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The momentum-distribution and pair-correlation functions of the electron gas at metallic
densities are calculated by means of an expression of the ground-state energy derived in a
previous papex. Numerical studies of the momentum distribution show that even at metal-
lic densities most of the electrons are still inside the Fermi sphere and that the Fermi sur-
face persists. The effect of the exchange processes at metallic densities is found to pull the
electrons back inside the Fermi sphere and to increase the discontinuity at the Fermi sur-
face, which is the opposite effect to that at high density. The behavior of the pair-coxrela-
tion functions indi'cates that at short distances the present results overestimate the correla-
tion of antiparallel spins but underestimate that of parallel spins. On the whole, there is
considerable improvement over the corresponding results in the random-phase appxoxima-
tion.

I. INTRODUCTION

In R previous papel %'e formulated an approa, eh
to the correlation problem of the electron gas at
metallic densities. The starting point of this ap-
proach is the transition from the paramagnetic
fermion-state space to a boson-state space, by
means of a transformation first introduced by Usui~

to study the effect of exchange processes on the
properties of a spinless electron gas at high den-
sity. Under this transformation, an electron-hole
pa, ir goes over into an ideal boson:

at&. a,.-C'„(Z -p), f p„ f &f, . (1.1)

The electron Hamiltonian 0 is mapped into a bo'son
Hamiltonian of the form

Here 00 is a c number identical to the ground-state
energy in the Hartree-Fock approximation; II~, II3,
and H4 are, respectively, quadratic, cubic, and
quartic in boson creation and annihilation opera-
tors. The ensuing calculations in Ref. 1 are based
on two types of approximations. The first con-
sists of the harmonic approximation in which 03
and JI4 are assumed small and discarded. Then
H~ can be separated into bvo mutually independent
parts describing the singlet and triplet states of an
electron-hole pair:

replacing the matrix elements of exchange pro-
cesses by their averages. The result of these ap-
proximations is equivalent to taking as the singlet
Iramiltonian t e expression

fI"' =Z (oq(q)At5 (q)A~(q)
CP

+ —Z (2Z(q)Aj'(q)Ay (q)~ air~

+ G(q) [At~ (q) A~~ ( —q) + H. c.g . (1.g)

The notRtlons 1n this pRper Rre Rs 1n Ref. 1. In
particular,

F(q) = v(q)+f (q),

G(q) = i (q)+g(q) .
Here e& is the electron 1dnetic energy and V(q) is
the direct Couiomb potential. f (q) arid g(q) are a
pair of effective potentials expressible in terms of
certain exchange matrix elements. They are de-
fined in Eq. (5. 7) and p1otted in Fig. 2 of Ref. 1.
The ground-state energy of H"' is the singlet con-
tribution to the correlation energy. It is given by

The second type of Rppl oxlmation ls employed to
diagonalize these parts, and consists roughly in e(q, fu) =1+f1,(q, u)+ 11,(q, u),
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rl, (q, u) = 4P(q) R (q, u),

11,(q, u) =4[P (q) —G (q)][A (q, u)+I (q, u)],

R(q, u)+iI(q, u) =—
0 p(p» ldO(q 2u

l 2+Ol &P'»

The Hamiltonian H' ' and the correlation energy
E,'2,', for the triplet state are obtained from (1.4)
and (1.6) by replacing F and G with f and g. The
random-phase approximation corresponds to set-
ting f and g equal to zero.

In this work we present a calculation of the mo-
mentum-distribution and pair-correlation functions
of the electron gas at metallic densities based on
the above-mentioned approximation. The results
are directly related to measurable quantities since
the ground-state expectation values of one- and
two-particle operators are expressible in terms
of these functions. On the other hand, their be-
havior may give us an indication as to the validity
of the assumptions made and the nature of the ap-
proximate solution. The momentum-distribution
function was calculated by Daniel and Vosko in
the random-phase approximation. The spin-sym-
metric pair-correlation function was calculated in
the same approximation by Brouers. In a recent
paper, Lobo, Singwi, and Tosi' calculated the
pair-correlation functions for parallel and anti-
parallel spins by a self-consistent method using
the Boltzmann equation. This last work also con-
tains a summary of the results of several previous
approximations.

In Secs. II-IV the analytical expressions for the
momentum-distribution, pair-correlation, and
spin-correlation functions are derived. In Sec. V
numerical results are presented and compared with
those obtained in the random-phase approximation.
The difference roughly represents the effect of the
exchange interaction. Finally, the results are
briefly discussed in relation to the approximation
introduced in Ref. 1.

