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The band-matching approach is used to calculate low-energy electron-diffraction intensity-
voltage curves for the basal cleavage plane of beryllium. An approximation to the exact theory,
made possible by the presence of strong inelastic. scattering, enables these curves to be calcu-
lated very rapidly, for general angles of incidence and with a detailed nonlocal potential. The
potential is constructed from first principles, includes thermal and inelastic-scattering effects,
and has no adjustable parameters. Over a wide range of incident angles the calculated curves
show marked agreement with recent experiments. A test of the sensitivity of the calculations
to changes in the scattering potential parameters shows that the absolute intensity, rather
than peak position or peak width, should be the best experimental probe of the scattering pro-
cesses. A new approximation for core-valence exchange is used in the calculation and is des-
cribed in an appendix.

I. INTRODUCTION

The description of structural and other physical
properties of surfaces requires a detailed knowl-
edge of the electronic and ionic charge distributions
in the outermost atomic layers. Owing, in part,
to the short penetration depth, which limits the
sampling region to near the surface, the most
promising probe of these quantities is low-energy
electron diffra, ction (LEED). Recent advances in
experimental techniques and the consequent avail-
ability of data from clean surfaces have revived .
theoretical interest in the problem, and this prom-
ises to provide a basis from which structural in-
formation about the surface can be obtained from
LEED data. Correlation with other measurements
of surface and bulk properties should result.

The first theoretical description of electron dif-
fraction was given by Bethe, ' whose wave-matching
approach has been the prototype for a number of
subsequent calculations. This method, in which
the logarithmic derivative of the wave function in-
side the crystal is matched at the surface to appro-
priate plane-wave states, was used by Morse and

by Kronig and Penney for simple one-dimensional
potentials, and the results reproduced certain fea-
tures of the experiments of Davisson and Germer.
Consideration of inelastic scattering was formally
included by Slater and by Moliere, who included
the effect through an imaginary term in the Fourier
component of the potential. Some of the recently
developed formalisms for the scattering of electrons

at surfaces follow the approach of Bethe, and each
may generally be classified as either dynamical or
kinematical in nature.

Dynamical theories emphasize the self-consistent
scattering between atoms and layers of atoms. This
approach requires a detailed knowledge of the scat-
tering potential, sometimes expressed in terms of
phase shifts, and has been adopted by several work-
ers. ' In principle it is exact, but the complexity
of the calculation has limited numerical calcula-
tions to extremely simple model potentials (or very
few phase shifts) or to a single angle of incidence.
For purely elastic-scattering potentials, dynamical
theories lead to intensity-voltage curves of the form
shown schematically in Fig. 1(a). At energies cor-
responding to absolute band gaps in the bulk, the
ref lectivity is unity and the peak widths are of the
order of an electron volt. This is in marked con-
tradiction with experimental findings, and Duke
and Tucker, ' who extended the purely elastic analy-
sis of Beeby, ' and Jones and Strozier ~ have shown
that it is essential to include inelastic scattering at
the outset.

On the other hand, kinematical theory ignores
multiple scattering between atoms, but notes that
strong inelastic scattering will restrict the scatter-
ing region to near the surface. The approach has
been used by a number of workers to discuss ex-
perimental results. The experimental features
of low ref lectivities and broad peak widths follow
naturally from a kinematical approach [see the
schematic curve in Fig. 1(c)]. Furthermore, the

3228



L0%- ENERGY E LECTRON-DIF FRACTION. . . 3229

~ ~

O
0)

V

0,01—

0.01—

(a)

(c)

of the resulting intensity-voltage curves to both the
elastic and inelastic parts in the scattering poten-
tial. Finally, we calculate the diffracted intensities
of the specularly reflected (00) beam from the (0001)
face of beryllium as a function of incident energy
and angle and compare them with recent experimen-
tal results. The calculated intensities show marked
agreement with the experimental data over a wide
range of incident angles.

In Sec. II, the matching equations in matrix nota-
tion are derived. The results are similar to Ca-
part's and are included, not only for completeness,
but to emphasize the differences, which reflect the
perturbation calculation of the Bloch states adopted
here. In Sec. III, these equations are used to ob-
tain an exact expression describing the LEED scat-
tering process as a series of terms of increasing
order. Each term is given a physical meaning.
The series is truncated to second order in a consis-
tent way in Sec. IV. This approximation is used
for the calculations presented here. The pseudo-
potential used is described in Sec. V, and in Sec.
VI the results are compared with the experimental
work of Baker. '~

II. MATCHING FORMULATION

Incident Energy (eV)

I

200

FIG. 1. Schematic intensity-voltage curves for (a)
dynamical calculation without inelastic scattering, (b)
experiment, (c) kinematical calculation with absorption.
Note the change in reflectivity scale. The dynamical cal-
culations lead to maximum reflectivities of unity, typi-
cally two orders of magnitude greater than experiment
or than kinematical calculations with appropriate absorp-
tion.

secondary peaks in LEED spectra, generally at-
tributed to multiple scattering, are less prominent
than the Bragg peaks. The kinematical theory
seems, therefore, to be an appropriate starting
point, to which multiple-scattering effects may
be added as perturbations.

In this paper, we describe an exact scattering
formalism based on the wave-matching approach
as developed by Heine and further amplified by
Boudreaux and Heine' and by Capart. ' The phy-
sical evidence of strong inelastic and relatively
weak elastic scattering suggests an approximation
to the exact theory which includes multiple-scatter-
ing effects consistently to second order. The meth-
od has important advantages over existing ap-
proaches. (a) It is applicable with a detailed, non-
local potential and inelastic effects may be included
in a systematic way. (b) It is valid for arbitrary
angles of incidence. (c) The calculations proceed
very rapidly, enabling us to examine the sensitivity

The wave-matching approach may be summarized
as follows. Plane-wave states are constructed out-
side the crystal which conserve the incident beam
energy and momentum parallel to the surface.
Bloch states are calculated inside the crystal which
conserve the same quantities. The matching of the
logarithmic derivatives of the two sets of states at
the surface generates a set of linear equations
whose solutions give the amplitudes of the various
beams inside and outside the crystal. Implicit in
this model is the assumption that the surface divides
space into two regions: (a) the bulk, in which the
potential is everywhere three dimensionally period-
ic; (b) the vacuum, in which it is everywhere zero.
As it stands, this description does not allow varia-
tions in the potential from bulk values near the sur-
face. A discussion of the way these effects may be
incorporated in the wave-matching approach is giv-
en in Sec. VI.

