibit 8IlRlp locRllzation Rt lom concentrations.
The absence of B&-line single-ion-single-ion energy
transfer at the lorn concentration of 0. 05&0 was re-
cently observed by Szat". 7

II. SUMMARY OF ANDERSON S METHOD

The following is a brief summary of Anderson's
theory. The basic Schrodinger equation is

where 5= I, A.(t) is tbe probability a. mplitude at
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FIG. 1. Plot of R-line decay time measured at 77'K
as a function of chromium concentration on very small
samples of ruby (H,efs. 1 and 6).

where

ss —E) p~) zs —E)

fI(s) = f e "A) (t)dt,

fo)+7
f",(s) e"ds,

y is an arbitrary positive real value such that

f j (s) is analytic for Re(s) & y . By iteration it fol-
lows that

with

vff ~ vff VII
( )is —Er, ; (is —Ef ) (is —Ep)

where P means summing on nondiagonal indices.

site j at time t, E& is the random energy at the im-
purity given by a probability function P(E&), and
t/'"p is a small perturbation representing the inter-$1
action strength between sites j and l. In our prob-
lem E& is the energy spacing between A~ and E
levels at site j, which is inhomogeneously broad-
ened by strain field. Also V~; is the exchange in-
teraction between the two sites [see Eg. (22)]. As-
suming that the excitation starts from site I initi-
ally (t= 0), i.e. ,

&",(0) = 5f;,
where 5g", is the Kronecker 6, we can calculate
AI(~). If A;(~) c0, the excitation will remain at
the original site with finite probability an infinite
time later. This is the basic definition of the
Anderson's localization. In order co put this con-
dition in terms of more convenient variables, we
start by taking the Laplace transform of (1). Using
the initial condition (2), one obtains

E1"' =Er-Er (8)

For convenience, following Anderson, we shall
take the energy Ey to lie at the center of the origi-
nal band (or origin of the energy scale) so that
Eg' =Et-, . The basic difficulty of the problem
arises from the fact that V, (s) is a function of
stochastic variables, Eg, E1, . . . . Therefore we
ean treat V, (s) only in the sense of probability.
It is at this point that Anderson's approach differs
basically from that of Lloyd, as discussed in the
Introduction. If lim V, (s) as s -+ 0 converges (in
the most probable sense), then I/7'=lim[ImV, (s)]=0
as s + 0, and we have localization. Anderson
showed that the first term of (6) diverges for an
interaction V» falling off as I/x» or slower with
distance, leading to transport. Thus, dipolar in-
teractions always give delocalization. If the inter-
action falls off faster than I/r', then the first term
converges. (In our case, superexchange interac-
tions are used for V». They typically exhibit ex-
ponential range dependenees. ) However, as mem-
tioned earlier, the average of the. imaginary part
of the first term, essentially the Golden rule re-
sult, is nonzero. This should not be interpreted
as an indication of delocalization, since the average

The Green's function f,"(s) is analytic on the right
half of the S plane and in general has a cut on the
imaginary axis. Therefore we can put y-+0 in
(4) and push the contour across the imaginary axis
to negative infinity, taking all the contributions
from the poles on the left half of the plane. For
t-+ ~, the dominant contribution comes from a
pole closest to the imaginary axis. Thus the am-
plitude Af(t) will decay at a rate of e '~' with w

given by

I/a=lim[ImV, (s)] as Re(s)-+0.
When lim[ImV, (s)]= 0, as Re(s)-+ 0 the disconti-
nuity at the imaginary axis disappears, and the cut
is reduced to poles located on the imaginary axis.
Therefore AI(t) becomes oscillatory with time, re-
sulting in a localization. The imaginary part of s
is determined by setting the real part of the de-
nominator of (5) to zero:

—Ims = E, + Re V,(s ) .
This eciuation, combined with (6), is just the Bril-
louin-%igner perturbation series, which contains
all the eigenstates of the system. Hence (5) has
poles in the vicinity of each E„.s. However, the
residues become extremely small as we depart
from E&'. Therefore we are to consider a pole
only in the neighborhood of EI. We take s real (in
the following we will take s as positive infinitesi-
mal), and replace Ef by Ef' = Eg —E,"—Re V, (s) .
In practice we shall ignore the energy shift ReV, (s),
so that



S. K. LYO

is meaningless for the reason explained in the
Introduction. Therefore we must go to higher-
order terms to see if transport occurs.