II. MOMENTUM DISTRIBUTION

Let I q o ) be the paramagnetic ground state of

where

HFA (i) (3)
Egg E~ + Egogzll + Epopt (2 2)

E" "=Z @info+—5 V(q) [6(q)
pc aÃl(t

—6,~ 6(p+q —p')]nIonOo,

0 y P Pp
0, P&P~

(2. 3)

are the ground-state energy and momentum distri-
bution in the Hartree-Fock approximation. Carry-
ing out the functional differentiation, we obtain

oQ; ~(q, iu) [20-'„(q)+u']'

& ({P(q)+2[P (q) —Go(q)]B(q, u)}[(go(q)-uo]

+4[P (q) —Go(q)]I(q, u)u(o- (q)) . (2.4)

The + sign corresponds to k & or &p~, respectively.
For k &p~, q is summed over the exterior of a
sphere of radius P~ centered at -k. For k&P~, it
is summed over the interior of a sphere of radius
P„centered at k. As in all other instances, the
corresponding result for the triplet state is ob-
tained by replacing F and G with f and g.

As in Ref. 1, we introduce reduced momentum
and energy variables x and y:

x = ql&» i y = uf E» ~ z» = p»o/2n2 . (2. 6)

Integrating over the angles in (2. 4) we finally ob-
tain

the electron gas. Then the momentum distribution
can be obtained by functional differentiation of the
ground-state energy Z

nl =&+ol22f„22-„,1@o)=2 +o H» +o
1

(2. 1)
The last equality follows from the normalization
of ~ 4o) . In our approximation

y
1+k

d 02&

n. = 1 — xdx, . [P(x, y) ],(x, y, k)+Q(x, y)2i, (x, y, )'2)]+j xdx
2gk &(x, 2y

0 I+i

[P(x, y) $2(x, y, k)+ Q(x, y) 2lo(x, y, I2)] —triplet terms,dy

6 x, 2y

0+1

[P(x, y) $2(x, y, )'2)+ Q(x, y) go(x, y, f2)]+triplet terms,
2pk 6(x, 2yk-1 0

f2 &1, (2. 6)
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2 4
O

Qm

P(x, y) =F(x) +-,'y [E'(x) —G'(x)]B(x, y),

q(x, y) = -,'y[a'(x) —G'(x)]f(x, y),

x(x+ 2k) 1 —k'
x'(x+ 2k)'+ y' (1 —k')'+ y' '

11(x) y) ) 2( 2k)2+ 3 (1 k2)8+ya ) ( ~ )

x(x+ 2k) x(x —2k)
x'(x+2k)'+y' x'(x-2k)'+y' '

"3'" ' " x'(x+2k)2+y' x'(x-2kP+y'

HFA( ) 1 6 Q
Jl(PE )

Pg f (3.4)

Since we have rotational invariance, g„.=g...,

%e introduce the spin-symmetric combination

g.(r) = k [gt) (r)+ g~ (r)]. (3. 6)

Then the interaction energy, defined as the ground-
state expectation value of the potential energy, is
given by

&&.t = Z„~ I'(q)g. (q) .

On the other hand, by the ground-state energy theo-
rem,

The normalization in (3. 2) is chosen to make
g„.( r) - 1 as r- ~ . In the Hartree- Fock approxima-
tion, I'ko) is the paramagnetic Fermi sphere and
we easily obtain

x(2k -x)
kg( xy y) ) xR(2k p y2 (k2 1)2+yR &

8
E(11t —e 2 E8e (3. 7)

I3( ) y) ) 2(2k )2+ya (k2 1)2 +yR

In the limit of the random-phase approximation,
we set f and g equal to zero and obtain

1+4 fJQI

n-„=1— ~ xdx 2 .
)

kg(x, y, k)apw
2~$ g g g jy

co. dy
+)I @eh g, . , 4(x, )', ).')),

g c(x, lpj1+0

y 0+1
—. , ~,(x, y, k), k &1 .

2m' X ~(X, $g)0 1 0

(2. 8)

Vfith a suitable change of variables this is identical
to the result obtained by Daniel and Vosko by per-
turbatic n theory.