A. Wave Field Outside Crystal

The solutions of the Schrodinger equation in vacu-
um are plane waves whose energy is given by the
square of the wave vector. In particular, the inci-
dent electron is represented by e' ' '. For conven-
ience, the wave vector K is separated into compo-
nents parallel (K") and perpendicular (K') to the sur-
face. The coordinates of the system are chosen
such that the crystal surface is the plane z =0, with
the z direction positive inside the crystal. If the
angle between the incident wave vector K and the
surface normal is denoted by 8 a.ndthe energy by E,
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~K'~ =E cose and ~K" ~=E sino.

(Atomic units are used throughout. The unit of en-
ergy is the rydberg and distances are expressed in
terms of Bohi radii. ) The potential, three dimen-
sional inside the crystal and zero outside, has two-
dimensional periodicity everywhere, and scatters
the incident electron into all plane waves

g, = exp[i(- k', +K"+g&'). rj, (1)

which conserve energy and crystal momentum par-
allel to the surface up to the surface projection of
a reciprocal- lattice vector g,'. The perpendicular
component of the ith scattered wave k'„ the parallel
component of the ith reciprocal-lattice vector, and
the energy are all related by energy conservation

~ktf =(E fK",gI~')' '. (2)

The positive square root is taken to satisfy the
boundary condition at minus infinity (i. e. , one plane
wave, the incident wave, propagates towards the
crystal). For a, given energy, the scattered waves
can be grouped into a finite set of propagating waves
with k& real and an infinite set of evanescent waves
with k& imaginary. Writing the total wave field 4
outside as a linear combination of the incident and

all possible scattered waves, we have

= 8 + 5~&2 &
&t)

& (3)

The sum runs over all distinct g&'. The solution of

the problem consists of finding the complex ampli-
tudes A& of the scattered waves.

B. Wave Field Inside Crystal

Inside the crystal, the two dimensionally periodic
potential scatters the incident wave into all possi-
ble B/och waves which conserve energy and crystal
momentum parallel to the surface. The jth such
Bloch state can be written

unknown C&'s may be regarded as transmission co-
efficients.

C. Matching at Surface

Matching the wave fields and their derivatives at
the surface generates the set of linear equations
relating the unknown A&'s and C&'s to the Bloch
wave expansion coefficients and the internal and
external wave vectors. The matching of the wave
fields

@'/..0= +'l.=o

leads to
&&R'r& g g e«R +T&'))'r+

Q C s&&R"+)),". &.~ [1 QiB (g )
s&)&)~~ r) j (q)

It is convenient to replace each reciprocal-lattice
vector in the sum on / by its components parallel
and perpendicular to the surface, g, = g' +g~„.
Thus,

Q') BJ((g,)e'' '"
=~5 e''m' Q'„'Bq(m, n), (8)

where the double prime denotes the exclusion of the
term corresponding to g~=0. The index v runs
along each reciprocal- lattice rod defined by g"

i. e. , over all. reciprocal-lattice vectors having
the same parallel component g". Note that the no-
tation for the expansion coefficients has been sim-
plified as follows: B&(m, n) B&(g" +g' „)—. We now

define D&,
=-5~„"B&(m, n).

Linear independence allows Eq. (7) to be written
a.s a set of linear equations (one for each value of
i, )

(100. . ) &)&p+A; =C&+LqCqDq & q,

where T indicates the corresponding column vector.
Similarly, the matching of the normal derivatives
at the surface,

(& = exp[i(k&'+K" + g&'). r j u&(r) .

We expand the periodic factor u&(r) in plane waves

uq(r) = 1++',BJ(g))e"".

&@o ~@r

~o ~~ ~o

leads to the set of linear equations

(10)

The sum is over all nonzero three-dimensional
reciprocal-lattice vectors g, . This form is chosen
so that the Bloch tunction resembles a perturbation
expansion, in keeping with our later use of pertur-
bation theory in evaluating the Bloch states. For-
mally, both the expansion coefficients B&(g)) and the
perpendicular component of the wave vector k&~ can
be determined by solving the secular equation de-
rived from the Schrodinger equation for the crystal
potentia. l V,

(- V~+ V)&f)~ EP) . ——

K' i) &0 A& k& = C
&
-k,"+L, C )E) & q,

(100. . ) +A= P C,
(100.. ) —A=@ C,

where
I'~g =~~g+Dg, & g

(12)

where

Eq =K„"Bq(m,u)(kq'+g' „) .

Equations (9) and (10) can compactly be written in

matrix notation

The total wave field inside is thus a linear com-
bination of all such Bloch waves 4' =g&C)P& The.

and
&I),)-=(k)'&), ) Eq, q)jk, .
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Finally, we can solve these equations explicitly for
the unknown column vectors 'A and C,

A 1 P
1pp 1pp

This equation is formally of infinite order. In prac-
tice, a good approximation can be obtained by lim-
iting the number of beams to the finite number of
propagating modes and a few evanescent waves.
Under these conditions, the reflection and trans-
mission coefficients are determined simply by in-
verting a matrix whose dimension is twice the num-
ber of beams considered.

III. EXACT SCATTERING DESCRIPTION

g (Bragg)
f-j, I

"
g (Laue)—f j

By adding and subtracting the matching equations
(11), the column matrices A and C can be obtained
separately so that

A= (P —Q)(P +Q) ' (100.. )',
(14)

C=2(P+Q) «(lpp. . )

We focus our attention on the inverse of (P +Q).
Let us define two diagonal and two off-diagonal ma-
trices Po, Q„and P„Qo such that

P~+ P0 ——P,
Qo+Qo=Q

Defining the off-diagonal matrix L as

L=t(P«+Qo) (Po+Qo)l (16)

and substituting in (P+ Q) ', we have

()'+(«) '=(r (-L)")(&, Q.) '.
The i, jth matrix element of (P+ g) ' can thus be ex-
pressed as proportional to the sum of all possible
products of the L,&,

(&+Q) '««

(17)

=(6«y-f ««+1«ol-o« f«xf a f «+ -)(&o+@o) '«« '

&.=+ O'- Q). [9'+Q) ']
« .

Defining R» = (P —f(«)»/(Po+ Qo)» and substituting
it and the expression for (P+Q) ' into Eq. (17), the
intensity of the specularly reflected (00) beam be-
comes

(20a)

For the other (nonspecular) beams,

(18)
where the summation convention over repeated in-
dices is assumed. A discussion of the physical sig-
nificance of the L,&

is given below.
From Eq. (14), the amplitude of the nth reflected

beam can be obtained,

FIG. 2. Geometry of the scattering process in the
limit of weak elastic scattering, when the constant energy
surfaces are spherical. The scattered wave vectors for
the reciprocal-lattice rod gl'

& ~
are shown for both Bragg

and Laue cases.