Define a random variable Tl, as

V„„, "V„,,
I (is E—, ) ~ ~ (is —E, ) (s-. o&k1

(9)

This is an absolute value of a term appearing in
the (L —1) th summation in the bracket of (6).
Then the average number of terms with a magnitude
between Tz, and Tz, +dt's, in the (L —1) th summation
in the large parentheses of (6) can be shown to be,
for a large L [see Eq. (34)j,

z, = Z (~r)
&k1ug" nl. )

is given by

P(Z )dZ - F — I-(1) (L»1) . (11)
Zg

If one defines (W/V)o to satisfy

[P((w/V), )1' L(1)=1,
then, as L-~, the series (V, ) will converge with
a proba, bility -1 —e, if

w/v&(w/v), .

Equation (13) is Anderson's criterion for localiza-
tion. To find the function I', define

Z= -V-

n(T~) d T~ = F — . s L(T~) (L» 1), (10)
V TI,

where I' is a certain function to be calculated,
L(Tz, ) is a slowly varying function of Tz, , W is the
width of the inhomogeneous broadening [see Eq.
(20) j, and V is a parameter representing the inter-
action strength. The probability distribution of

form probability distribution function P(:") of the
variable =:

+(P) J P(=)e d:- . (16)

In practice, the evaluation of (15) and (16) encoun-
ters a difficulty arising from the correlation of the
factors in (9). To eliminate this correlation, Ander-
son used a multiple-scattering formalism. The re-
peated scattering from the same site corresponding
to the repetition of the same indices in (6) can be
removed by modifying the site energies in a self-
consistent way. Because the path will not involve
visits to the same site twice, the correlation is
removed. However, we have to make proper ac-
count for the modified energy denominators. An-
derson argued that the consequence of the prohibi-
tion of repeated indices is to reduce the large terms
in the series, so that the series will be more easily
convergent, unless le~ I &Vs/W, where e, is the
modified energy denominator. He used this condi-
tion as a restriction on the modified energy terms.
This limitation arises at the expense of removing
the correlation. He argued that this limitation is
not of importance, and that removing this restric-
tion will give the upper limit of the critical value
of (W/V), . Thus, actual localization is more easily
achieved than will be exhibited neglecting these
correlations, and we will underestimate the critical
concentration. The error is small if the condition
8'» V is satisfied. This condition is wellsatisfied
in our problem as will be shown later, and we shall
adopt this approximation. By defining A(p) as the
bilateral Laplace transform of the total distribution
function n(X)

A (p) = f"n(X) e ' dX,

one obta, ins by convolution that

(i4b)

The relation X= Z+ = obtained from (14a) and (14d)
is used, Thus n(X) can be obtained through the in-
verse Laplace transformation,

I
e =II

j=1

1

(s -+0),
ss —R;

(14c) n(x) =
1

goo +

A(p) e'r dp,

(14d)

V; representing an arbitrary factor V». in the nu-
merator of (9). It is convenient to take the bilat-
eral Laplace transform of the distribution function
P(Z) of the variable Z:

C(p)= f P(Z) e "dZ.

Similarly we can take the bilateral Laplace trans-

where y is the real part of p in (15) and (16). y is
generally restricted to a region where (15) and (16)
are well defined and do not diverge. Using (14),
(19) can be put into the form of (10).

ur. EVALUAnOX OF CRn ICAL CONCEN~RAnON

This section deals with the diffusional motion of
a single-ion excitation ( A((- E) in ruby using the
scheme developed in Sec. II.

