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The consequences of a two-step model of inelastic diffraction are investigated with em-
phasis on displaying the importance of the relevant conservation laws of total energy and of

the component of momentum parallel to the surface.

The inelastic energy, loss, and angular

profiles for electrons scattered from W(100) are calculated using a model embodying pri-
mary Bragg elastic scattering and schematic forms for the coupling between the beam elec-
trons and the elementary excitations of the solid. In general, two peaks in the inelastic energy
profile are associated with each peak in the elastic energy profile. Conservation of the com-
ponent of momentum perpendicular to the surface for the case of a bulk excitation gives rise

to a new phenomenon: sideband diffraction.
files.

This effect is quite apparent in the angular pro-
Semiquantitative calculations are performed for inelastic diffractions from Al(100)

associated with bulk- and surface-plasmon losses. In these calculations we use the sharp-
junction semi-infinite jellium model to describe the plasmon dispersion curve, the plasmon
lifetime, and the plasmon coupling to the beam electrons.

I. INTRODUCTION

In any consideration of inelastic electron diffrac-
tion, the target solid must be treated as a dynami-
cal system in order to allow for energy transfer
between the beam electrons and the solid. There-
fore in an earlier paper® (hereafter referred to as
I) we developed a quantum field perturbation theory
to describe the creation of boson excitations in the
solid with the simultaneous loss of energy by the
incident electron, In this paper we present a de-
tailed discussion of the dominant inelastic-diffrac-
tion phenomena predicted by this theory. Prelim-
inary descriptions of some of the predicted phe-
nomena have appeared elsewhere.?™*

The objective of the analysis presented in this
paper is the use of the increasingly satisfactory
model descriptions® ™ of elastic low-energy-elec-
tron diffraction (LEED) plus simple models of the
electronic-loss processes to predict the inelastic
cross sections in terms of independently deter-
mined parameters characterizing the electron-
solid system. In our view, there are two major
motivations for this analysis. First, as discussed
inI, we expect that microscopic calculations of
elastic LEED intensity profiles are likely to be less
satisfactory than semiempirical descriptions of
these profiles for some years. Therefore we re-
quire a model of inelastic LEED into which semi-
empirical parametrizations of elastic LEED in-
tensities can be inserted. The model developed in
I exhibits this attribute, which we utilize herein
to predict the plasmon-emission cross sections
from A1(100) in terms of the known elastic LEED
intensity profiles.? Second, if the accuracy of the
qualitative features of the model predictions is vin-

dicated, then the analysis can be used to identify
the nature of the electronic energy-loss mechanisms
in cases where these mechanisms are unknown or
ambiguous.® For this purpose, a critical feature
of the model predictions is their sensitivity to the
details of the parameters characterizing the ele-
mentary excifation spectrum of the target and the
interaction of these excitations (referred to as
“loss modes”) with the incident electrons. We de-
vote considerable attention herein to the examina-
tion of this issue.

Our analytical procedure is a six-step process.
First, we parametrize the elastic electron-lattice
interactions by analyzing elastic LEED intensities.
Second, we study the effect of changing the beam
parameters (incident electron energy E and angles
of incidence 6, ¥) on a prominent feature of the
elastic intensity profile which will influence the in-
elastic cross sections (for example, the structure
at “high” energies near the energy of a kinematical
Bragg resonance). Third, using a particular model
we calculate the inelastic cross sections for beam
parameters in the neighborhood of this structure.
Fourth, we examine in detail the variation with
beam parameters of the inelastic cross sections as
a functional of the nature of the electron-loss-mode
coupling, the loss-mode dispersion relation, and
the perturbation-theory approximation used in the
calculation, Fifth, we test the model in a simple
case for which most of the coupling mechanisms
and parameters are thought to be known, Finally,
if the test indicates the adequacy of the model, it
will be applied to analyze data in more complicated
cases. In this paper we carry out the procedure
through a first attempt at step five. The completion
of step five and, hopefully, passage to step six
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3 QUANTUM FIELD THEORY OF INELASTIC DIFFRACTION. II..,.

await the availability of more extensive experi-
mental data.

The considerations given in I permit us to re-
strict our numerical calculations in several re-
spects. First, they indicate that published experi-
mental data "~!? demonstrates the predominance of
a two-step inelastic diffraction mechanism, '~™*
Therefore we consider here only this contribution
to the inelastic cross section. Second, we set up
in I and use herein a series of five models describ-
ing various possible aspects of electron-plasmon
interactions. Within these restrictions we examine
the qualitative features of the model predictions for
the (100) face of a bcc metal with the lattice param-
eters of tungsten. We select as our presumably
“simple” test case plasmon emission for A1(100).
The motivations for this selection are that elastic
LEED is described well by our model? and the elec-
tron-plasmon vertices are thought to be described
by simple models with known parameters.!™ In
this case we also consider the effects of a number
of refinements (e.g., plasmon damping and mul-
tiple scattering in.the elastic electron-lattice ver-
tex). .