(20b)

These expressions are exact.
The physica. l significance of the expansion (20a)

becomes apparent if we examine R» and L» in the
limit of small elastic scattering. The exact expres-
sions for R» and L» are

I IJ' K~l&«+ (Io«'+g'« «. «) )B«(f -j-,. «)
(21

R (-& &'«+fo'«'+ E«l& «+ (&«'+a'««, «)jB«(f —~, f) '

»

where the plus sign is taken for L» and the minus
sign for R». In the limit of small elastic scatter-
ing, the wave vectors inside and outside the crys-
tal are equal, and the coefficients B«(g«) are large
only when the Bragg condition is nearly satisfied,
i, e. ,

k" g' =k" =k'g+

for a Laue (forward) scattering process, or
tl l lk) +gl ~ )

—-—kl

for a Bragg (backward) scattering processes (see
Fig. 2). Note that both k& and i'o, have been defined
to be positive quantities. At the Bragg condition,
B&(g«) is of order unity, and hence

L»=1 for Laue reflection

= 0 for Bragg reflection,

R» = 0 for Laue reflection

= 1 for Bragg reflection .
It must be emphasized that these results hold only
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in the elastic limit as V(r)-0. For realistic poten-
tials which include an imaginary component, the
absolute magnitudes of I-» and 8» are always less
than unity. The interpretation of the terms I » and

R&& as corresponding, respectively, to Laue and

Bragg reflections from beam j to l enables us to
interpret diagrammatically the expansion for the
specularly reflected intensity;

+1 Rll+Rll ~LllLll R11~LlkLRP Pl+ ' ' '
ygi kP

{a)

(22)

The formalism to this point is exact. We now de-
velop an approximation to the reflection amplitudes
which is valid to second order in the expansion co-
efficients. The series [Ell. (22)] is first truncated
to

A, =Rll —Q~R11L~1 . (23a)

The intensity of the 00 (specular) beam is given in

this approximation by

foo= l&ll'= IR»-~,RuL„I'. (23b)

A consistent expression for Ioo up to second order
requires that the expansion coefficients in 8» and

L» (j 41) be calculated to first order and those in

R» be calculated to second order.

Each term in this expansion may be represented by
a diagram, and some examples are shown in Fig.
3. Figure 3(a) represents the term Rl„a Bragg
reflection from the lncoxillng beam to the specularly
reflected beam. Figures 3(b) and 3(d) represent a
double Laue scattering followed by a Bragg scatter-
ing; the former is the particular case when the sec-
ond Laue scattering is from j to 1. The sum over
all different beams in the second term of Eq. (22)
accounts for all the independent ways of going from
1 (incoming) to 1 (outgoing) via a double Laue scat-
tering. Figure 3(c) represents a typical Laue-Bragg
process. Thus we see that the incident plane wave
is scattered into all possible components of those
Bloch waves which can be excited. For each com-
ponent, the possibility of back scattering into the
vacuum exists, thereby contributing to the specular-
ly diffracted beam. A similar description holds for
the nonspecular beams.

One advantage of viewing the scattering in this way
is that it clarifies the relative importance of the
three-dimensional potential and the two-dimensional
matching process. Qn the one hand, each term in
the expansion is a result of the matching conditions,
yet each scattering term arising from the matching
conditions contains as a factor the Bloch wave co-
efficients which are determined by the three-dimen-
sional crystal potential.

IV, CONSISTENT SECOND-ORDER APPROXIMATION

A, First-Order Terms

To the lowest nontrivial order,

r ',"= (z+(&,'l v ln,') —lK" + g,
" l')'" (24a)

Qkl+ g, I V Ik', )
Ik' g I'9+

(24b)

In Ell. (24a), the diagonal element (k& I V I k& ) = W
—I'(k&), where W is the work function and I"(k&)
= I', +s&z is a complex term which is calculated
self- consistently with k'&. The imaginary part of
this term accounts for the inelastic electron-elec-
tron scattering and its effect is to add an imaginary
part of &,

"of the order of &,/2E"'.
B. Second-Order Terms

Inspection of Bii reveals that the only coefficients
to be evaluated to second order are B,(l, i), where
the index i runs along the 00 rod. These are given
by standard second-order theory3'

a, (i, -z) [2]

(1 ')[1] 1 Q ( 1+gi 1+gl) R ( )[ ]

(kl+g', IVIkl+gl)- (kl IVIkl)
(kl+ gl I V Ik', )

{c)

FIG. 3. Diagrammatical representation of terms in the
exact scattering expansion for the specularly reflected
beam [Eq. (22)].
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where B,(l, f)[2J is the coefficient calculated to sec-
ond order and the B,(g, )[1]are the coefficients cal-
culated to first order from Eq. (24b).

C. Justification of Approximation

Perturbation theory is usually considered valid
if the coefficients B&(g,)[l]are much less than unity.
For 0,' real, B&(g,) exhibits a singularity at the
Bragg condition

n,"= ~k', +g, ~'.

If k& is complex, however, with imaginary part
Im(k&), it is easy to show that

(k~+ g, I V )kg
2 cos '8 ~—2i g', Im (0 &)

'

where ~ is the energy measured relative to the
free-electron resonance energy

E,=gz~/(2 cos8P

and 8 is the angle between k& and gj. A nonvanish-
ing Im(k&) removes the singularity in B&(g,), the
maximum value of lB~ (g, ) I now being

p (k~'+ g i i
V ik~')/g q Im(kg ) . (2'f)

Perturbation theory should be appropriate when this

quantity is much smaller than unity. This is true
for most of the coefficients in a typical LEED cal-
culation.

An important exception occurs for B~(g, ) corre.-
sponding to reciprocal-lattice points in the plane of

the surface, i.e. , those for which g& is identically
zero. These include vectors which connect plane
waves degenerate by symmetry, In the calculation
reported here, the incident wave vector lies in the
xz plane and rotates about the [1120]symmetry di-
rection. The reciprocal lattice viewed normal to
the surface is shown in Fig. 4. The finite angle of
incidence breaks the rotational symmetry about the

z axis. The reflection symmetry across the xs
plane persists, however, and the pairs of waves

(4, 5), (61. 7), (8, 9), etc. , are degenerate. Degen-
erate perturbation theory must be used and we pro-
ceed by solving exactly the related 2x 2 secular
equations and substituting the correct linear com-
bination of the two plane waves in the foxmalism.

tion in a different beam. In the latter case, when

a Bragg and Laue reflection occur together along
the same reciprocal-lattice rod (m), the relevant
term is R, L &, both factors of which are large.
The effect on the specular beam is therefore a max-
imum. Shifts in the propagation vectors by a large
inner potential and/or band-structure effects relax
the necessary condition for the simultaneous excita-
tion and secondary peaks will be large for either
a Bragg or I aue reflection in a nonspecular beam.
This condition ls identical to that derived by McRae
for the general occurrence of secondary peaks.

