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The calculation of electron-transport properties of direct-gap semiconductors has been
generalized to include arbitrary electron degeneracy as well aa scattering by ionized impu-
ritj.es and heavy holes, Conduction-band nonparabolicity and electron wave-function admix-
ture are retained throughout the calculation of drift mobility and thermoelectric power. Ex-
tensjve comparison of the results with experiment confirms the present description over
wide ranges of temperature and ionized-impurity concentration. Effects of.multivalley con-
duction due to electron transfer into L~, satellite valleys appear in InSb above 700 K (just
below the melting point, at -780 K} and in InP above 800 'K. The lowest satellite valleys of
InAs are sufficiently remote from the conduction-band edge at I'~, that the results are ex-
pected to be accurate up to the melting point at -1200 'K.

I. INTRODUCTION

Transport properties of electrons in direct- gap
semiconductors can be conveniently derived by di-
rect solution of the Boltzmann equation. Previous
applications' of this technique were directed to-
ward calculations of drift mobility in ideally pure
semiconductors. There is also considerable inter-
est in accurate descriptions of impure crystals,
from both the experimental and the theoretical points
of view. In the former case, for example, one may
take advantage of the sensitivity of mobility to ion-
ized impurities in analyses of impurity content.
In the latter case, highly doped materials allow one
to probe regions of the conduction band in the neigh-
borhood of the Fermi level, well above the band
edge. Obviously, accurate calculations in conjunc-
tion with experimental data are helpful in exposing
weaknesses of the theoretical model, particularly
with regard to electron scattering by ionized im-
purities at low temperatures.

The purpose of the present papex is to calculate
electron-drift mobility and thermoelectric power
for various temperatures and ionized-impurity con-
centrations. The formulation itself applies only to

conduction in the single I ~, minimum of direct-gap
semiconductors; detailed comparison of the results
with experiment helps to indicate the onset of multi-
valley conduction. Only in the extremes of high
temperature or high free-electron concentration do
multivalley effects become evident. For the remain-
ing broad range of temperature and impurity con-
centration, the formulation presented in Sec. II will
be seen to agree well with experiment in a quantifa;
tive as well as qualitative fashioo.

In order to allow for wide ranges of temperature
and electron concentration, it is necessary to gen-
eralize the earlier treatment' to include electron
degeneracy and scattering by ionized impurities and
holes. The appropriate formulation of the Boltz-
mann equation for Fermi-Dirac statistics is devel-
oped in Sec. II. Perturbation from equilibrium by
a small electric field or temperature gradient leads
to a linear-difference equation for the perturbed
part of the distribution function. ' The effects of
electron scattering are formally included in the
difference equation. In Sec. III, the following scat-
tering processes are evaluated explicitiy: (i}pi-
ezoelectric scattering ' by transverse and longitu-
dinal acoustic modes, (ii} deformation-potential
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scattering by longitudinal acoustic modes, (iii) polar
scattering ' '

by optical modes, (iv) heavy-hole
scattering, and (v) ionized-impurity scattering. ' '
Material parameters suitable for calculations of
mobility and thermoelectric power with no adjust-
able parameters are discussed in Sec. IV along
with comparisons of theoretical and experimental
results.

II. BOLTZMANN EQUATION WITH FERMI STATISTICS

The total probability distribution function for the
electrons is fr(k'), where Sk is the crystal momen-
tum. In the presence of an external electric field
F, fr satisfies the Boltzmann equation for Fermi-
Dirac statistics,

(e/h)F %~fr= f [s'fr(1 fr) —sf-r(1- fr)] dk' . (1)

In Eq. (1), fr=fr $), fr'=fr(k'), and the differential-
scattering rates are s = s (k, k') and s' = s (k', k). The
integrals in Eq. (1) involving s and s', respectively,
yield probability fluxes for scattering out from and
into the differential volume element d k. In the
measurement of low-field drift mobiliy the electric
field is made vanishingly small. In this limit, the
total distribution function can be written exactly as
the sum of two parts. The first part is just the
equilibrium (isotropic) Fermi distribution

xg s1— '+s' ' d

x'g'[s'(I f)-+sf] dk' —x F —
, k, —(4)

where g' =g(k'), x' is the cosine of the angle be-
tween k' and F, and I' = )F I. The important point
for the present formulation is that all of the inte-
grals in Eq. (4) can be performed analytically for
isotropic crystals. Equation (4) will then be re-
duced to a linear finite-difference equation ' which
can easily be solved by numerical iteration. The
differential-scattering rate s(k, k') depends upon

only k, k', and the cosine X of the angle between
k and k'. Thus, the integral term on the right-
hand side of Eq. (4) is proportional to x since, '6

in general,

f x' 8(X)d%'=x fX8(Y)dk',
where Ct (X) may be a function of X but not a function
of x or x'. The Q(X) is otherwise arbitrary and re-
sembles the scattering integrand of Eq. (4). We
have the following result, since Eq. (4) is homoge-
neous in x:

g s 1 — +s dk

f (k) = 1/(e@ "'~" + 1), f 1 s dkf P 6

where q is the Fermi energy and 8 = $(k) is the
electron energy. The function $(k) is a nonparabol-
ic function of 0 = ski [see Ref. 1, Eq. (3)] and fol-
lows from the band structure given by Kane' for
zero spin-orbit splitting of the valence-band edge.
The remaining part of the total distribution function
is the perturbation distribution and is a small quan-
tity, being of first order in the electric field. Thus,
we write the following solution to Eq. (1) which has
been shown to be exact for small F and isotropic
crystals':

fr (k) =f(k) +xg (k),

where x is the cosine of the angle between k and F,
and the isotropic function g(k) will be referred to
as the perturbation distribution. The electron cur-
rent is carried entirely by g. Although the current
and electric field are vanishingly small so that Eq.
(2) remains valid, the ratio of current density to
electric field is finite and proportional to the elec-
tron mobility. Hence, we need only calculate the
perturbation distribution g.

The Boltzmann equation is satisfied identically
by f for zero electric field and an equilibrium dis-
tribution of the scattering centers. Thus Eq. (1)
becomes, to first order in the electric field, an
integrodifferential equation for g,

This equation is independent of all angular coordi-
nates since Xis one of the variables of the integra;
tion over k'.

The differential-scattering rate s comprises inelas-
tic (polar mode) scattering and elastic scattering
(by acoustic modes and ionized centers) so that

s(k, k')=s„„(k,k')+s„(k, k'),
where the subscripts inel and el refer, respectively,
to inelastic and elastic processes. For elastic
processes, the arguments of the differential-scat-
tering rate commute, according to the principle of
detailed balance,

s „(k,k') =s,&(k', k) . (8)

These arguments (k and k') do not commute for in-
elastic processes, although we can still find an ap-
propriate generalization of Eq. (8). There is only
one inelastic process being considered here (polar-
mode scattering) and the polar-phonon energy is
S„where &„is assumed independent of the pho-
non wave vector. In this case, s«, (k, k') repre-
sents transitions from the state characterized by
k to k' either by emission or by absorption of a
phonon. For an equilibrium phonon distribution,
the relative frequency of these two processes is
simply the Boltzmann factor,
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v„=f (1-X)s„dk' .
We define the scattering-out rates by phonon ab-
sorption and emission, respectively:

N~Q= fs„(k, k',) dk',

(N~+ I)X ~
= f s, (k, k') d k',

(12)

where Eq. (13) follows from Eqs, (9) and (12). The
superscripts + and —indicate that the state k' cor-
responds, respectively, to electron states of energy
8+6+~ and 8 —h(d~. Similarly, the scattering-in
rates are

(N~+ I)VI ——f Xs,m(k', k} dk',

N~VI = f Xs ~(k', k) dk'. . (15)

Equatlolls (12)-(15) define the fllllctloIls XD(k) aIld

X'1(0) which are scattering-out and scattering-in
rates aside from the phonon occupation numbers.
These functions are evaluated in Sec. III.

The equation for the perturbation distribution
Eq. (6) can be written as a finite-difference equa-
tion from Eqs. (6)-(15):

{Nm+f}~Ig + {N.a+1 f)~Ig' (&/@-)»f/»-
(N„+ 1 -f")l(,()+ {N„+f')l(.t v„( ')

Equation (16) is solved numerically by iteration
wherein the first approximation is to assume g =0
and evaluate the right-hand side. This result just
gives g in the relaxation approximation' which as-
sumes that scattering-in vanishes. The next iter-
ated value of g uses the previously calculated g to
evaluate the right-hand side of Eq. (16), etc. One
notes that convergence proceeds exponentially so
that three or four iterations ordinarily suffice for
accuracies of - 2% in mobility. In addition, the
convergence resembles the expected time-depen-

(9)

where subscripts ab and em indicate absorption and
emission. In the limit „- 0, the scattering pro-
cess becomes elastic and Eq. (9) is equivalent to
Eq. (8). The equilibrium phonon occupation number
of a polar mode is given by the Bose-Einstein dis-
tribution.

N = I/(e""))o~" —1}.
The probability of scattering by phonon absorption
must be proportional to N~ so that, from Eq. (9),
the probability of scattering by phonon emission
must be proportional to N~+ 1.

The above results can be used to simplify Eq.
(6) for the perturbation distribution. All elastic
scattering processes (for which k' =k} combine to
form a relaxation rate [see Eqs. (6) and (8)j,

dent evolution of the electron distribution to a
stepped-on electric field. If we were to add a large
constant v0 to v, &

and also add vag to the numerator
of Eq. (16), we could show that the convergence
would be slower. However, in this situation the
successive iterations directly give the distribution
function at successive instants in time. ' The time
increments are equal to 1/v0, and v0 must be much
greater than the remainder of the denominator in

Eq. (16) as Rees' has shown. Of course, va may
even be negative so long as the denominator does
not vanish, but then successive values of g do not
correspond to time dependence. We conclude that
Eq. (16) and the present method, derived from the
Boltzmann equation, is equivalent to Bees's method
in the low-field limit with all the integrals per-
formed analytically. If me would include higher-
order terms in Eq. (3), high-field time-dependent
transport problems could be solved more efficiently
than by the existing methods. ' ' Our present in-
terest, is, however, in low-field transport. Only
minor modifications to Eq. (16) are needed in a cal-
culation of thermoelectric power. The results are
presented in the Appendix.