Having noted the extent of our analysis, it seems
appropriate to conclude this Introduction with an
indication of its main predictions. As the inelastic
cross sections depend on six variables, a necessary
preliminary to this indication is an explanation of
our methods of presenting the results of our calcu-
lations. The state of the incident electrons can be
specified by the incident beam energy E and the in-
cident beam direction (8, ¥), where the polar axis
is taken perpendicular to the solid surface, and the
azimuthal angle ¥ is measured relative to an axis
in the crystal face. Similar considerations hold
for the scattered electrons with energy E' and di-
rection given by (8’, ¥’). However, instead of E’
it is generally more convenient to use w, the ener-
gy lost by the electrons, as a variable

w=E~-E'. (1.1)

In presenting the results of our calculations we have
chosen to allow only one of the above parameters to
vary at a time. Also we restrict ourselves ex-
clusively to the case of scattering in a plane (i.e.,
$=19"). In each instance our calculational results
are given as a diffracted intensity profile as a
function of a given variable. This generates what
we shall term an “energy profile,” a “loss profile, ”
or an “angular profile” depending on the relevant
variable. These are defined more precisely as
follows. (a) Inthe case of an energy profile we
hold fixed the direction (6, ¥) of the incident beam,
the direction of the scattered beam (8°, "), and the
loss energy w. We calculate the scattered inten-
sity as a function of incident beam energy E. (b)

In the case of a loss profile we hold fixed the di-
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rection (6, ¥) and the energy E of the incident beam
and the direction (8', 9") of the scattered beam.

We calculate the scattered intensity as a function
of the loss energy w. (c) In the case of an angular
profile, we hold fixed the direction (6, ¥) and en-
ergy E of the incident beam as well as the loss en-
ergy w. We calculate the scattered intensity as a
function of the final angle 6’ (with 3= ¥).

We recall from I that for two-step inelastic dif-
fraction, two types of resonant phenomena are
evident in the inelastic cross sections.!'? Indi-
vidual resonances in the elastic LEED intensity
profile lead to double “energy-tuned” resonances
in the inelastic energy profile. The vestiges of
momentum conservation normal to the surface. of
the solid lead to momentum-tuned resonances for
any mechanism of inelastic diffraction via the ex-
citation of bulk loss modes. Consider, for exam-
ple, the case of the inelastic energy profiles. If
a resonance occurs at an incident beam energy of
Ejp in the elastic channel, in the inelastic channel
we observe a resonance at energy Ejy for the case
of lattice scattering before energy loss’ and a
resonance at (Eg +w) for the case of energy loss
before scattering from the lattice.®® The momen-
tum-tuned resonances can cause an enhancement
of portions of these peaks and, more spectacularly,
can cause the two peaks to become four peaks,?™*
However, this effect is not very pronounced for
plasmon excitations which have rather flat disper-
sion relations.'® This is especially true when
plasmon lifetime effects are taken into account, 418
Nevertheless, the momentum-tuned resonances
produce a large effect in the angular profiles even
when plasmon lifetime effects are taken into ac-
count, They give rise to a characteristic doublet
structure when the incident beam energy is near
an energy resonance value. Thus, for bulk-plas-
mon emission we see a characteristic change in the
angular profile from a singlet to a doublet and then
back to a singlet as the energy is “swept” over a
resonance value. In the case of surface-plasmon
emission the angular profiles always have a doublet
structure.

In Sec. II we state for reference the relevant ex-
pressions for the inelastic-scattering cross section
which were derived in Paper I. In Sec. III we pre-
sent and discuss schematic calculations of the var-
ious intensity profiles for the case of energy loss
due to creation of a “bulk” excitation. Target
parameters corresponding to W(100) are used in
our model calculations. In Sec. IV we discuss the
relevant features of the profiles when a “surface”
excitation is created. Then we present in Sec. V
a detailed calculation of the inelastic diffraction
from A1(100) for the case of bulk- and surface-
plasmon emission. In these calculations we use
the electron-plasmon interaction vertices charac-
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teristic of semi-infinite jellium. 1" Finally, in Sec.
VI we summarize our results.