V. POTENTIAL

To apply the formalism in a specific case, it is
necessary to know, in detail, the momentum-depen-
dent Fourier components of the scattering potential.
These determine the coefficients of the Bloch states
B&(g&) of the wave function inside the crystal and

hence the elements of the matching matrices. In
this paper, we calculate intensity-voltage curves
for beryllium, for which detailed experimental re-
sults are available. For the theorist, beryllium

D. Occurrence of Secondary Peaks

The occurrence of secondary peaks is a natural
consequence of any treatment which includes dynam-
ical effects. In the present formalism, secondary
structure will arise if either of the terms 8» or
R»Lz, is large. In the former case, secondary ef-
fects may appear on the shoulders of the Bragg peak
due to an increase in B,(l, i) From E.q. (25), we

see that the second term is a maximum for the si-
multaneous occurrence of a Bragg reflection in the
specular beam and another Bragg or Laue reflec-

FIG. 4. Parallel components of the bulk crystal recip-
rocal-lattice vectors used in the present calculation. For
rotation of the incident beam about the y axis, the vectors
(4, 5), (6, 7), and (8, 9) are degenerate in pairs. The
numerical values of the vectors are given in Table II.
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A dominant term is the core potential due to the
nuclear charge plus core electrons. If the 1s core
state wave function is written (t,(x), then this term,
the Hartree potential, is

(- 4 fd'~')(, (~') ('

) (29)

has distinct advantages over other materials w»eh
have been studied by LEED. (a) The wave function
of the 1s core electrons is mell described by a sim-
ple spherically symmetrical function. Integrals
ax'lslDg lIl the Foul lex' tlRDsform of the pseudopoten-
tial can be evaluated in closed form and effect a
large computational saving. (b) Recent band-struc-
ture calculations and Fermi-surface measurements
provide an independent check of the calculated
pseudopotential. (c) The Debye temperature of
beryllium is 1160'K and, since the cleavage and
data. collection were made at liquid-nitrogen tem-
peratures, thermal effects of Debye-%aller type
should be considerably less than for most other ma-
terials. Each of these points will be discussed in
detail below. %e Dow consider the contributions to
the effective one-electron potential in beryllium Rnd

calculate the matrix elements, diagonal and off
diagonal, with respect to plane-wave states. In
sonle ways~ the dlscusslon pRx'Rllels thRt of HRl 1"1-

SOD,

%e make the customary assumption that the crys-
tal may be regarded as a superposition of localized
atomic potentials

V(r ) = 5~, V, (r —r),
where 7 denotes the atomic positions. In this case,
scattering matrix elements between plane-wave
states can be written as the product of the Fourier
transform of the atomiclike potential (or pseudopo-
tential) and the structure factor S(g), where

S(g) =(l/~)&, e '"", (2g)

whexe N is the number of atoms, and g is the scat-
tering vector. The structure factor clearly depends
on the choice of origin in coordinate space and on
the number of atoms in the unit cell. The primary
coDtl lbutlons to the one-electron poteDtlal Rx'e the
ion-core potential VH, the core-valence exchange
V„, the orthogonalization term V&, which converts
the potential into a pseudopotential, and V„, the
potential due to the conduction electrons.

A. Of f-Ol8goA81 TCFIS

1. Coze Potentiat Te~m

The work of Holoien shows that a core wave func-
tion of hydrogenic type

g. (r) =(o"/~)'"e ", (so)

with n determined variationally to be 3.51g, gives
R ground-state energy close to the Hartree-Fock
enex'gy. If we adopt this analytic form, the Fourier
transform of the Hartree potential may be evaluated
directly. " An alternative analytic wave function
has been developed for beryllium by Shull and
I owdin, '6 which takes into account core-correla-
tion effects, The Fourier transform of the resul-
tant potential has been tabulated, 7 and we have used
these values for R(g), although the difference be-
tween the two is small:

2. Evaluation of Coze P/ane W-ave E-xchange

In evaluating cox'e-plane-wave exchange, a, num-
ber of possible approaches may be taken. The first
is the evaluation of matrix elements of the exact
nonlocal exchange operatox arising from the Har-
tree- Fock equations:

V. e(~) = I.-..
~

g(~') y, (~) y(~') . (»)

For plane-wave states, it is possible to evaluate
this analytically, but the final expression is ex-
tremely cumbersome and approximations to it ' are
not applicable due to the large range of incident
plane-wave energies. Moreover, it has become
apparent from work on band-structure calculations
and on many-body systems that the exclusion of
correlation effects in the Hartree-Fock method
leads to errors substantially greater than approxi-
mate methods based on the local density of both
spins (e. g. , Slater"). Such approximations have
been discussed recently in some detail. 3' 0 In
atomic calculations, we are generally interested
in exchange effects between orthogonal orbit3ls.
In the present case, the plane wave and the hydro-
genic core state are not orthogonal, 3nd we have
adopted an approximation which takes this into ac-
count. ' Although related to the local-density ap-
proximations, this exchange potential depends ex-
plicitly on the wave vector of the plane wave, and
its Fourier transform depends on both k and g, as
in the case of a nonlocal potential,

To preserve Hermiticity of the potential, this ma-
trix element is replaced in our calculation by half the

4p 27. 8102 n~ ~3
(» ~ ' I~I" )).)=-—, (...))-, ,-).)«.(a )k (k

'

)I]) (33)

I

the sum of itself plus its Hermitian conjugate. In
the limit of very high-energy plane waves this con-
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tribution to the potential vanishes, and at low ener-
gies it is comparable to the 8later approximation.
A discussion of this and other exchange approxi-
mations is given in Appendix A.

3. Conti bution to Conduction-F. /ectmn Potential

A substantial simplification in assessing the cori-
tribution to the potential of the conduction electrons
results from the work of Loucks and Cutler. 43 By
evaluating the self-consistent one-electron poten-
tial using the orthogonalized-plane-wave (OPW) for-
malism, they found that this contribution to the po-
tential is essentially the same as that given by as-
suming a uniform distribution of electrons. This
result reflects, of course, the small fraction of the
atomic volume which is occupied by the core. The
assumption of a uniform distribution of conduction
electrons, which we adopt hex e, means that its ef-
fect will be mainly on the diagonal terms. The con-
duction electrons give rise, however, to screening
of the off-diagonal Fourier components.