The differential-scattering rates s and s' in Eq.
(1), are proportional to the absolute squares of the
Fourier coefficients of the scattering potentials,
i. e. , to the absolute squares of the matrix ele-
ments. ' For a nonparabolic conduction band with
an electron wave-function admixture, the matrix
elements are given in the literature. ' ' We will
present only the results of the integrations indicated
by Eqs. (11)-(15). There is one inelastic- scatter-
ing process, polar-mode scattering, ' '" and there
are four elastic-scattering processes: (a) piezo-
electric, ' (b) def ormation-potential acoustic,
(c) ionized-impurity, ' and (d) heavy-hole scat-
tering. Screening of polar vibrations by free car-
riers ' produces a negligible over-all effect on
transport and is not accounted for since fairly high
free-carrier concentrations are required for
screening effects to become important. In this
case, the mobility is limited by ionized-center
scattering anyway in which screening is correctly
included.

The matrix element for polar-mode scattering in
a band of the Kane type has been given by Ehren-
reich. Substitution of the matrix element into Eqs.
(12)-(15) and performance of the integrals leads to
the following results:

lc(C) = ((()))Ac. , -A'cc" —cc'cc'),A'+ k

/+2 Q2 +
l'c (p) pP (Ac)2 I (A+)2 I 3 AR

m'a I '- u (18)
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The Q and X, follow by replacement of the super-
scripts (+) in Eqs. (17) and (18) by superscripts
(-). The 0-dependent quantities a and c are the
respective linear-expansion coefficients of the elec-
tron wave function consisting of s- and P-type wave
functions. ' For a parabolic band, a =1, c =0,
and the wave function is purely s type:

A' =aa'+ [(A," +k~)/2k'k]cc',

P'=- (e &~md'/4mI 0)(]/e„—I/eo),

(19)

(20)

whex'e 6o Rnd c„are, x'espect1vely, the low- and
high-frequency dielectric permittivities. The quan-
tity md~ [see Ref. 1, Eq. (5)j corresponds to the
local effective mass in energy space. For a para-
bolic band where a = 1 and c = 0, we find A'= 1 and
md'=m*, the effective mass in the usual sense.
E»dentiy, Eqs. (I&) and (16) simplify considerably
for a parabolic band. %'e do not, however, assume
a parabolic conduction band in this paper.

The relaxation rate v„, in Eq. (16), for elastic
scattering consists of the sum of relaxation rates
for the individual scattering mechanisms,

"ei= t'ye+ ~ac+ ~&& ~ (21)

P = e,4{12/c,+ 16/c, )/35@0, (24)

where c& is the spherically averaged elastic con-
stant ' for transverse acoustic modes and e&4 is
the single independent element of the piezoelectric
tensor. In general, transverse acoustic modes

where subscripts pe and ac correspond, respec-
tively, to piezoelectric and deformation-potential
acoustic-mode scattering. v&& represents scatter-
ing by fixed ionized centers as well as electron-hole
scattering since the majority of holes are heavy
holes which can be considered fixed during the scat-
tering event. The relaxation rate for deformation-
potential scattering in a nonparabolic band follows
from Eq. (11) and the matrix element, '

v„= (e'~TE,'md'/3vh'c, )(3- Bc'+ Bc4),

where Ej is the acoustic deformation potential and

c, is the spherically averaged elastic constant' for
longitudinal acoustic modes. The acoustic-mode
scattering rate, Eq. (22}, is approximately propor-
tional to electron speed and leads to a T"'~3 mobility
dependence.

Piezoelectric scattering has been discussed pre-
viously. ' The relaxation rate is

v„= (8 &7'& md/Bw5 co&)(3- Gc'+4c ), (23)

where P is the {dimensionless) spherically averaged
electromechanical coupling coefficient discussed by
Hutson. %e refer to I' as the piezoelectric coeffi-
cient. For the sphalerite structure possessed by
InSb, InAs, and InP, the piezoelectric coefficient
becomes

v„= (e Nmd/Bve025 k )[D In(1+ 4k /P ) —B]j, (25)

TABLE I. Material parameters.

Material

Effective mass at I'&

at 0'K m+/m
Effective-mass energy

gap at O'K 8» (eV)
Energy-gap temperature

coefficient

3 '~, Z '. V,(10-4)

LO%'-fl equency dielec tric
constant &0/~

High-frequency
dielectric constant
&~/&

Polar-phonon Debye
temperature T~, ('K)

Acoustic-deformation
potential E~ (eV)

Longitudinal elastic
constant c& (10 N/m2)

Transverse elastic
constant c& (10 N/m )

Piezoelectric
coefficient I'

'References 61 and 62.
"Reference 38, p. 122.
'Reference 46.

InSb InAs

0.0155 0.025

0.265" 0.46"

0.97 0.69

17.64 14.54

15.75

2.42

0.017

~Reference 29.
'Reference 68.