II. INELASTIC-SCATTERING CROSS SECTION IN THE
TWO-STEP DIFFRACTION APPROXIMATION

In this section we specify the expression for the
inelastic-scattering cross section in the two-step
diffraction approximation. The reader is referred
to I for a derivation. The cross section can be
written as

dza E-w 1/2 TN 27[2 > - > -
dEdS =( E ) (2")-32:’4’(/1) 8(kyo + By~ k- &)
g P

[ = 2i N(= w)ImD(H, w)]
|
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|eo

XM(k.L((), E); k.l,.(os E- w)’ply—é)
X !Ab(‘é).bu E} w)+Ac(§,pl’ E: w)lz . (2-1)

In Eq. (2.1) E denotes the energy of the incident
beam, w the loss energy, k the wave vector of the
incident electron, k' the wave vector of the scat-
tered electron, P the wave vector of the excitation
created in the solid, and § a two-dimensional re-
ciprocal-lattice vector resulting from the transla-
tional periodicity of unit cells of area A parallel to
the surface. The subscripts Il and L are defined
relative to the surface of the solid. The quantities
N(w) and A, are given by

NG)=(e""T-1)", (2.2)
- t(E) R[klf@zE- ’M)), - kl(-é) E)) —pl;o] -1
A o B, ) R B A B GATRE B AR Bk (g B ) @.9)

t(E —w)

/R[k.l.(oyE)s "ki(_ézE'—w); -pj.;o]"l )

AC(g, Pry E, u)) =ﬁ - R[k_L’(O} E- W), k;(—'é, E- 1/U), 0; é] }ki("' —é; E- w)\ i[kl(oy E) - k.{(— g: E- w) =bs ] d

R[ku, kiz, PJ.;—é] = eXp{i[kn + R+ p.l.] d-ig . 5.} .

In Egs. (2.3)-(2.5), k.(§, E) is the solution of

A7 = ﬁz - - thZ(" E
Gl(k+g,E)=E_2_m (k"+g)2_~_2_._;zg_L__)_

->(k+g,E)=0 . (2.6)

The quantity 2 is a vector which defines the rela-
tive shift between adjacent layers of the solid, d
designates the distance between adjacent layers, '®
and D(P, w) is a renormalized loss-mode propaga-
tor having the general form

D(D, w) =[w = 1aw(B)+iT(H)]"
~[w+mw (P)+iTH)], 2.7

where 7w(P) is the loss-mode dispersion relation
and 7/T'(D) is the lifetime of the mode.!® The fac-
tors of {[R(x) - 1]/x} in Egs. (2.3) and (2.4) are
the “central-cell” corrections described in Appen-
dix A of I. They are caused by the fact that in the
jellium model, the plasmon fields are continuous
whereas the elastic electron-lattice interaction is
cell periodic. As we anticipate that the plasmon
field also is cell periodic in an actual solid, we
set [(R(x) -1)/x] =1 in Refs. 2—4. Although these
factors make little difference in the shape of the
cross sections predicted by the numerical calcula-
tions, we retain them for completeness in our
model problem. Unfortunately, their dependence
on p, complicates the algebra relative to Refs. 1-

(2.4)

(2.5)

[

4, The main consequence of this fact is the failure
of our definition of M in Eq. (2. 1) to coincide with
the definition of the analogous M; quantities in Sec.
IV B of I because the factor of |A,+A4,|? is not in-
dependent of p, unless we take the continuum limit
[1, Appendix A].

For the purpose of our numerical work we adopt
the s-wave model to describe scattering of an elec-
tron from an ion core of the solid'*®

HE) =12 (e21°B ~ 1) /Amikm . (2.8)

We also use a particularly, simple model®® for the
electronic self-energy Z(k, E) which appears in
Eq. (2.6), i.e.,

2(k, E)= = V= il(E) , (2.9)
where

Vo=t+ ¢ (2.10a)
and

D(E) = (7% /mAg,) @m/R®)(E+ V)I' 2. (2.10b)

In Eqs. (2.10) ¢ is the Fermi energy, ¢ is the work
function, and A,, is twice the mean free path of the
electron in the material.

Finally’ M(kJ. (0, E- H)), k.lf(oy E- W), pl.y_é) is a
quantity whose form depends both on the kind of ex~
citation involved and on the nature of the electronic
interactions with the excitation. For “bulk” ex-
citations, it contains the sideband-diffraction res-
onances. In Secs. IIIA-IIIC we discuss the results
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I 1 1 I | 1
Tungsten (100)
d=m/2, 8=¥=0
hee= 10A, Vo= -8eV
Only Bragg Scattering

T |

Experimental:
Propst, Cooper
and Burkstrand
(1970)

Intensity of the (10) Beam
(arbitrary units)

1 | |

n A l
0 40 80 120 160
Electron Energy (volts)

FIG. 1. Elastic scattering from W(100) for the (10)
beam. An inner potential of Vy=—8 eV is used to place
a kinematical Bragg peak in the theoretical calculation
at the position of a prominent peak in the experimental
data. The experimental work comes from Ref. 20.

of model calculations of the diffracted intensity
using the forms for M associated with various
models defined in 1.