For a local potential (i. e. , one whose Fourier
transform depends only on the momentum transfer
g), the screening is described by dividing (k l

V

&&I k+ g )by the Hartree dielectric function. The poten-
tial we develop is dependent on both k and g, and
the screening should reflect this, as discussed by
Harrison33 and by Animalu, 3 amongst others. The
numerical calculations of Animalu show, however,
that for k =k~, local and nonlocal screening lead to
essentially the same matrix elements for I,i, Al,
and Pb. For higher k values, the momentum-de-
pendent tex ms in the potential are smaller, and the
errors due to the local-screening approximation
should be correspondingly less. For these reasons,
in addition to its simplicity of form, we use Hartree
sc1eenlng.

The remaining term in the potential is the ortho-
gonalization term V~ which converts the poten-
tial into a pseudopotential, with eigenfunctions for
which plane waves are an appropriate basis. A
recent examination of the pseudoyotential formalism
ma.de by Pendry in the light of an analysis of
%einberg, 45 suggested as the form most appropriate
at all energies

V.=- h. lc) &cl, (a4)

where F,, is the energy corresponding to the coxe-
state wave function Ic). It is a member of the
Austlnq Helneq and Sham family of pseudopoten-
tials, and is Hermitian. In our calculgtions the
overlap integrals can be evaluated in closed form
and the final result is

%r 16Z, e'
(kl v„lk+g) =—(~ ) (@' I- I ) l. (35 )

As described above, the final yseudopotential is
screened by the Hartree dielectric function, and

may therefore be written

{&IVlk g) =[V.(g) v. (k, g). V. (k, g)]/«(g),

(35b)

1-n'
«(g) =1+(2vkzq') ' 1+ ln

2g 1+&

An independent check of the calculated matrix
elements for beryllium is provided by recent
de Haas-van Alphenmeasurementsof the Fermi sur-
face. 47 These workers used a, pseudopotentigl of
the OPAL( form

{kl V„lk+g) = V'(g)+(Z- Z.){k)c){clk+g)
(36)

and used as adjustable parameters F., and the Fou-
rier components V'(g) for the four reciprocal-lattice
vectors near the Fermi sphere. Since they have
not screened their potential, direct comparison of
the local parts V'(g) with the present work is not
possible. However, matxix elements for initial
state I k ) and final states I k+ g ) both lying on the
Fermi sphere should be similar. %e have evalu-
ated these matrix elements for the potential de-
scribed above and have adjusted the core-state en-
ergy 8, in Eq. (34) so that the form factors for g
= 1010, 0002, 1071, 1012 are the best least-squares
fit to the Fermi-surface results. In fact the core
shift is small, the fitted value being 9.305 Hy and
the Hartree-Pock value 8.698 Hy. The matrix
elements, together with those calculated from the
model potential of Animalu and Heine are shown
in Table I.

8. Diagonal Matrix Elements

In evaluating the diagonal matrix elements and,
in particular, corrections to the energy due to the
Coulomb interactions between conduction electrons,
a number of approximations are necessary. Of
prime imyortance in the present calculation is the
inclusion of inelastic effects via the self-energy or
the exchange-cox relation yotential of the interacting
system. At the present time, the only calculations
of this quantity have been carried out for the trans-
lationally invariant electron gas in which the con-
duction electxons lntex'act M the presence of a unl
form positive background. For this system, cal-
culations have recently been performed for various
electron gas densities by t.undqvist49 and we have
adopted his results, as discussed below.

The use of the electron gas appxoximation for the
conduction electrons requires justification but for
a metal like beryllium, the approximation seems
to be a very good one. As discussed above, Loucks
and Cutler showed that the conduction electron
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potential in beryllium is very close to the potential
in a uniform distribution of electrons.

The effects of the nucleus, the core electrons
and core-plane-waves exchange on the energy, are
found by evaluating the appropriate diagonal matrix
elements. Using the analytic form IEq. (30)] for
the core potential and the (k-dependent) diagonal
matrix element of the exchange potential, this can
readily be carried out. The contributionsof screen-
ing and orthogonalization to the average potential
are neglected since the main consequences are to
redistribute the electronic charge but not to change
its average value. As pointed out by Harrison, '
the average potential will not be greatly affected.
Effects of the "orthogonalization hole" are also
neglected. Calculations using the approximate
formula of Harrison

Z*/Z= 1+ (k
I
c) (c

I
k)

suggest an energy-dependent renormalization of
the core charge of at most 6%. To show that the
effect on the average potential energy of the above
contributions is adequately represented by the uni-
form positive background, we have calculated the
energy of a uniform distribution over the atomic
volume of a positive charge equal to the valence.
The small difference between the energies due to
the actual core and the uniform positive distribution
has been included in the calculation.

The single-particle properties of an interacting
electron gas are conveniently described by a self-
energy Z(k, q) which is a complex potential energy
term. The real part causes a shift in the single-
particle energy, the imaginary part leads to broad-
ening of the state due to the Coulomb interactions
present. To evaluate the self-energy, I undqvist'
expanded in terms of the deviation of the excitation
energy (& —p, ) from the free-particle value (k —kz).
To first order,

where co= Z (k~, kr). Lundqvist has evaluated all
terms in this expansion, using the random-phase
approximation (ftPA), and has graphed the results.

In the present calculation, the resultant numerical
values for Z(k, e) give the contribution f', (k,')
+ii' z(k~) to the diagonal matrix elements(k] I V Ik~)
of Eq. (24a).

IC. Thermal Effects

The effect of lattice vibrations on electron and
x-ray scattering is usually included by multiplying
each matrix element (k I V I k+g) by e '", where
M is the Debye Wailer factor

Here g is the scattering vector and U, the amplitude
of the qth lattice mode. The loss in intensity in the
elastic-scattered component due to the Debye-Wailer
factor appears in the form of thermal diffuse scat-
tering (TDS) corresponding to inelastic-scattering
processes involving one or more phonons. Discus-
sions of TDS in the literature are generally re-
stricted to the dominant single-phonon term which,
depending on the temperature and crystal involved,
can be a significant factor in the scattering process.
In particular, if the TDS component is large and if
the experimental arrangement is such that TDS is
not collected along with the elastic scattering, the
Debye-Wailer fa.ctor must be included in the theory.
On the other hand, if TDS occurs primarily in the
neighborhood of the reciprocal-lattice rod and the
aperture of the collector is large enough to include
most of the TDS, it is more appropriate not to in-
clude the Debye-Wailer factor at all. Of course,
conditions intermediate between these extremes
would be quite difficult to handle.

The angular dependence of TDS has been dis-
cussed in the high-temperature limit by Huber '
and the prediction that the intensity varies inversely
with the distance from the nearest reciprocal-lattice
rod has been verified experimentally. " In the case
of low temperatures, we show in Appendix B that
the TDS is much more evenly distributed throughout
the zone. We therefore include the Debye-Wailer
factor in our scattering matrix elements. In the
zero-temperature limit appropriate for the beryl-
lium data of Baker

TABLE I. Beryllium form factors (matrix elements
(klVi k+ g) for which initial and final states both lie on
the Fermi sphere}. The results are normalized to the
volume of the unit cell.

where m is the electron mass, I„the atomic mass,
and O~& is the Debye temperature of beryllium
(1160' K).