The energy levels of the impurity chromium ions
are inhomogeneously broadened due to the strain
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=0, (2O)

A modification of this distribution function will af-
fect our results. For example, if we enhance the
central part of the distribution with respect to the
wings, the energy levels are less disturbed by the
random "potential. " The critical concentration
will be lowered, because the excitation will be more
easily delocalized. We have not carried out any
numerical estimate for such a modification. Our
point in this paper is merely to present a theoret-
ical basis for the observations of Imbusch. Other
approximations we are forced to make will also
detract from quantitative conclusions. For all
these reasons, we must stress that the numerical
results of this paper should not be taken too seri-
ously. However, the fact that our final value for
the critical localization concentration is in the
vicinity of that derived from Imbusch's experiments
does demonstrate that something like the model we
are using applies to dilute ruby. Further theoret-
ical refinements await a more complete experi-
mental study of the concentration dependence of
fluorescent decay curves for the R and N lines.

As an example of the kind of approximation we
have been forced to make, the inhomogeneous
broadening has been assumed microscopic in char-
acter. Should the reverse be true, there may be
some suspicion that even in the dilute regime reso-
nant sites obtain for ions at the average ion-ion
separation. At a Cr ' concentration of O. 4%, the
average distance between nearest chromium neigh-
bors will be about six atomic spacing. Should
broadening be more macroscopic than these dis-
tances, nearby chromium sites will be resonant
and our estimate of the critical concentration will
be too large. Indeed, in the limit of large macro-
scopic correlation lengths for the broadening inter-
action, localization will not occur. We contend
that the experiments of Imbusch mitigate this con-
clusion. Using (14c) and neglecting correlation,
we evaluate (16):

e(p)= f" p(„--)e'~d=-=(e')-

field. We assume that this broadening is described
by a rectangular probability distribution centered
at the origin:

P(EI)=1/W, ——,'W& El & ~~W

+(r 1I) 2 ~ (e p) rf l /s (23)

where r»= )r;-ry( and a is a fourth-neighbor dis-
tance for Al ions in A1203. p, varies between p, =1
and p, 1.7. In Fig. 2 we show the approximate an-
gular dependence of p, (solid line) on one of the
reflection symmetry planes (o'~) of the group D„
appropriate to ruby. Using (23), we can rewrite
(22):

v(r) = v, exp(- [p(e, y)/a, ]r), (24)

where ao'= 2a 'lnS '. Using the above equation and
(14b), we can calculate (15), again ignoring corre-
lation and using the continuum approximation,

electric dipole-dipole mechanisms were several
orders of magnitude too weak to account for the
rapid single-ion-single-ion energy-transfer rate.
However, Birgeneau' contended that errors entered
in Imbusch's estimates of the relevant matrix ele-
ments and interaction strengths. He demonstrated

.that the electric quadrupolar oscillator strength
was overestimated by Imbusch (the mixing matrix
elements were taken too large) and that off-diagonal
(in total spin) exchange interactions can indeed con-
tribute to the single-ion-single-ion energy-transfer
rate. A reasonable value of the single-ion-single-
ion exchange integral J= 2. 5 && 10 cm ' for ions
separated by an average of 13 A led to microsecond
transfer rates as required experimentally. Later,
Huang' showed from detailed calculations that the
magnitude of the energy-transfer integral for
single-ion-single-ion energy transfer between Va'

ions in KMgF3 host separated by three F ions is
indeed about 10~ cm ', indirectly supporting
Birgeneau's theory. The short-range interaction
model of Birgeneau was further supported recently
by Szabo. '0

Therefore, in this paper, we shall adopt
Bigeneau's model for single-ion-single-ion inter-
actions. We assume the chromium impurities are
coupled by superexchange interactions, the range
dependence of which can be approximated by

&&we, , & (22)

where S is an overlap integral, N(rIf) is the number
of oxygenbonds between sites j and 1, and Vo is a
positive constant. We can estimate Ã(rp) by

= (f,",
i

—,'w/Ei-'P(z)dz)'

= 1/(1+P) (- 1 P, L» 1).