III. EXCITATION OF BULK LOSS MODES
A. Model Description

In this section we investigate the systematics of
inelastic electron diffraction when a “pbulk” (i.e,,
propagating or standing-wave) excitation is created
in the sample. For simplicity we initially neglect
lifetime effects, and take the zero-temperature
limit. In this case

= 2iN(=w)ImD(P, w)=276(w - Aw(P)) . (3.1)

Substituting Eq. (3.1) into Eq. (2.1) we use the
momentum-~conservation 6 function to perform the
integral over D,, then use the energy 6 function of
Eq. (3. 2) to perform the integral over p,. Assuming
a symmetric dispersion relationship for the excita-
tion, the result of this integration is given by

d?o E-w 1/2 1 ) -0
dEdS ‘( E ) @nra § PP

X [M(kl.(oy E); kll.(oy E- W), by, E)
x| Ay (E, b, E, w)+ A (8, 53, B, w)|?

+M(kl(0, E), k.lf(oa E- IA}), _pgy-é

X’Ab(é, —p21 Ey w)+Ac(§9 -p.?, Ea w)iZ] .

(8.2)

In Eq. (3.2) pYis specified by

po=k,+E-k ; (3. 3a)
pY is defined through

nw(By, 1) =w; (3.3b)
and p(w,p%) is a density-of-states factor

- anrw(p) |
plw, B = Tm(m' 5 30 e (3. 3¢)

Equation (3. 2) holds provided the solution of Eq.
(3. 3b) yields a real p0. Otherwise d%0/dEdQ =0,

For simplicity in this section we restrict our
considerations to the case of an isotropic qua-
dratic dispersion relation for the loss mode

R (D)= P+ hwy, . 3.4)
For this form of the dispersion relation
p (w0, BY) = (2, p0) (3.5)

which diverges as p? —0.

We choose the geometrical parameters so that
the solid corresponds to W[100], and consider the
case of only primary Bragg scattering at the elastic
scattering vertex.!® The value of the inner potential
has been chosen to place a primary Bragg peak at
the position where a prominent peak appears in the
experimental data for the (10) beam?® as illustrated
in Fig. 1. Within the framework of the s-wave
model® this can be thought of as a shift of the en-
ergy band gap corresponding to the (10) reflection
to the observed position on the energy scale. The
loss modes in tungsten are not known and, even
with multiple scattering, the s-wave model does
not give very good agreement with the experimen-
tal elastic scattering data for tungsten.®2° There-
fore, it does not seem advisable to proceed beyond
this rough model at the present. However, the
model is adequate for the exploration of systematic
features of inelastic diffraction.

In Sec. III B we investigate inelastic diffraction
in the (00) beam using the two “schematic” models

for the coupling to the loss mode!™®
U=1eVA"29(p, - p) (3. 6a)
and
U=p, €V A1/29(p, -p), (3. 6b)

where p,, is a cutoff momentum and

1 for p,2p

0 for po<p (3.6¢)

The vertices specified in Egs. (3. 6a) and (3. 6b)
have the dimensions of eV A%/2, Hence, in Eq.
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(3.6b) p, is to be specified in A", We shall see
that these two couplings give rise to quite different
angular profiles. Then in Sec. Il C we examine in-
elastic diffraction in the (10) beam.

B. Inelastic Diffraction in the (00) Beam
1. Constant Coupling Vertex

In this section we use the coupling vertex given
in Eq. (3.6a). It is the prototype for vertices
which do not go to zero as p, -0 sufficiently fast to
overcome the density-of-states singularity. Eval-
uation of the quantity M in Eq. (3. 2) yields!

M(kl.(o’ E)’ kJ.,(Oy E - 7/0), p.(l).y —é)
= (m/n?)*(1/A%

x |1 = R(k,(0, E), &/ (0, E = w), =%, & (3.7
where A is the area of a unit cell of the surface.
Thus Eqgs. (2.3)-(2.8), (3.2), (3.3), and (3.7)
specify the two-step inelastic cross section for this
model.

a. Enevgy profiles. A resonance in the 4, term
in Eq. (3. 2) occurs when

2Relk,(0, E)] = 2mn/d ,

b

(3.8)

where n is an integer. This is the condition for a
Bragg resonance at energy E=FEj in the elastic
channel. Hence, this resonance produces an image
in the inelastic energy profile of the kinematical
Bragg peak in the elastic intensity profile, Note
that the value of p, can have essentially no effect
on this resonance since from Eq. (2. 3) the quantity

R[kll(o; E- w)) - kJ.(—é’ E)) =Dy O] =
Z[k.l{(oy E- W) - k.ﬁ.(é’ E) -D ] d

Fb(pl):
(3.9)

is large only for forward scattering at the inelastic
vertex, i.e., [k(0, E—w) =k (&, E)~-p]-0. In
this case F,(p,) —1 so that no additional resonance
occurs. Similarly, the resonance condition in the
A, term occurs when

2Re[%,(0, E — w)] = 2m/d , (3.10)

which is the condition for a Bragg resonance at
energy E= (Eg+w) in the elastic channel. This
resonance also is essentially independent of p,.