D. Discussion

1010
0002
1pll
1012

TEGS
(Bef. 47)

0. 0571
0.0889
0. 0981
0, 0976

This calculation

0, 0485
0. 0796
0. 0896
0. 1235

AH

(Bef. 48)

0. 0334
0.0470
0.0479
0.0318

The form factors of the potential, as a function
of the scattering vector g at various energies, are
shown in Fig. 5. An important feature of these
curves is the angular dependence of the scattering
matrix elements for a given energy. For most en-
ergies, forward scattering is considerably stronger
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than backward scattering, and this may be regarded
as a general characteristic of the LEED scattering
process. It therefore seems unlikely that any iso-
topic scattering model, such as one using purely
s-wave phase shifts, will lead to quantitatively cor-
rect ref lectivities.

The evaluation of the potential matrix elements
has involved a number of approximations. In par-
ticular, inelastic effects of a periodic nature are
neglected, so that the off-diagonal elements are
purely real. Imaginary contributions may come
from core excitation processes, or from periodic
effects in the electron gas. The former may occur
near 100 eV in beryllium and are neglected here,
while recent work' suggests that the contribution
of the latter should be negligible in a small-core
material such as beryllium.

Inelastic terms affect, therefore, only the diag-
onal matrix elements in the potential. Additional
support for this approximation is provided by the
work of Bassani, Robinson, Goodman, and Schrief-
fer. ' Their analysis, in which many-body effects
are included using an orthogonalized plane wave,
rather than a plane-wave basis, indicates that the
best low-order description of many-body effects in
real metals results from the addition of the homo-

geneous electron gas self-energy to the potential used
in the band calculation. A recent discussion of this
p'roblem has been given by Hedin and Lundqvist, '
with similar conclusions.

VI. RESULTS AND DISCUSSION

Before presenting the results and a comparison
with experiment, a further discussion of the mechan-
ics of the calculation is necessary. In particular
(i) the matching plane is taken half-way bebveen
atoms by a suitable choice of the unit-cell basis
vectors in the calculation of the structure factor
8(g) [see Eq. (28)j. This is a common choice and

is particularly appropriate in a pseudopotential ap-
proach since the pseudo-wave-function and the real
wave function are very similar midway between
atoms. (ii) The beams included in the calculation
are the nine shown in Fig. 4, arid are given in Table
II. This means that we include nine distinct recip-
rocal-lattice rods g' and that the sum in Eq. (23)
is over eight terms. Along each rod, ten perpen-
dicular components g';, are taken, giving a total
of 90 plane waves in terms of which the relevant
Bloch waves are expanded. - As a test of the ade-
quacy of nine beains, we have increased the number
to 18 and noted little change in the calculated dif-
fracted intensities. (iii) The calculations are per-
formed from 0 to 200-eV incident energy at angles
of incidence from 0 to 18' in 2 intervals. The
incident beam lies in the zx plane. (iv) Finally,
we set the real part of the diagonal term (k& I V!k,')
equal to' zero arid compensate the resulting shift in

TABLE II. Parallel components (g„,g~) of bulk crystal
reciprocal-lattice vectors shown in Fig. 4.

Vector

(1)
(2)
(3)
(4)
(5)
(6)
(7)
(8)
(9)

0
1.691 22

—1.691 22
0. 845 61
0. 845 61

—0. 845 61
—0. 845 61

0
0

gy

0
0
0

1.46465
—1.46465

1.46465
—1.46465

2. 929 30
—2. 92930

the intensity-voltage curves by addi'ng this term to
the voltage. The justification of this procedure li.es
in an attempt to eliminate the back ref leCion pro-
duced by the large discceitinuity in the potential
which i.s an unavoidable feature- of the wave-match-
in'g- ayproach. The real situation Bt the surface i.s
somewhat different an'd' modification of thk approach
is in order. R;- particular, the yotential falIe off to
zero rather smoothIy'Over a distance of a few ang-
stroms, resulting in a decreased step reflection and
a reduced perturbation in the reflected- bea'ms. Set-
ting the real part of the diagonal mSt~ix element
equal to zer6 effectively eliminates this spurious
reflection. A riiore i'igorous solution is to describe
the physical spa, '-ce of the px'oblem as three regiOas-
bulk, surface, and vacuum —.Sfid to perform the
matching calculations at the' two interfaces. Such
calculations are in progress arid' m'iII be reported
at a later time.

In Figs. 6 and 7 the results of the caledIation'
are compared with the experimental work of
Baker. We note several marked similarities. A

Bragg peak at 180 eV becomes less intense as 6)

increases; a very prominent peak at approximately
90 eV appears near 8= 12'; a weak peak occurs at
low energies (-30 eV) and both the first Bragg
peak and the peak near 150 eV split RS 8 increases.
The calculated ref lectivities in the first peak are
typically 6% and in the highest-energy peak shown

they are the order of 0. 05%. A precise comyarison
of these ref lectivities with experiment is difficult
to make, due to some experimental uncertainties.
However, the ref lectivity range observed for the
same peaks is 4-0. 1/g, so that there is at least
order of magnitude agreement.

The calculation proceeds very rapidly with an
I-V curve of 100 points, requiring only 1 min on

an IBM 360-67 computer. The speed of computation

enables us to examine the convergence of the sec-
ond-order calculation and the sensitivity' of the in-
tensity curves to changes in the parameters in the
potential. If we evaluate the ref lectivity using only

the first term (R») in Eq. (22), but evaluate this
term exactly rather than to second order, we find



&k ]V[ k+g& (Ry)

0.2—
20

0

-0.2—

100 l20 FIG. 5. Each curve is libeled by
an energy & i' electroh volts. The
ordinate is the inatrix element
(kl Vt k+g} (form factor) for which
the abseiish, 'g is e'hosen so that both
k and k+g he on the const'ant en'ergy

surface &.

-04—

0

that the results are substantially the same. Al-
though higher-order corrections may be evaIuated
in a straightforward though tedious maine'r, this
result suggests that the second-order caleula5on is
a good approximation to the exact-matching proce-
dure.