( e) )f)(z)e "dz==(8 ')

v, -' pv(e, y)r
exp tlo rI&

~
~

I~
e~I ~ t

~

~ n~ r
L

The mechanism for energy transfer in dilute ruby
first proposed by Imbusch was the electric quadru-
pole-quadrupole interaction. He argued that ex-
change (incorrectly), magnetic dipole-dipole, and

(P«, f »1), (25)

where no is the density of impurities and ro is the



A. Lovrer Limit of Critical Concentration

Given

p,, (8, P) = 0. 25+ l. 25
I
cos 8 I,

0«& 50, 130 & 8&180
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0' 60' IN' l80' F40' %0' %0' 50' & 8 & 130' (26}

FIG. 2. Plot of p defined in Eq. (23) versus the plane
polar angle (+} measured from the e axis'on one of the
0& planes. p& [Eq,. (26)] and p& )Eq. (45)] are the approxi-
mate lovrer and upper limits, respectively.

(25) can be evaluated to yield

p + 40

e(p)= 4',
V

ensemble Rverage of the IMnlmum (4stance of Rp-
proach between the impurities. The concentration
dependence of the criterion {12)is introduced via .

this parameter. Although it is possible to evaluate
(25) quite accurately numerically, it is not partic-
ularly useful because it is almost impossible to
carry out the inverse Laplace transform (19) using
the complicated dependence of 4 (p) on p. There-
fore, we only attempt to set upper and lower limits
of the critical concentration by bounding p(8 Q)
above and below with curves ILL, and p~ defined in
Fig. 2. The process is continued until we obtain
a satisfactorily small enough difference. p,, (p~)
will overestimate (underestimate) V(r) and give
the lower (upper) limit of the critical concentration.

The quantities p, , and pa are also chosen in such
a way that we are able to use the following approxi-
mations: (a} axial symmetry around the c axis and

(b) the reflection symmetry about the plane of 8= ~ v

in the low-concentration limit.

0. 25+1.25cos8r de, i 8 pg
0 go

„50
d8 sin8 exp

' pr (p & 0).l. 05
Qp

(27)

It ls convenient to define R parameter g by

Since V,= V, exp[- {1.05/a, )x,j, one finds

(V /V ) el*05' (29)

We continue our integration by substituting (26) and

(29) into (27}:

4(p) = 4',a',e-' '"" ( 1 " et ospn+. & SOPn

l. 25p i (1.05p) l. 05p l. 25p (1.50p) l. 50p

Q 2 t.O5Pn+ cos50 —
(1 05 )g

+
(1 5 )2

—
1 05 ) 8 ' (p& 0). (30)

We can now compute (19), using (21) and (30). The
path of the integral is restricted to a strip with
—1&y&0 (Fig. 3). Since we are interested in X
with a positive real part, we deform the contour
to negative infinity as shown by C,. We can further
modify this contour to an arbitrarily small circle
(Ca) around p = —1 by noticing that this is the only
pole in the left half of the plane. Thus, only the
infinitesimal neighborhood at p= —1 wil, l be im-
portant. Therefore, anticipating that g» 1, we
can neglect the second term in the bracket of (30),
which allows us to rewrite the remaining terms as

~)
0. 6434 1 1.57 ~ 0. 6

05 0 0 p
8

p
+

p2

4 (p) = '
4vnoao q — '

{p&0),
0. 643 1 l. 57

p

which, combined with (21), gives

(31)

Neglecting the second term in the bracket, one ob-
tains
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1 &0.643
4

l
d

1 1 1.57~( (ir
n(&) —

2
. I 1 05

4((no o ~
P (1 P)J ( P)z

ti
P

(32)

This can be evaluated for I » 1 as (see Appendix A)

n(X(- ' 4enne' ' '"') e*(5+1 57e ' ')(0.643
k 1.05

X 2.
L

x +1 50+
I+&/I 57eo.ooeee (f, »1) (33)

or, in terms of T, using (14d) and (28),

0. 643 2V lL( PL
n(T)dT- '