The A, and A, resonances are the energy-tuned
resonances in the inelastic channel,

The envelope functions M, which occur in Eq.
(3.2) and are specified by Eq. (3.7), exhibit kine-
matical resonances at energies such that

Rel~.(0, E)+k/(0, E=w)] - p=2m/d  (3.11a)
or
Re[~,(0, E) + k1 (0, E~w)]+ pl=2m/d . (3.11b)

The resonance condition in Eq. (3. 11b) occurs
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somewhere near the A, resonance. For relatively
large values of p° the resonance occurs at a lower
energy than the A, resonance, but for small values
of pJ the resonance will lie between the 4, and 4,
resonances. On the other hand the resonance con-
dition in Eq. (3.11a) occurs somewhere near the
A, resonance. For relatively large values of 2
this resonance occurs at a higher energy than the
A, resonance, but for small values of energy the
resonance lies between the A4, and A, resonances.

These resonances in M constitute the momentum-
tuned “sideband-diffraction” resonances.? They
can cause each of the energy-tuned resonant peaks
to split into two peaks. Thus we can find four
peaks in the inelastic energy profile corresponding
to each peak in the elastic energy profile. This
further splitting is especially evident for a “steep”
dispersion relation where a large p} corresponds
to a fairly large loss energy w. We illustrate the
effect for such a “steep” dispersion relation in
Fig. 2. This is for the special case of specular
reflection for a normally incident beam, i.e.,
P2=0. The elastic profile is shown in Fig. 2(a).
With only primary Bragg scattering at the elastic
vertex, it consists only of two primary Bragg
peaks—one at E=23 eV and one at E=68 eV. Note
that for very small losses [Fig. 2(b)], p° cannot
become large enough to tune the sideband-diffrac-
tion resonance. In this case we see only the two
energy-tuned resonances. For larger losses
[Figs. 2(c) and 2(d)], the additional sideband-dif-
fraction resonances are quite evident,

b. Angulav profiles. The features of the angu-
lar profiles are determined primarily by the prod-
uct of the envelope function and the density of
states, i.e.,

T A B A i B A V(O') T T T T T LA ’(C)
14 ELASTIC SCATTER!NG \NELASTIC SCATTERING

2 § oo I 5s20R ha (9)-50+444(p° +pTleV .12
10 | =y /=0
of 8=y-0 | Grv=0"y co/2!.10
n; [oo £l oss=BeV.  UsleVA g‘*
o 8 s=m/2,3320R  Sideband 108 .
<6 SCATTERING va!roctlcnolmuc‘jon 06 O
-k Sideband then loss |
4 10 Diffraction kLoss(hen | 104
D\ffrocﬂcn/
2 J\’\ / 02
LA ¢5A\;/\<(
b),. d) 05

8=y=8"=y’=0 o
U-lev¥2 04

50 8=y=0'=y’=0
40 ELoss= eV, ElosslleV. U 104
W R /2,3 20A [}
Y30 UsleVA¥2 - || 2T 0338
/2, \,z20A P . m
_.020 B=T/2, Ng - 402 &
tO /\/\ L AJ\ Ol
| N NPAN

|o 2030405060 70 8010205040 5060 70 80 90
Elevy EeV)

FIG. 2. Energy profiles obtained for elastic (a) and
inelastic (b)—(d) diffraction using only primary Bragg
scattering at the elastic vertex. The inelastic profiles
were calculated using Eqgs. (3.2) and (3.7) of the text and
the parameters shown in the figure. The large value of
Mg is used only for illustrative pruposes.
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_M(%,(0, E), kl(o E - w), ¥ 3, 0)
zaqpl

Let us consider the case of normal incidence 6 =0
and constant azimuthal angle along one of the prin-
cipal axes in the plane, i.e., ¥=9'=0, Interms
of the final angle 8’ the various momenta are given
by

F.(p))= . (38.12)

B/ (E = w)=k(E ~w) cosb’, (3.13a)
ky(E = w)=k(E ~w)sind’ , (3.13b)
Bo=—ki(E-w). 3. 13¢)