The sensitive of the re8ults to changes in the

real a'nd imaginary parts of the scattering potential
has been exam'ined in the following; ways: (i} Dif-
fe'rent ayyroximations for the core-plane-wave ex-
change have been used. In addition to the modified
Rater exchange discussed above, ere have used the
Skater approximation and have set V„equal to zero.
%e have run these calculations with the core-state
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FIG. 6. Theoretical and experi-
mental intensity-voltage curves for
the (0001) face of heryHium with
rotation about 0.120). Aagles of
incidence are as marked, incident
energies are in electron volts, and
intensities are log normalized.
One decade in intensity is shown at
the left.
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energy set equal to the free-atom value and also
adjusted, in the respective cases, to give the best
least-squares fit to the experimental matrix ele-
ments. (ii) We have run the calculation using the
OPW form of the pseudopotential. Although this
form is explicitly energy dependent, it is no com-
plication in the present approach in which the eigen-'
value is the momentum. (iii) The imaginary part
of the self-energy has been set equal to a number
of constant values. (iv) As discussed above, the
change in scattering matrix elements due to the
Debye-Wailer factor and the resultant change in
diffracted intensity should be small in beryllium.
This has been tested.

The results show that some features of the cal-
culated I-V curves are rather insensitive to the
above changes. The reflectivity is much higher
at energies below the threshold for plasmon crea-
tion and falls as the imaginary part of the scatter-
ing potential increases. This is a general feature
Of the results, as is the relative insensitivity of the
peak positions and peak widths. The absolute in-
tensities vary significantly, however, and this con-
firms the earlier observation that this quantity
should be a much more sensitive probe of the scat-
tering potential than the peak width. The greatest
changes in x'eQectivity are observed when the OPW
matrix elements [see the form of Eq. (36)] replace
those of the pseudopotential described above. For
incident eriergies near 200 eV, the absolute inten-
sity is increased significantly.

This emphasizes the importance of an appropriate
choice of pseudopotential for use in LEED calcula-
tions. Near the Fermi energy, the form factors of

the two potentials are virtually identical and for
transport phenomena will give very similar results.
At very high energies the orthogonalization term
vanishes and the potentials are identical. For
LEED energies, however, the pseudopotentials
have quite different matrix elements, particularly
for back scattering, and LEED provides, therefore,
a good test of the Pendry criteria.

The present calculations demonstrate that ex-
perimental features may be reproduced over a wide
range of, incident angles and energies. The sensi-
tivity of the reflectivities to the scattering potential
arid, in particular, to the shape of the barrier at
the surface, encourages the hope that careful abso-
lute intensity measurements will lead to a much
improved knowledge of the surface potential.
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APPENDIX A: DISCUSSION OF EXCHANGE
APPROXIMATION

The simplified treatment of the exchange term
[Eq. (31)] given by Slater~a has proved very useful
in atomic structure and energy band calculations.
In a free-electron gas, the exchange potential is

&/3 y 2

8
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In this equation, p is the electron density and
o =k/k~. Slater averaged this expression over oc-
cupied states ( k & k„) and obtained the well-known
result

parallel to the valence state. Following Slatei', w' e
write

V„'= -6 [(2/8&) p(~)]"', (A2)

where p(1) is now the local density of the core elec-
trons. Evaluating V„at k = k~ leads to the result
of Gaspar" and of Kohn and Sham, '9

V.""=—~ [(2/g. ) p(~)]"' .
A number of modifications o' these approximations
have been suggested, ' ' ' and recently compared.
The criteria for success are taken to be the close-
ness of the ground-state energy and the radial
charge density of the atom to the Hartree-Fock
values. For practical calculations, Slater et al.
concluded that Eq. (A2) was the best choice.

A more sensitive test for energy band purposes
would be to evaluate the Fourier components of the
approximate potential and compare with the exact
results. This may be done for hydrogenic wave
functions of the type considered here [Eq. (30)] and
was carried out by Meyer and Y'oung. The results
show significant discrepancies. These differences
have their origin in the assumptions of the Slater
approximation, which we now examine for the spe-
cific ease of core-valence exchange. The Slater
argument, which holds true for the total exchange
operator, does not apply to core terms alone. This
is due to the nonlinearity of the p'~ approximation,
i e. , (p.„+p,)'~'w(p„'~'+p, '~

), where p„and p, are
the charge densities of valence and core electrons.
The consequences of nonlinearity are clarified by
a calculation of a typical core-valence exchange
matrix element using the physical arguments of
Slatex' 1n his justifIcatIon of the p

' apploxlmatlon,
The results suggest a new momentum-dependent ex-
change operator, whose matrix elements more
closely approximate the actual exchange terms.
The Schr'odinger equation for the one-electron va-
1611ce stRtes ill 'tile cl'ystR1 f„ is

[ —V + (V„+ V„„)+ (V, + V„,)] („=E„g„, (A4)

where V„, V„and V,„, V are, respectively, Cou-
lomb potentials and exchange operators for the va-
lence and core electrons. Standard many-body
tecllnlqlles Rl'6 usllally lllvoked to discuss ( V„+ V„„)
and V, follows from a knowledge of the core wave
functions. The linearity of the exact exchange op-
erator allows its separation into valence and core
terms. The latter, which is often approximated by
a p term~ 18

&@.I V, f4.)

= Z, J C*.(1)0.(1)(1/~,.)y.(2)y,*(2)«, «., (A5)

where the sum is over all core orbitals with spin

The expression in the braces may be inteipi'eted 88
a potential at r„d ueto a charge distribution p(1& 2),
where

0*.(1) P.(1) 4.(2) 4 (2)

g (1) P.(1)

Vfe wish to approximate this nonlocal chai'ge distri-
bution by one more amenable to calcul, ation. The
charge density at 1 is

p(1, 1) = F,C'(1) 4.(1),
which is just the charge density of core electeons
with parallel spin at point 1. The total charge is

4.*(1)4.(1)
p{1)= p(1, 2)d, =Z8, "„(

) (( ),

8, = J g(2)(„(2)«,
is the overlap integral between tIt„and g, . Differ-
ences between this formulation and the original ar-
gument of Slater are now apparent. In atoms, one
is normally interested in orthogonal orbitals for
which case

p(1) =1, p(1, 1) = & tI.*(1)4.(1),

where all orbitals [including P„(1)]are included in
the summation.

In oux' tx'eatIQent we exclude froIQ the suIQIQation
the orbital g„(1), since this term is always can-
celled by the self-coulomb term. Extending Slater's
physical arguments, the exchange integral can be
regarded as the expectation value of the potential
due to an electron charge density whose value at point
(1) equals the charge density of parallel spin there,
and whose total charge is

If this charge is distributed uniformly with a value
equal to p(1, 1) throughout a spherical volume, the
radius of the sphere is given by

so that
Z ~.4.*(1)4.(1)ig(1)4.(1) 1~3

g 4.'(1) 4.(1)
C(i

The potential of such a charge distribution at the
center of the sphere is
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terms is difficult, but may not be impossible.