4(rnoroq~e ' ' ' ' '
I I q+1. 57eo1.05 tv )

x + ln + 1.50+ ~ o.ooae9

The criterion for localization (12) is now

5. 39 ee f9 '(5 1.52(
~

1n +1.55 ~
) =1,0e0537 A 2 Vm

2V,„' 1+q/l. 62 (s5)

with f defined as

f= n(ir(i.
3

(s6)

from (35) and (39). If n is the density of Al in the
perfect Alz03 and C is the impurity concentration,
then no is given by

Assuming a random distribution of the impurities,
f is found to be (Appendix 8)

no= nC. (4o)

f= I' Q) =0.—170 (I'=y function).
3 4 3

4m
(37)

n is found directly from the crystal structure and
is given by

A typical exchange integral J, appropriate to geom-
etries and distances where cation-cation effects
can certainly be neglected, is given by the inter-
action strength between fourth chromium neighbors
in the perfect Cr~03 lattice. Because these are
linked by two oxygen bonds, it follows from our
model that

n= 2. 00/ae.

Then E(ls. (28) and (36)-(41) give

C= 0. 085(2 InS-'/q)'.

(41)

(42)

Substitution of representative values for the ex-
change J, for the inhomogeneous width W of the R
line, and for the overlap integral S,

J VS

which, combined with (29), gives

g= ln- + ln—+ 2lnS '1 X 2J

(38)

(s9)

J'=10cm ' (Ref. 11), W=0. 14cm ' (Ref. 12),

S=0.3 (Ref. 13)

yields

(W/2 V ) l.4-1.7

The critical value of the ratio W//2V „ is obtained or a lower limit to the critical concentration

Cp

c

/ li
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/
/

I
I
I
3
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I
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FIG. 3. Contours on the p plane.

r ta(95(292 (44)

a result corresponding to the lower curve p,, in
Fig. 2. Although the ratio W/2V is not much
larger than unity, our approximation of neglecting
correlation in (21) and (25) is valid because the
number of the neighbors is very small and V(r) is
a very rapidly decreasing function of the distance.
It can also be shown that the excitation is delocal-
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'ized above this concentration (Appendix C).

B. Upper Limit of Critical Concentration

In this case pz is givenby (Fig. -2)

pz (8, Q) = —0. 44+ 2. 14
i
cos & i,

0 & 8 & 40', 140 ~ ~ & 180'

= 1.21, 40' + ~ & 140'. (45)

The criterion for localization is found in a similar
way:

60 +0.0537fq& max (q+ 1 16}

+1 50+,
W 2

with

ln + ln—+ 2lnS
max

The critical concentration is again given by (42).
Using the parameters (43), we find

W/2V -1.6-1.9

or, an upper limit to the critical concentration

(C„„) = 0.4/. .cri t uyyer (46)

For the other parameters remaining the same, but
for differing overlap integrals 8, we find values for
the lower and upper limits of the critical concen-
tration which are displayed in Fig. 4. As men-
tioned earlier, the critical concentration is cal-
culated for the energy at the center of the original
band. For an arbitrary energy, one must use the
energy differences E„ instead of E~. Since the
width W of the probability distribution of E, is
approximately twice as large as W, we can replace
W by W = 2W in all of the previous equations, ob-
taining

(C„„), = 0.3-0.4/o, (C,„„) = 0.4-0. 5%.

These values are a little larger than those of (44)
and (48), respectively (as indeed they should be},
meaning that the quantum jump of the excitation is
more difficult at energies other than at the center
of the original band. Therefore the critical con-
centration should be determined at the center of
the original band,

This method can be applied to other systems such
as transition metal and rare-earth crystals by
properly accounting for differences of structure
and interaction mechanisms. For exchangelike
interactions, the structural difference wi1.1 be man-
ifested through p(8, P) and ao in (24). In particular,

assuming that the potential decays rapidly beyond
the first impurity neighbor, the integral inside the
square bracket of (25) will be approximately pro-
portional to the number of the first impurity neigh-
bors at a given concentration. This parameter
enters linearly on the left-hand side in the equation
which sets the criterion for localization (35). Close
examination of the calculation shows that as the
number of first impurity neighbors increases, the
critical concentration will decrease, indicating
that energy transfer is more easily achieved. For
the case of ruby we define a nearest neighbor in
terms of the number of oxygen ions intervening in
the superexchange path. For other, more "ortho-
dox" structures, the number of oxygen links are
more closely related to the physical position than
in ruby. Thus, a particularly large number of
nearest neighbors, at a given concentration, exist
in terms of an oxygen linkage definition for ruby,
more than, say, for rocksalt type of structures,
leading to a lower value for the critical concentra-
tion for the former as compared to the latter.