0.41

12.10

contribute three to four times more scattering than
longitudinal acoustic modes. For an ideally iso-
tropic crystal whose atoms interact only by central
forces, ' (16/c, )/(12/c, ) = 4 which is approximately
true for InSb, InAs, and InP (see Table I). Piezo-
electric scattering yields a mobility nearly propor-
tional to T' '~ .

Electron scattering by ionized centers, i. e. , fixed
ionized impurities and mobile heavy holes, has been
discussed by Brooks, Herring, and Dingle.
Heavy-hole scatter1ng 1s essent1ally equ1valent to
fixed ionized-impurity scattering except that the
screening length for the Coulomb potential is corn-
plicated by the presence of two types of free car-
riers. " Strictly speaking, we should account for
the fact that screening of fixed centers occurs via
both species, electrons and holes, whereas screen-
ing of holes is due mainly to electrons alone. How-

ever, provided the Born approximation is valid, the
mobility turns out to be insensitive to whether we
assume only screening by electrons or the more
complicated case above. In any case, such a mixed
manner of screening does not prevail over a signif-
icant temperature range s1nce hole concentx'Rtlon
is ordinarily a strong function of temperature (ex-
cluding P material). Therefore, we treat all holes
as being heavy and uninvolved in screening. The
relaxation rate follows as
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N=N'+N +p,
D= 1+2P c /k + SP c /4k

8= [4k + 8(P + 2k )e

(26)

(2V)

+(8P +6P k -8k )c/k ]/(P +4k ) . (28)

The screening length is 1/P, where P, for Fermi-
Dirac statistics and a nonparabolic band, is re-
lated to the Fermi energy q of Eq. (2)':

where the total number of ionized scattering centers
N is related to the hole concentration P, the ionized
donor-impurity concentration ¹,and the ionized
acceptor-impurity concentration N,

The various material parameters for InSb, InAs,
and InP are presented in Table I. A discussion of
the derivation of Table I follows first for InSb.

A. InSb

Shubnikov-de Haas experiments have shown the
r„minimum of InSb to be very nearly spherical. "
The effective mass at the conduction-band edge for
zero tern'perature has been reviewed by Madelung

Cardona ' calculated m~ = 0. 0152m. We take m*
=0. 0155 at O'K and allow m* to vary with temper-
perature according to Kane's band theory for zero
spin-orbit splitting, "

p' = (8'/w'c, x T) f, k f(l -f) dk . (28)

(80)

It has been pointed out' that Eq. (25) assumes bi-
nary-scattering events, an assumption which fails
at sufficiently low temperatures (& 20'K, depend-
ing upon the impurity concentrations). If p« is
the mobility due to ionized-center scattering, Eq.
(25) is valid in this respect if the following crite-
rion is satisifed:

To avoid having to discuss the valence band in de-
tail, the experimental values of intrinsic electron
and hole concentrations are used in calculations of
the Fermi level for pure materials. Given the
free-electron concentration n, for intrinsic or ex-
trinsic cases, the Fermi level is obtained from the
following formula'3:

where 6' is a matrix element for conduction-va-
lence-band interactions, and h,* is the effective-
mass energy gap given by Ehrenreich,

4,"(T)=k;(0"K)-3a7'( ') /K, (84)

2xlQ

where the thermal-expansion coefficient n, the
pressure-rate coefficient of the energy gap
(sh, /BP) r, and the compressibility R, are assigned
their room-temperature values. '~ Since the mo-
bility is sensitive to eo- e„which appears in Eq.

This criterion as well as the Born approximation
is satisfied for all results presented in Sec. IV.

lQ

IV. RESU LTS

From the perturbation distribution of Eq. (16),
the drift mobility is calculated by numerical inte-
gration of the following formula':

CV

o 5xlQ

I-

(0
O

kg dk kfdk.3m Ed
0 0

The thermoelectric power discussed in the Ap-
pendix is calculated in a similar fashion.

Drift mobility and thermoelectric power are
calculated with no adjustable parameters. All
parameters necessary for characterizing the ma-
terial have been determined by experiments inde-
pendent of transport properties themselves. Hence,
good agreement between theory and experiment
regarding transport quantities should provide a
trustworthy confirmation of the microscopic de-
scription.

2x lQ

l04
200

I I I

400
TEMPERATURE, T ( K )

I

600 800

FIG. 1. Electron-drift mobility vs temperature of
pure intrinsic InSb. The calculated curve agrees with
experiment up to 700'K, just below the melting point
at -780 'K. Experimerital data are Hall mobilities:
&, Ref. 32;~, Ref. 33; &&, Ref. 35.
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FIG. 2. Intrinsic mobility of InSb over a wide tem-
perature range. The data are the same as in Fig. 1.
and show diminished mobilities at low temperatures
because of impurity scattering.

0
lol IO'4 Iol'

FREE-ELECTRON CONCENTRATION, n(cm )

FIG. 4. Mobility vs free-electron concentration in
InSb at 77'K for compensation ratios of 1, 2, and 5.
Experimental data are Hall mobilities: , Ref. 33;
x, Ref. 38.