5.0

~ 2.0
Cl

hl

1.0

I.O 2.0 4.0 5.0

FIG. 8. Comparison of matrix elements of exact ex-
change. Slater exchange, and the new exchange approxi-
mation between one hydrogen orbital and a plane wave, as
a function of the wave vector of the plane wave.

f "0 p(1, 1) 2 3 4w, ~ 1
V =

I

' 4mrdr= — —'r'p(l 1) —.x-
2 3

0

(All)

In the manner of Slater, an average over occupied
free-electron states leads to

v„= -s( —
) tie, o)~'

I
(zs, ', )

(A12)

The first term is the Slater potential, the second
is the nonorthogogglity correction. Although this
is more complicated than the Slater exchange (V„
depends not only on the g, but on („), it does not
involve an igtegration over a charge density. Hence
matrix elements of V„are, in general, easier to
calculate. than for exact exchange. In particular,
if g„and the g, are spherically symmetrical, as in
the ease considered in this paper, the matrix ele-
rnent'. s are no more difficult to calculate than S,.
For simple choices of (, and g„, matrix elements
of the exact form (g, i V„, ( g„) can be evaluated and

compared with results obtained from the two ap-
proximations discussed above. With (, of the hy-
drogenic form adopted in this paper and f, respec-
tively a plane wave and another hydrogenic wave
function, the new approximation gives consistently
much closer agreement with the exact results than
does the Slater approximation. As an example,
the results for g„and a plane wave are shown in

Fig. 8.
%'e note finally that the new exchange approxima-

tion is such that its usefulness is limited to eases
in which g, and g„are spherically symmetrical.
Otherwise terms like FI" (8„$,) ~~ and

1","'(e„&f&,) 2s appear. The approximation of such

APPENDIX 8: LOW-TEMPERATURE TDS

The intensity of radiation scattered from a vi-
brating lattice in the kinematic approximation may
be written

I(s) = lf, l'8- [I,(s)+I,(s)+ ],
where f, is the atomic scattering factor, Io(s) is the
interference function of the rigid lattice for the
scattering vector S = k -ko (k and ko are the scattered
and incident wave vectors), and I,(S) is the single-
phonon term in the TDS. This is the dominant pho-
non process and, in fact, may be a substantial
fraction of the rigid-lattice scattering. In the
present discussion, we consider only this contribu-
tion to the TDS.

By assuming a Debye spectrum, MeKinney, Jones,
and Webb' have derived the following expression
for TDS of low-energy electrons in the high-tem-
perature limit (T &8~, where OD is the Debye tem-
peratur e):

I,(s) (Isl kT/p)
where

!S« -g "I
v/d

The lattice spacing is given by d, and S«and g~'

are the components parallel to the surface of the
scattering vector and the nearest reciprocal-lattice
rod, respectively. Thus p is a measure of the
fractional perpendicular distance from S to the
nearest rod g». The Be data were collected at
'77 K which is roughly one-tenth of the Debye tem-
perature. It is appropriate then to use the low-
temperature approximation (T- 0) to the square of
the amplitudes of the vibrational nodes in evaluating
the TDS. When this is carried out, one finds

I&(S) ISI kez [ln4 —2lnp+-,'p ] for p&1.
The quantity of interest, however, is the total

amount of TDS which is accepted by the collector,
together with the elastic component. This is, of
course, a function of the collector aperature and is
estimated as follows: The fraction of TDS ac-
cepted by the collector with aperature P is

fTos = J Ig(s)dQ/J Ig(S) dQ,

where P is defined as the ratio of radius of the col-
lector to a collector which would intercept all the
scattering in the Brillouin zone. Substitution of
the low- and high-temperature values yields

P high temperature
P' [1 —0.85 lnP] low temperature.

~

~

~

~

~

~

~A reasonable experimental aperature is P= 0. l.
When substituted in the equation above, one finds
that 10% TDS is accepted at high temperatures,
whereas only 8% is accepted in the limit T- 0.
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The momentum-distribution and pair-correlation functions of the electron gas at metallic
densities are calculated by means of an expression of the ground-state energy derived in a
previous papex. Numerical studies of the momentum distribution show that even at metal-
lic densities most of the electrons are still inside the Fermi sphere and that the Fermi sur-
face persists. The effect of the exchange processes at metallic densities is found to pull the
electrons back inside the Fermi sphere and to increase the discontinuity at the Fermi sur-
face, which is the opposite effect to that at high density. The behavior of the pair-coxrela-
tion functions indi'cates that at short distances the present results overestimate the correla-
tion of antiparallel spins but underestimate that of parallel spins. On the whole, there is
considerable improvement over the corresponding results in the random-phase appxoxima-
tion.

I. INTRODUCTION

In R previous papel %'e formulated an approa, eh
to the correlation problem of the electron gas at
metallic densities. The starting point of this ap-
proach is the transition from the paramagnetic
fermion-state space to a boson-state space, by
means of a transformation first introduced by Usui~

to study the effect of exchange processes on the
properties of a spinless electron gas at high den-
sity. Under this transformation, an electron-hole
pa, ir goes over into an ideal boson:

at&. a,.-C'„(Z -p), f p„ f &f, . (1.1)

The electron Hamiltonian 0 is mapped into a bo'son
Hamiltonian of the form

Here 00 is a c number identical to the ground-state
energy in the Hartree-Fock approximation; II~, II3,
and H4 are, respectively, quadratic, cubic, and
quartic in boson creation and annihilation opera-
tors. The ensuing calculations in Ref. 1 are based
on two types of approximations. The first con-
sists of the harmonic approximation in which 03
and JI4 are assumed small and discarded. Then
H~ can be separated into bvo mutually independent
parts describing the singlet and triplet states of an
electron-hole pair:

replacing the matrix elements of exchange pro-
cesses by their averages. The result of these ap-
proximations is equivalent to taking as the singlet
Iramiltonian t e expression

fI"' =Z (oq(q)At5 (q)A~(q)
CP

+ —Z (2Z(q)Aj'(q)Ay (q)~ air~

+ G(q) [At~ (q) A~~ ( —q) + H. c.g . (1.g)

The notRtlons 1n this pRper Rre Rs 1n Ref. 1. In
particular,

F(q) = v(q)+f (q),

G(q) = i (q)+g(q) .
Here e& is the electron 1dnetic energy and V(q) is
the direct Couiomb potential. f (q) arid g(q) are a
pair of effective potentials expressible in terms of
certain exchange matrix elements. They are de-
fined in Eq. (5. 7) and p1otted in Fig. 2 of Ref. 1.
The ground-state energy of H"' is the singlet con-
tribution to the correlation energy. It is given by

The second type of Rppl oxlmation ls employed to
diagonalize these parts, and consists roughly in e(q, fu) =1+f1,(q, u)+ 11,(q, u),