We have neglected the spontaneous emission rate
of the R lines compared to the single-ion-single-
ion transfer rate. The spontaneous lifetime of R
line has an intrinsic value of 4. 2 msec. On the
other hand, the single-ion-single-ion energy-trans-
fer time is known to be 1-10 p, sec at 1% Cr~' con-
centration. As the Cr" concentration is lowered,
the single-ion-single-ion transfer time increases,
becoming infinite at the critical concentration of
0. 4% according to our numerical estimates. Be-
cause the single-ion-single-ion transfer time is
not expected to vary rapidly between a concentra-
tion of 1 and 0. 4%, we believe that the neglect of
the spontaneous emission rate of 8 lines in com-

~o0

0

I.O-
CD
C3

O

0.5—

0.0 0.2 0.4 0,6 0.8 l.0

overlap integral

FIG. 4. Critical concentration for single-ion-single-
ion energy transfer in ruby.
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parison is well justified.

IV. CONCLUSIONS

%e have calculated the critical concentration for
single-ion-single-ion energy transfer in ruby. Vfe
have shown that for concentrations less than - 0. 3-
0. 4/0, the R-line excitation is localized so that
there will be no energy transfer between the single
ions, in reasonable agreement. with the known data
on the fluorescent lifetime of ruby. '
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x = k/I. .
& order to sum (A3), it is convenient to linearize
lnI(k) in terms of x:

(]./L) lnI(k) = (1 —x) ln(0. 5+ n) + n ln(1+ 0. 5/n)

APPENDIX A —Q. 453+ 0.0473. (A4)

I= 1
27Ti

d
1 1

&
B px

(1+p)' (-p)' p

In this appendix we evaluate the integral
The last term shows the maximum range of error
for all values of 0 & «1. Using (A4), we find

(y„) - e (X/L + 0. 5+ n )

where C, is a contour shown in Fig. 3 and A, 8 & 0.
Therefore, we obtain

B "pxI= residue of
( )L ( )L

A —— e1'»

at p= —1

x exp(L[1» ln(1+0. 5/n) —0.453+0.0473]). (A5)

I

It can also be shown that we can linearize the first
term in the exponent of the above equation:

42 ln(1+ 0. 5/n) = 0.0289 n + 0. 383+ 0. 0064

= 0. 0289 v/L + 0. 412 a 0. 0064 .
L-1 '"

1 B 2L
epX".(- )' (' i) '

p"--1
(A6)

The last term shows the maximum range of the
error for all values of v, i.e. , 0& v/L & 2.

(L 1)!„— Bp
'

p Therefore, we obtain

eL e-(0.041 4 0.0537) L e-» Q
2L

(g)2L -v

v=0& ~

1x ~ pX
epL-1-k PL+v

2L (A)""(-R)"e (y)'
v=o

(A2)

A7x (ax"»')"
(
—+t 5+—

Since the function

g2L-v Beo.0289 v

where we define

with

(A3)
is sharply peaked at

2L
0 1 +g/Qe0 ~ 0239

whereas (X/L+ 1.50+ v/L) ' is slowly varying,
(AV) can be approximated as
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(0,959+0 0527)L -x 1 50 0 g2L v
(H e0 0289) vX v

L I vo v

e(0.959%0 0527)l -x (g II 0 0289)2L X 2
1+g/Ii&0. 0289

APPENDIX B

In this appendix we derive the probability function
for the nearest-neighbor distance in a system of N
randomly distributed ions. If the total volume is V

and the density is n0 then the probability p(r) that no
particle will be found within the distance r from a
certain ion is given by

P(r) = = 47rn0r exp(-2—n0r ).SP (r) 2 47r 2

er

The average is given by

2/3
3

r0= r P(r)dr=
4mno

0

pm~' ' ~4gny'i"
p(ri=(l —e - = ( —

(
=exp(-reeer )

V

(X» 1).