IO
16

8 xIO I I I
I

I

X

e e
InSb, 500'K

0
Iol'

i I I I I I 1 I I I

IOIT OI8

FREE —ELECTRON CONCENTRATION, n(cm ~)

FIG. 3. Mobility vs free-electron concentration in
InSb at 300'K for compensation ratios of 1, 2, and 5.
The star near the upper left-hand corner represents
pure material. Experimental data are Hall mobilities:
, Ref. 37; &&, Ref. 38.

(20), we rederive the dielectric constants from the
Lyddane-Sachs- Teller relationship. The directly
measured values of &0 and &„ are given by Seraphin
and Bennett. ' gfe use the average of the values
reported by Hass for the longitudinal and trans-
verse optical-phonon frequencies at I'. The polar-
phonon Debye temperature T„=h&u„lx, from Hass
and the dielectric constants are, to good approxi-
mation, assumed constant. Elastic constants re-
quired for evaluation of the spherically averaged
elastic constants c, and c, of Eqs. (22) and (24)
appear in the text by Madelung and ere assign

these quantities their room-temperature values.
The acoustic-deformation potential for InSb is taken
to be identical to that for the isoelectronic system
CdTe, i. e. , E&= 9. 5 eV. The piezoelectric con-
stant, e, 4 of Eq. (24), has been measured to be
0. 071 C/m at room temperature, in good agree-
ment with theory. '

InSb of sufficient purity to exhibit intrinsic trans-
port below about 200'K is not yet available. Hence,
Fig. 1 presents electron-drift mobility for intrinsic
material from 200'K upward to the melting point
(- 780'K). The curve is calculated from the pa-
rameters listed in Table I and from intrinsic elec-
tron and hole concentrations determined experi-
mentally from Hall measurements. The data
points ' ' represent various experimental Hall-
mobility results. Polar-mode scattering dominates
below room temperature. Electron-hole scatter-
ing dominates above room temperature. The
agreement from 200 to 700'K is quite good aside
from evidence of ionized-impurity scattering below
300 'K for one sample indicated by open triangular
data points. At higher temperatures, the experi-
ments indicate a steep decline in mobility which
is not shown by the calculated curve. Although
one might question the validity of neglecting spin-
orbit splitting in the band structure here, it seems
more likely that the discrepancy is due to the onset
of multivalley conduction above 700'K. This sus-
picion receives added weight from the fact that
similar behavior is evident in Inp (see Fig. 13),
GaAs, and CdTe. In addition, the I.(, minima of
the conduction band are onlys 0. 40-0. 55 eV above
the I"&, minimum and are expected to become acces-
sible to electrons at these high temperatures. The
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FIG. 5. Thermoelectric power vs free-electron con-
centration in InSb. Agreement of the calculated curve
with the more recent data of Filipchenko and Nasledov
(Ref. 39) is excellent except for n & 6 &&10~8 cm where
multivalley conduction appears. Experimental data:

, Bef. 89; &, Bef. 40.

calculated curve in Fig. 2 applies also to pure in-
trinsic InSb. Below 60 'K, deformation-potential
scattering and piezoelectric scattering are the
dominant forms of lattice scattering. The approx-
imate T '~ mobility dependence near 20 K signals
the dominance of piezoelectric scattering.

In many experimental situations, impurity con-
centrations are sufficiently high to limit the mobil-
ity. One can then use the mobility and free-elec-
tron concentration determined by Hall measure-
ments to calculate the donor and acceptox concen-
trations from Figs. 3 and 4. The electron-drift
mobility at 300'K, Fig. 3, and Vv'K, Fig. 4, is
plotted for several values of the compensation ratio
(N'+N )/(n+p). The compensation ratio equals
zero for pure intrinsic material. The curve in
.Fig. 3 for a compensation ratio of unity displays
a maximum value at n= 4&& 10' cm 3 because the
use of unity for the compensation ratio ensures the
presence of some acceptor impurities. The point
appearing in Fig. 3 as a. star, at p, = V0 400 cm /
Vsec and n=1. 9~10' cm 3, represents the mobility
and intrinsic electron concentration at 300 K for
perfectly pure InSb. Agreement with experiment '
in Fig. 3 is reasonable, although above ~= 6&&10'

the Fermi level rises 0. 35 eV above the conduction-
band edge and one must be cautious of multivalley
conduction. Figure 4 displays the expected experi-
mental behavior 3' wherein the compensation ratio
increases with decreasing free-electron concentra-
tion due to the presence of a fixed number of ac-
ceptor impurities.

Figure 5 presents thermoelectric power vs free-
electron concentration. The curve is calculated for

- B. InAs

Regarding InAs, Madelung reviews the effective
mass at the conduction-band edge and concludes
that m*/m = 0. 023 to 0. 027. We take m*/m = 0.025
at zero temperature in agreement with Summers
and Smith who find m*/m = 0. 022 and 0. 024 at
300 and Vv'K, respectively, from Faraday rotation
experiments. We allow re* and S~ to vary with
temperature according to Eqs. (33) and (34). The
elastic constants, thermal;expansion coefficient,
and pressure rate coefficient of the energy gap are
assigned their room-temperature values. Un-
fortunately, a series of corroborating phonon data

-400
0

Ql

ft:

C)

V

~ —200

xI-

„.
'

x)I„
X
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FIG. 6. Thermoelectric power vs temperature in
In8b. Agreement between the calculated curve and ex-
periment is fair except above 700'K, just below the
melting point at 780 K, where multivalley conduction
occurs. Experimental data: , Bef. 32; &, Bef. 41;
&, Ref. 42.

zero acceptor-impurity concentration and the two
sets of data points"' are experimental. Agree-
ment with the more recent data of Filipchenko and
Nasledov leaves little to be desired except for
n 6~10' cm . As mentioned above, we suspect
some amount of multivalley conduction at these
high densities.