III, PAIR CORRELATION

Combining (3.6) and (3. V), we obtain

g.(q) = g.""(q)—

x, . — [11',(q, u)+II, (q, u)112(q, u)
6'(q, iu

—21iz(q, u)] —triplet terms. (3. 8)

Substituting (3. 8) into (3. 2), integrating over the
angles, and going over to dimensionless variables,
we finally obtain

P oo ~ 4

( )
ay)),

(
Qf sing tx x
8~ J p~rx e(x, iy)

&& [11',(x, y)+y Il, (x, y)11,(x, y) —211,(x, y)]

—triplet terms. (3.Q)

In the limit of the random-phase approximation this
reduces to

Let t)),(r) be the electron field operator:

y (r) g-1/2Q ed% 0u' (3. 1)

apg(~) spg (~) QY d
slnpp'xr

8. J, p,rx

Then the pa, ir-correlation function is defined in
general by

4Q2
g,~(r)= „,&~, lg(r)4(0)y, (0)q.(r)lq, )

=Z e "'g.g (q),

where

g~(q) =~& ~ &~olu-'„.„g' &+ ~& ~, I q'0&

(3.2)

x dy '. —. (3. 10)e(x, iy)
'

IV. SPIN CORRELATION

We consider the pair-correlation function for
antiparallel spins

g (q)=~~ ~ &~olu;.r u; -ut: ur I~o&.
pgfr. '

The right-hand side can be reexpressed in terms
of ground-state expectation values of boson oper-
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I.O

~ RPA
k

Z &~, l[A';(q)A', ,(-q) H. c.] le, ) =
(

Z,"&,

(4. 4)

We finally obtain

9y sinPFrx " x' (., ~)

x 8 x, y II~ x, y +@II&x,y —' II&x, y
2

0
l.O-

00
I

0.5
, 2
I.O

+triplet terms. (4. 5)

In the limit of the random-phase approximation this
reduces to

si+F
l d

l (x J)
8v],

'
P,rx "~e(x,zy)

(4. 8)

which agrees with the expression derived by Ueda.
Note that the integral in (4. 8) is the same as that
in (3. 10).

The pair-correlation function for parallel spins
can be obtained from (3. 5).

V. NUMERICAL RESULTS
FIG. 1. Momentum distribution at x~ = 2 and 6.

ators by means of the transformation (1.1) as de-
scribed in Ref. 1. After some amount of calcula-
tion, we obtain

g, (q) = &(q) + @ & &+, l [2C.'-, (q)C;,(q)
fg

+2C f„(-q)C q, (-q)+Ct, (q)C'g„( —q)

+ C-t (- q) Cp, (q)+ C;"(-q)Cg, (q)

+Cs„(q) C ~, ( —q)]l+o& . (4. 2)

g„(r)=1+~ Z cosq ~ r
CN'

Terms beyond the quadratic have been discarded.
Substituting (4. 2) into (3. 2) and expressing C, and
C, in terms of the singlet and triplet operators, we
obtain

The integrals in (2. 8) and (2. 8) are evaluated nu-

merically in the metallic density region: x, = 1-6.
We start out with a calculation using a ten-point
Gaussian formula. The number of points is then
increased and the calculation repeated until conver-
gence to within 1% is achieved. For integrals over
the range 1+k &x& ~, convergence is improved by
first subtracting from the integrand its asymptotic
behavior at large y. The results of the calculation
for r, = 2 and 6 are plotted in Fig. 1 and a sample
of those for r, =4 displayed in Table I.

Our results in the random-phase approximation
are in apparent agreement with those of Daniel and
Vosko, although the set of electron densities they
consider is somewhat different from ours. The
most noteworthy feature of the momentum-distribu-
tion function is the discontinuity at the Fermi level,

TABLE I. Momentum distribution at x, =4.

x &4'ol [2A&(q)A&, (q)+ A;(q)A;. (- q)

+A s.(-q)Ag(q) —triplet terms] l +0).