From the dispersion relation we obtain the expres-
sion for p?

p=(grd 8.14)

1/2
- F*(E - w) sinze')
q
From Eq. (3.14) we see that we can obtain a non-
zero scattering intensity out to a critical angle 6,
w ~ hw

given by
. - 1/2

6é=arcsin[< M) ] .
At this critical angle p?=0. The position of the
critical angle as a function of w gives a measure of
nw(p,) since Zw(p*M =w at the critical angle. As
F,(p?) diverges at p?-—O, we anticipate a sharp in-
crease in the diffracted intensity as ' ~+6,. This
effect should be especially evident for values of the
incident electron’s energy which are far removed
from any peaks in the energy profile. We illustrate
this phenomenon in Fig. 3 in which we display angu-
lar profiles for various energy losses for a primary
beam energy 10 eV below the Bragg energy.

We next examine the case where sweeping through
pY in the angular profile produces a sideband-dif-
fraction resonance. This will occur near an inci-
dent beam energy for which there is a peak in the

(3.15)

Tungsten (100)

E =58eV
€
& | hw(P)=(2p2+9)ev
5| Pepn-1A
S| u=levA>? hw(B;)
2 NI
bl 2 i N //ELOSS - 5.Tev
° 4 s /; o
> It sl e -
':7_) _5\4‘ ;ELOSS-973V
c k4 /
& e
< ;’,ELoss' 10.3 eV
Loss= 10.9 eV

03 0% %1 0 Of 02 0%
Collector Angle (radians)
FIG. 3. Angular profiles for various loss energies.

The energy of the incident beam is 10 eV below the energy

of Bragg peak. The profiles were calculated using Egs.

(3.2) and (3.7) of the text, A,,=10 A, 6=y =3 =0, and the

parameters shown in the figure. The critical cutoff angle

maps out #w(p,) as shown by the dotted line.
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Tungsten (100)
E =68eV (Bragg Energy)

hw(P) = (2p% +9) eV
P=pm= 1471
U= lev A%

Intensity of the (00) Beam

’ELoss- 10.9 &V

05705 01 0 01 02 03
Collector Angle (radians)
FIG. 4. Angular profiles for various loss energies the

energy of the incident beam is equal to the Bragg energy.

The profiles were calculated using Eqs. (3.2) and (3.7)

of the text, A, =10 1&, 6=139=y"= 0, and the parameters

shown in the figure.

energy profile. The sideband-diffraction resonance
will produce maxima in the angular profiles in
addition to those associated with the density-of-
states effect at 8'= 6, We illustrate this effect in
Fig. 4 for the casé of a primary beam energy equal
to the kinematical Bragg energy. Note the addition-
al peaks in the angular profiles when the loss en-
ergy becomes large enough to allow p¢ to tune the
resonance, These peaks are associated with a
local maximum in F,(p%) which is associated with
the resonance condition given by Eq. (3.11b). For
a primary beam energy E ~Ey+ w we also would
obtain additional peaks in the angular profiles. In
this case the peaks would be associated with a local
maximum in F_(p?) [resonance condition Eq.
(3.11a)].

In calculating the profiles shown in Figs. 3 and
4 we have used a more realistic “flat” loss-mode
dispersion relation. Even for such a “flat” disper-
sion relation, the effects of sideband diffraction
are still apparent in the angular profiles. This is
because in an angular profile p} is swept through
its entire allowed range.

2. Coupling Vertex Proportional top,

In this section we use the coupling vertex given
in Eq. (3.6b). It is the prototype for vertices which
vanish at p, - 0 sufficiently rapidly to overcome the
density-of-states singularity. This coupling vertex
duplicates the essential features of the semi-infinite
jellium-model vertex for coupling to bulk plas-
mons. "7 Evaluation of the quantity M yields

M(k.l.(oy E)’ kJ.’(Oy E- W), p.L: g) = (m/h2)4[(P2)2/A2]
X |1_R(kL(0:E))k;(O’E—w)y _p.l.” -2 . (3- 16)

a. Energy profiles. The form of the coupling
can have no effect on 4, and A, in Eq. (3. 2) so the
two energy-tuned resonances occur as before when
Eqgs. (3.8) and (3.10) are satisfied. Also the factor
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FIG. 5. Energy profiles obtained for elastic (a) and
inelastic (b)—(d) diffraction using only primary Bragg
scattering at the elastic vertex. The inelastic profiles
were calculated using Eqs. (3.2) and (3.16) of the text
and the parameters shown in the figure.

of (p?)? in the numerator of Eq. (3.16) has little
effect on the resonance condition for the envelope
function. Hence, the momentum-tuned resonances
occur when Eqgs. (3. 11) are satisfied.