Thermoelectric power ' ' vs temperature ap-
pears in Fig. 6 for intrinsic InSb. Near the melt-
ing point (- '/80 'K), the experimental data ' fall well
below the calculated curve (see also Fig. l above).
Perhaps the loss of long-range crystalline order. is
partly to blame. However, since similar behavior
develops at room temperature and high n (Fig. 5),
it seems that multivalley conduction again plays the
dominant role in the discrepancy between theory
and experiment near the melting point. The re-
mainder of the data '" below V00 K agree fairly
well with the calculation.
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FIG. 7. Electron-drift mobility vs temperature of
pure intrinsic InAs. Agreement between the calculated
curve and experiment obtains up to the highest tempera-
tures studied. Impurity scattering dominates the data
below room temperature. Experimental data are Hall
mobilities:Q, Ref. 47;, Bef. 48;4, Ref. 49; &&, Ref.
50; &, Bef. 51.

by several methods (e. g. , transmission, reflection,
Baman scattering) is not available at this time for
use in a derivation of the dielectric constants. Re-
spective values for q„and qo have been reported
as 11.8 and 14. 55 as well as 11.V and 14. 5.
The reported longitudinal and transverse optical-
phonon frequencies yield, through the Lyddane-

FIG. 9. Mobility vs free-electron concentration in
InAs at 300'K for compensation ratios of 1, 2, and 5.
An accurate comparison of the calculated curves with
experiment is not possible, although better agreement
appears to exist for the more recent data indicated as
open and closed circles. Experimental data are Hall
mobilities: O, Bef. 49; ~, Befs. 51 and 55; 6, Bef.
53; k, Ref. 54; x, Bef. 56.

Sachs-Teller relationship, q(, = 14. 54 and q„= 11.74.
However, these values lead to a room-temperature
mobility - 20% too low, as indicated by several ex-
periments (see below). Hence, we use &0=14.54,
as above, and &„=12. 25 reported by Moss. Ad-
ditional experimental data are needed to confirm
these numbers. Approximate correction of the
longitudinal optical frequency' to room temperature
leads to the value of T„shown in Table I. The
acoustic-deformation potential is assigned the value
found for the isoelectronic system CdSe, i. e. ,
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FIG. 8. Intrinsic mobility of InAs. Piezoelectric and
deformation-potential scattering dominate below 80 'K.
Experimental data are Hall mobilities: &&, Ref. 47;
~, Bef. 48; k, Ref. 51.
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FIG. 10. Mobility vs free-electron concentration in
InAs at 77'K for compensation ratios of 1, 2, and 5.
Sufficiently pure materials for comparisons at low n
are not yet available. Experimental data are Hall
mobilities: , Befs. 49 and 57; &&, Befs. 51 and 55.
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FIG. 11. Thermoele~ tric power vs free-electron
concentration in InAs. Agreement between the cal-
culated curves and experiment (Bef. 58} is excellent,
and the comparison indicates the expectedly higher
compensation ratios for small n.

E&= 1.1.5 eV. ' The measured piezoelectric con-
stant e,4= 0. 045 C/m ' agrees only qualitatively
with the theoretically predicted value of3' 0. 022
C/m . The experimental value is used for the
present work.

The solid curve in Fig. 7 is calculated for pure
intrinsic InAs. Intrinsic electron and hole concen-
trations are assigned their experimental values. ' '
The experimental data points ~ " represent Hall
mobilities. Below 200 K, the experimental mobil-
ity is limited by ionized-impurity scattering. Good

agreement is evident at higher temperatures up to
900 'K. The next-lowest conduction-band minima
(of unknown symmetry) are far removed (-1.85eV)
from the I'&, minimum under consideration here.
Hence, the present description should not be com-
plicated by multivalley conduction even at the melt-
ing point (- 1200'K). Figure 8 shows the calculated
mobility at lower temperatures where piezoelectric
scattering and deformation-potential scattering be-
come noticeable below 80'K. The earlier experi-
mental data"' (open and closed triangles) shown
on Fig. 9 for 300'K Hall mobilities tend to fal|.
somewhat higher than the calculated curves. Better
agreement exists for the remaining data.
At 77'K, Fig. 10 shows that experiment
and theory agree quite well. For the higher free-
electron concentrations shown in Fig. 10, the ex-
perimental compensation ratio is indicated to lie
between unity and 2. Data" on thermoelectric
power vs free-electron concentration compare
well to the calculated curve in Fig. 11. At low
values of n, hj.gh compensation ratios are experi-
mentally common. For this reason, the dashed
curve for a compensation ratio of 10 is presented
in Fig. 11. Note the good agreement for n=1&&10

cm, where the Fermi level lies 0. 35 eV above
the conduction-band edge.