(4. 3)
The ground-state expectation values can be obtained
by functional differentiation of the correlation ener-
gy:

-„~, &+o I2A!(q)A; (q)l~, ) =, ' z...„dF q

0.1
0, 4
0.6
0.8
0.9
1.0—
1.0+
1.1

-l. 2

1.4

0.930
0.921
0.905
0.872
0.840
0.770
0.155
0.080
0.048
0.020

8 jt

0, 917
0.902
0.878
0.826
0.776
0.667
0.225
0.113
0.066
0.026
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TABLE III. Pair-correlation functions at r, =4.
gs (r)

0.0
0.5
1.0
1.5
2. 0
2. 5
3.0
4.0

g,{r)

—0.721
—0.250

0.170
0.502
0.740
0.890
0.969
l.006

—1.561-0.678
—0.008

0.446
0.728
0.888
0.967
1.006

—l.539
—0.641

0.074
0.566
0.860
1.002
1.048
l.028

g "(~) g'~i(~ ) +PA( p)

—1.061
—0.202

0.401
0.760
0.942
1.012
1.026
1.009

6 I
I

I

and lowers the discontinuity at the Fermi surface. ~

The explanation of this reversal of behavior is to
be found in the fact that f(q) is positive at small q.

The pair-correlation functions are again evaluated
numerically by Gaussian quadrature for the metallic
region. The x integrals are conveniently broken up
into an infinite sum of terms over the periods of the
sine function. For the special case r =0, an appro-
priate period is arbitrarily assigned. Because of
the rapid convergence of the integrands, only the

50
I

2

gN(r)

p r

FIG. 2. Pair-correlation function g, {r ) at ~, = 2 and 6.
The broken curves are the corresponding results in the
random-phase approximation.

so that the Fermi surface persists even at metallic
densities —a fact supported by experiments. The
magnitude of the discontinuity is of interest since
it is equal to the quasiparticle renormalization con-
stant Z. %e list its values in Table II.

Comparing the results, we can say, in general,
that at metallic densities the effect of the exchange
processes is to pull the electrons back inside the
Fermi surface and to increase the discontinuity at
the surface. These findings are the opposite of
those at high density, where the exchange interac-
tion pushes the electrons from the Fermi sphere

0

TABLE II. Quasiparticle renormalization constant Z.

s

0.896
0.814
0.725
0.615
0.472
0.267

zRPA

0.843
0.700
0.567
0.442
0.323
0.209

'0
pFr

Pair-correlation function g» {r).
labeling ss as xn Fag. 2.



JOHN

g (r)

0
2 I

/
I

/
/

/
/

/
/

/

/

/

/ 6
/

/

/

/

/

I
I

I

0
I

2
p

FIG. 4. Pair-correlation function g»(r ). The label-
ing is as in Fig. 2.

g, (r)& 0, g (0)=0. (5. l)

first few periods need be considered. Again, accu-
racy to within 1% is achieved. The results of the
calculation for x, = 2 and 6 are plotted in Pigs. 2-4,
and those for r, =4 displayed in Table III. Our ran-
dom-phase results agree with those of Brouers, but
differ slightly from those of Lobo, Singwi, and
Tosl.

From very general considerations, it can be
shown that the pair-correlation functions satisfy the
constraints

These are violated at short distances by the results
of both the random-phase approximation and the
present approximation in the metallic region. The
severity of violation by our results is less than that

by the random-phase results for g, (r) and more for
g„(r). This finding is common to many attempts
to improve the random-phase approximation (see,
for example, Fig. 4 of Ref. 5). However, the re-
sults are qualitatively the same in both approxima-
tions. This is not true for g„(r): As r, is in-
creased, the random-phase curve is strongly de-
pressed, while ours is slightly raised. Our results
are also more in compliance with (5. l), indicating
a better treatment of parallel-spin correlation in
our approximation.

In conclusion, we wish to comment briefly on our
results in relation to our approximation. As in-
dicated in Fig. 1, even at metallic densities, most
of the electrons are still inside the Fermi sphere.
This lends support to the validity of the harmonic
approximation. The anharmonic terms can be
handled by perturbation theory in an improved cal-
culation. From Figs. 3 and 4 we can conclude that
at short distances, our approximation exaggerates
the correlation between antiparallel spins and un-
derestimates that between parallel spins. The net
effect is to improve the results of the random-phase
approximation, as shown in Fig. 2. However, we
must caution against judging the merit of an approx-
imation solely on short-range correlations; after
all, many of the characteristic properties of the
electron gas derive from the long-range nature of
the Coulomb potential. %e can readily cite two
examples. In the Hartree-Fock approximation, the
correlation functions behave impeccably; but this
is known to be a poor approximation. Also, the
correlation functions of a low-density electron gas,
when extrapolated to the metallic region, behave
better at short distances than those in the random-
phase approximation, although the physical picture
is completely misrepresented.
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