Defining q(r)dr as the probability that some parti-
cles will be found in (r, r+ dr), one obtains

p(r+ dr) = p(r) [1 —q(r)dr],

which can be rewritten as

p(r)q(r) =,
However, p(r)q(r)dr is just the probability P(r)dr
of finding the nearest neighbors in (r, r+ dr)
Therefore, we have

Hence

rono= 0. 170.

APPENDIX C

lt is convenient to use the quantity [Eq. (I)]

1/r= -lim[Im V,(s)] as s +0 (cl)

instead of TL [Eq. (9)] to prove the delocalisation
above the critical concentration. The (L-1)"term
of (Cl) can be written, to the first order in s, as

1(-1) '
S V Vr2, V2,22''' V2, r E2@

k 1' ' 'kI -1

+''' + 2 + ~ ~ + 2
I

SQ p)p (C2)
1 n1 n n+2 L1 '

1 L p L-2~

where Therefore

Ik1 k1k2 k L-1I

1 n1 n np2 L2

f„=(2V.„/W)' Q .

Define

(—'W)
k ''Ek Ek Ek

1 n-1 n n+1 L-1

then Eq. (16) gives

1 1
(P) 2(1 p)L-2(). p)

e P 2 ~

(c3)

(c4)

=e', (c5)

(c6)

@(p)e'"
2

' 2(1 ) '(-'+p)

where 4(p) is given by Eq. (30). Integrating around
the simple pole at p= —&,

1 q'(p)e" L~ xr2
27ri 2(1+p) '(p+')-

(C I)

where C& is given in Fig. 3. For L»1 it can easily
be seen that the first term gives Eq. (33) and the
second term is negligible for the value of W/2V

within the range of our solution. Therefore g„+I„
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will diverge in a most probable sense above the cri- (The series converges below the critical concentra-
tical concentration and 1/v will be nonzero or tend tion; this means that 1/r- 0 as s- 0, and we have
to zero slower than s, leading to a delocalization. ]ocalization. )
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Photoluminescent spectra of n-type GaAs were studied as a function of the excitation inten-
sity, temperature, and doping level. The spectra consisted of two major bands representing
radiative band-to-band recombination and radiative transitions through impurity centers, x e-
spectively. The intensity of the peak of the former went through a minimum and a maximum
as the temperatuxe was increased from 175 to 500'K. The temperature corresponding to the
above maximum increased as the excitation intensity was decreased or the doping level in-
creased. These results suggest that the temperature dependence of the peak intensity in band-
to-band transitions is primarily due to the thermal distribution of the carriers over the avail-
able energy states. The peak intensity would therefore normally be expected to decx ease mono-
tonically with an increase in temperature, while the above maxima and minima represent per-
turbations imposed by the presence of tempex'ature-dependent transitions through radiative
or nonr adiative impurity recombination centers.

INTRODUCTION

Although the power output from luminescent
GaAs p-n junctions generally decreases monotoni-
cally with an increase in temperature, '

i.t has been
found that the emission from GaAs diodes contain-
ing a high degree of comyensationa in the P-type
side of the junction passed through a maximum at
a temperature which moved toward higher values
as the current through the diode was reduced. '4

This effect was explained in terms of a recom-
binatlon mechanism which was governed by the
position of the quasi-Fermi level for electrons

which moved relative to radiative and nonradiative
impurity levels in the forbidden gap, the former
being attributed to donor states introduced by the
compensating tellurium. However, the steep im-
purity gradients in the depletion region made it
impossible to obtain unequivocal correlation of the
above effects with the characteristics of the mate-
rial in the emitting region, and there was always
the possibility that the observed effects could be
due to an injection' rather than to a recombination
process.

In this work, direct correlation of these effects
with the characteristics of the material and the re-