Kesamanly et al."have measured thermoelectric
power vs temperature on extrinsic samples of InAs.
The free-electron concentration is stated by the
authors at only room temperature. Data from one
such sample with n= 3~10 ' cm at room tempera-
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FIG. 12. Thermoelectric power vs temperature in
degenerate extrinsic InAs. n = 3 x 10t8 em 3 at room
temperature (Ref. 58}. The increased values of Q over
the calculated curve below 200 'K probably are due to
carrier freeze out.

FIG. 13. Electron-drift mobility vs temperature of
pure'intrinsic InP. At low temperatures the experi-
mental data are limited by impurity scattering. Agree-
ment is favorable from 200 K to 800 K, above which
multivalley conduction occurs. The dashed curve is
calculated from m*/m =0.06' which is apparently too
small. Experimental data are Hall mobilities: g, Ref.
65; &, Ref. 66;0, Ref. 68; +, Ref. 69; &&, Ref. 70.
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&&, Ref. 72;AE, Ref. 73; &, Bef. 74; D, Bef. 75; 8,
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FIG. 16. Thermoelectric power vs free-electron
concentration in InP. The more recent experimental
data (circles) of Kesamanly et al. (Bef. 71) show bet-
ter agreement with the calculated curves than do the
earlier data (Ref. 78).

ture are plotted in Fig. 12. The curves are cal-
culated under the assumption that the free-electron
concentration maintains its room-temperature value
over the entire temperature range. A decrease in
n at lower temperature could account for the some-
what higher experimental ther'moelectric power
values below 200'K. The agreement is good at
higher temperatures for a compensation ratio of
unity which is characteristic of highly doped extrin-
&ic material.

C. InP

For InP, the thermal energy gap at 0 K is given
by Hilsum and Rose-Innes, and the spin-orbit
splitting ~o= 0. 11 eV of the valence-band edge has
been measured by Cardona et al. ' Using 6' ' = 23
eV for the matrix element of Eq. (33) and including
spin-orbit splitting in the effective-mass formula'

m/m* = 1+ —',a" I2/8,*+1/(8 g + ao) j,

j:nP
I

n =2.2 x10
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FIG. 15. Mobility vs free-electron concentration in
InP at 77'K for compensation ratios 1, 2, and 5. Good
agreement is evident between the calculated curves and
the experimental Hall mobility data: &, Ref. 66; ,
Ref. 69; A, Ref. 73; &&, Ref. 76;O, Ref. 77.

FIG. 17. Thermoelectric power vs temperature of
extrinsic InP. The curves are calculated for the
stated (Ref. 71) room-temperature values of n. De-
creasing free-electron concentrations at lower temper-
atures are the probable source of difference between the
curves and the cfata (Ref. 71) since agreement at 300 K
is fair.



we calculate m*/m= 0. 06. This value of m* is
somewhat smaller than the experimentally deter-
mined values and leads to calculated mobilities
vrhich are noticeably higher than is suggested by
several experiments (see Fig. 13, dashed curve).
Perhaps the matrix element (p is diminished slightly
by the influence of higher bands (e. g. , I"»,). In

any case, we choose m*/m = 0. OV2 at 0 K which
nearly agrees with various experimenta, l results. '"
The high-frequency dielectric constant has been
reported as", & = 9. 57 and6 &„=9. 52. We take

= 9. 55 and calculate qo from the Lyddane-Sachs-
Tellex' x'elRtlonship. The ratio of the longitudinal
and transverse optical-phonon frequencies agrees
to —,'% for data given by Hass and by Hilsum et af.
We find, from the data of Hilsum etaI, &o=12. 38.
The Rcoustlc-deforIQRtlon potentlRl 18 a,sslgned the
value found for the isoelectronic system CdS, i. e. ,
E~ = 14. 5 eV. Kleinman reports the piezoelectric
constant e, 4=. 0. 035 C/m which agrees well with
the theoretically predicted value" {0.039 C/m ).
Experimental data by Folberth and Weiss provide
intrinsic electron and hole concentrations.

Figure 13 shows the calculated drift mobility vs
temperature for intrinsic InP. Piezoelectric scat-
tering dominates below 60 K. Above 800 K,
multiyalley conduction becomes important as indi-
cated by the data (open triangles) of Galavanov and
Siukaev. 86 These authors measure p„= 740 cm'/
V sec at 1000 K, whereas the calculated drift mo-
bility is 985 cm'/Vsse. James et al. ' report the
I'„ to I.„separat1on as 0. 61 ev. Agreement with
the various experiments is reasonable from
200 to 800 K. Below 200 K, the experimental
data are dominated by ionized-impurity scattering.
The solid curve corresponds to m*/m = 0. 072; the
dRshed curve to 0. 06. The 1Rttex' VRlue 18 evidently
too small. The mobility vs free-electron concen-
tration at69'" ' 300 and6' '"' '" 77'K appears
in Figs. 14 and 15. Thermoelectric power vs free-
electron concentration given in Fig. 16 agrees bet-
ter with the more recent data (circles) of Kesamanly
et al. ' than with earlier results. " The comparison
between theory and experiment" in Fig. 17 is sat-
isfactory near room temperature. Values for n at
temperatures lower than 300 K were not given in
Ref. 71, but it seems likely that decreasing electron
concentrations are responsible for the tendency of
the data to exceed the calculated thermoelectric
power at lower temperatures.