We again examine energy profiles for case of
specular reflection of a normally incident beam.

In this case for a given loss energy only a constant
scaling factor relates the profiles for this coupling
to the profiles for constant coupling. Thus, the
energy profiles for the two different couplings are
directly comparable. We show calculated energy
profiles in Fig. 5 for the case of a fairly “flat” dis-
persion curve. The elastic energy profile is shown
in Fig. 5(a). The extra sideband-diffraction reso-
nances appear distinctly only for the largest loss
energy, i.e., in Fig. 5(d). This result is due to the
“flatness” of the dispersion relation, Furthermore
as the detector is moved away from the specular
direction and requires a nonzero p?, the value of
[)f for a given loss will be less than when 9’ =0.
This further reduces the ability of the envelope
function to resonate and produce sideband-diffrac-
tion peaks, We illustrate this effect in Fig. 6,
where we look at the structure above 50 eV in Fig,
5(d) as a function of ’. Note the disappearance of
the sideband-diffraction peaks with increasing 9.
For the case of bulk plasmons where a flat disper-
sion curve combines with lifetime effects'™ it is
difficult to see sideband-diffraction phenomena in
the energy profiles—especially when multiple
elastic scattering effects are included in the calcu-
lation.

b. Angular profiles. The features of the angular
profiles again are largely determined by the pro-
duct of the envelope function and the density of
states
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M(kl(o E) kJ.(O E - w); :FPL,O)
) zaqpl ’

where M is given by Eq. (3.16). Unlike F,(p?),
G.(p?) does not diverge as p? -0 but rather be-
haves according to

G(p%)=0 as p?-0. (3. 18)

Hence, the scattered intensity goes to zero in a .
smooth manner at 6’ - 6,, The angular profiles
for incident electron energies far removed from
those of peaks in the energy profile reflect the be-
havior of G,(p?). This result is evident from Fig.
7 where we display angular profiles for various
energy losses for a primary beam energy 10 eV
below the Bragg energy.

We next consider angular proﬁles when the inci-
dent beam energy is near the energy for which there
is a peak in the energy profile. Sweeping through
p? in the angular profile produces sideband-diffrac-
tion resonances provided that the loss is sufficiently
large to allow p? to tune the resonance. We illus-
trate this effect in Fig, 8. For the lowest loss en-
ergy p? cannot become large enough to tune the
resonance, and we see only a singlet structure such
as that shown in Fig. 7. However, for larger val-
ues of the loss energies we see the characteristic
doublet caused by the sideband-diffraction reso-
nances,

From the difference between Figs. 7 and 8 it is
clear that for incident electron energies in the
vicinity of a resonance in the elastic LEED cross
section, the angular profiles are quite sensitive to
the beam energy. This result is illustrated more
directly in Fig. 9 in which we show the dependence
of the angular profiles (for a given loss energy)
upon the energy of the incident beam. We have
chosen a loss energy large enough for the angular
profiles to exhibit the sideband-diffraction reso~

G.(pY)= (3.17)

T T T 1 T T T T
| Tungsten (100)  (a)| (b) |
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FIG. 6. Inelastic energy profiles showing the effect of
moving the detector off the specular direction. The pro-

files were calculated using Eqs. (3.2) and (3. 16) of the
text and the parameters shown in the figure.



3 QUANTUM FIELD THEORY OF INELASTIC DIFFRACTION.
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FIG. 7. Angular profiles for various loss energies.
The energy of the incident beam is 10 eV below the energy
of the Bragg peak. The profiles were calculated using
Egs. (3.2) and (3.16) of the text, A,=10 &, 0=y=9’=0,
and the parameters shown in the figure.

nances. Note the characteristic shift from a sing-
let to a doublet and then back to a singlet as the
beam energy goes over a peak in the inelastic en-
ergy profile. The inelastic energy profile in Fig.
5(c) corresponds to the loss energy used here. The
sideband-diffraction effects are quite apparent in
the angular profiles even though they are not evi-
dent in the energy profile.

c. Loss profiles. In general the energy of the
incident beam is much larger than the loss energy
w. Also the loss energy varies only over a rela-
tively small range. These facts have the conse-
quences that for fixed incident and final angles and
fixed primary beam energy, k,(0, E) is fixed and
k. (0, E - w) will be only a slowly varying function
of w. Thus both A, and A, will vary slowly as w
ranges over a small range and any structure in the
loss profile will be due to the envelope function M.