In conclusion, the present description of InSb is
adequate for temperatures a,s high as 700'K, be-
yond which multivalley conduction is important.
For InAs, conduction in the I'&, minimum should
be dominant up to the melting point (- 1200'K).
Multivalley conduction in InP becomes evident above
800'K. Lattice scattering in the present formula, -
tion is expected to be accurately described at least

down to - 2'K (see Ref. 2). The generally good
agreement between theory and experiment attests
to the accuracy of the present model as well as to
the material parameters derived herein. Conduc-
tion-band nonparabolicity and electx'on-hole scat-
tering are important in InSb above 250 K. Above
450.'K, the effects of degeneracy in InSb become
noticeable.
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APPENMX

The current density J in an isotropic crystal is
proportional to the driving forces for small driving
forces. The driving forces are the electric field
F, the gradient of the Fermi energy gq, and the
temperature gradient VT. For mobile charges
with charge q, the quantity - '7q/q is equivalent to
an electric field. Thermoelectric power is de-
fined, when J= 0, as (taking all gradients along the
s direction)

(Al)

Poisson' s equation V ~ F = 0 yields

k f(l f) —d-Brl BT q
Bg Bg T T

k f(l -f) dk .

(A4)

Combining Eqs. (A3) and (A4), we have

k f(l -f) dk

—qZ oK . A5
BT
BZ

The short-circuit current J is calculated from the
perturbation distribution g of Eq. (16) with the fol-
lowing changes: There is no electric field in this
case, and the term [{e/5)Fsf/sk] in Eq. (16) must

Hence, the current density, in general, is

J= cr( F —Vq/q —Q'qT),

where 0 is the conductivity. Thermoelectric power
Q has the same algebraic sign as q. When J =0,
Eq. (A2) simply returns the definition Eq. (Al),
since V'q = 0 in that case. Therefore, we must de-
rive Q theoretically from the short-circuit current,
i.e. , when F=O. From Eq. (A2) with F=O,
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be replaced by

hk (mdT) 'f(1-f)

k f(1 f)-d k'f(1 -P dk),

(A6)

where m is the electron mass in vacuum and d

[given in Ref. 1, Eg. (6)] accounts for conduction-
band nonparabolicity. The short-circuit current
is used in Eq. (A6) for the calculation of thermo-
electric power for given concentrations of free
electrons and ionized impurities. No phonon-drag
effects are included since the phonon distribution
is assumed to be at equilibrium. It is apparent
from Eq. (A6) that one must know the drift mobility
(= v/en) in order to calculate thermoelectric power.
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Coulomb Effects at Saddle-Type Critical Points in CdTe, ZnTe, ZnSe, and HMTe
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The Kane model for saddle-point excitons is applied to CdTe, ZnTe, ZnSe, and Hg Te by
studying the shape of the imaginary part of the dielectric constant && obtained by ref lectivity
measurements at 10'K. We have obtained I ma/m~1 =28 for CdTe and 20 for ZnTe but we have
not been able to measure the ratio for ZnSe or Hg Te.

The effect of the interaction between electron
and hole at an M, critical point is a very controver-
sial problem. ' An experimental approach to this
problem was suggested several years ago by
Cardona and Harbeke. In the last few years, sev-
eral theoreticians ' have treated the subject, but
the first complete calculation was only performed
quite recently by Kane. ' He based his calculation
on the fact that, at the L point, in the blende struc-
ture, m, =m~&0 and Imsl »m„where m» mz, and

ms are the principal effective masses. Kane used
the adiabatic approximation to solve the Schrodinger
equation of the exciton:

2 2 3 3
Pl + P2 ~ I 8 @(~) g@(~)
2m, 2m' 2ms Ex

where C (x) is the envelope function.
The imaginary part of dielectric constant E~ is

written

4g e
~2 2 2 ~ IP|~ I &w'f @i3m(g V

where
P„=(v, lPlv, ) c(o)Mv

is-the matrix element of momentum between initial

and final states, U, and U& are the cell periodic
parts of the Bloch function at critical point, and V

is the volume.
Following Kane's calculation, Eq. (2) can be

written

2 (m„ /mo) (P ) St q

where go is Bohr radius, N=4 is number of critical
points, (P )„=3(P'„)„=P,K„ is the dielectric
constant, m„, is the reduced mass, and S„,(+) is
a function taking into account the continuum struc-
ture and the structure associated with the two-di-
mensional bound state. The peak is asymmetric
and drops sharply on the high-energy side.

In Fig. 1 we have plotted the reflectivity curvess
of CdTe, ZnTe, ZnSe, and HgTe, in the region of

A4„, A5„- A transition,

A6„- Az, transition .
These curves were obtained with the sample temper-
ature at 10 'K by an apparatus described previously.
The excitonic peaks and the structUre of the criti-
cal point are clearly seen for CdTe and ZnTe.
However, we do not observe the critical-point