Let us examine the case of specular reflection of
a normally incident beam, i.e., p9%=0. The loss

Tungsten (100)
E =68¢eV (Bragg Energy)

hw(P)=(2p% +9) eV
P pn= 1A
U=p, ev Ao

Intensity of the (00) Beam

o5 BT 6ot 0% osE'-°=s 10.9ev

Collector Angle (radians)

FIG. 8. Angular profiles for various loss energies.
The energy of the incident beam is equal to the Bragg
energy. The profiles were calculated using Eqgs. (3.2)
and (3.16) of the text, A,=10 &, 6=y=9’ =0, and the
parameters . shown in the figure.
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energy is given by
w=Fiwy, + aq(p2)2=ﬁwbq+Aw R 3.19)
from which we obtain
pl= (Aw/ozq)”2 (3.20)

and
Re[%,(0, E - w)] ~{(@m/n?)
X[(E+ Vo= w,,) - aw)}/? | (3. 21)

We first consider the situation in which the inci-
dent beam energy is below the Bragg energy. In
this case we find

Re[%,(0, E) + £1(0, E - w)] < 2Re[ ,(0, Ep)] = 217/d |
(3. 22)

where 7 is some particular integer. We note that
since (E = iw, + Vo) >Aw, p? will increase faster
with increasing Aw than %,(0, E - w) will decrease.
This fact results in a net increase of Re[%,(0, E)
+#/(0, E —w)+pY] with increasing Aw. Hence,
sweeping Aw will yield a peak in the loss profile
when

Re[%,(0, E) + £/(0, E - w)+ p0 )= 277 /d

is satisfied for some Aw.

As we increase E, a smaller value of Aw will be
required to satisfy Eq. (3. 23), and the peak in the
loss profile will shift to lower values of w. This
trend continues until we reach an incident beam en-
ergy E; such that

Rel%, (0, E,) + £1(0, E, -

(3.23)

nw,))=217/d . (3. 24)

At this point the resonance condition specified by
Eq. (3.23) is satisfied for p?=0, and the peak in the
loss profile will be very close to Aw=0. The peak
can never be exactly at Aw= 0 with this coupling
since we have zero intensity at p?=

Tungsten (100)
ElLoss = 10eV

hw(P) = (2p% +9) eV
pSpy=1A7t
U= p, evRo2

Intensity of the (O0) Beam

E 62eV

-0370% 61 0 o1 02 03
Collector Angle (radians)
FIG. 9. Inelastic angular profiles associated with a

loss energy of 10 eV for an incident beam whose energy

is noted in the various panels of the figure. The profiles
were calculated using Egs. (3.2) and (3. 16) of the text,

Aee=10A, 6=y =3¢’ =0, and the parameters shown in the

figure.
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FIG. 10. Inelastic loss profiles as a function of incident

beam energy for the case of a specularly reflected nor-
mally incident beam. The profiles were calculated using
Egs. (3.2) and (3. 16) of the text and the parameters
shown in the figure.

For E>E; we find

Re[£,(0, E)+ 2. (0, E —w)] > 277/d . (3. 25)

Therefore the only possible resonance occurs when
Rel%,(0, E)+ £ (0, E—w) - p2)=217/d .  (3.26)

With increasing values of E this condition will re-
quire increasingly larger values of p? and hence of
Aw. The peak in the loss profile will thus begin to
move out to higher values of the loss energy.
Starting with E<Eg, as E increases the systema-
tic behavior of the peak in the loss profile moving
from some fairly large value of Aw, into Aw =0,
and then back out to large Aw again is illustrated
in Fig. 10. This type of behavior of the loss pro-
file is evident in early experimental work of Farns-
worth et al.®'® although it is displayed more prom-
inently in recent experiments, 2:??
We also note that when Eq. (3.24) is satisfied,
we are midway between the two energy-tuned 4,
and A, resonances. This results in a minimum in
lA,+A,|? and hence we expect an over-all decrease
in the intensity of the loss profile as the peak posi-
tion approaches Aw=0. Such an effect is evident
in panels (c) and (d) of Fig. 10.

C. Inelastic Diffraction in the (10) Beam

The same general sort of resonance conditions
hold for §+#0 as occur for §=0. Specifically, these
conditions are given by (i) A, resonance:

Re[k,(0, E) + ky(E, E)] = @2m/d) - §+3/d ; (3. 27a)

(ii) A, resonance:
Re[£/(0, E = w)+ k(= §, E - w)] = (2mm/d)-g-3/d ;
(3. 27b)

(iii) M(k (0, E), £(0, E = w), p, &) sideband-diffrac-
tion resonance:
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Relk, (0, E) + £/(0, E = w) = p3] = @m/d) - §-3/d ;
(3. 27¢)

(iv) M (%, (0, E), £ (0, E = w), - 1%, §) sideband-diffrac-
tion resonance:

Re[%,(0, E) + (0, E —w)+ p2 = @nn/d) - §-4/d .
(3. 27d)

However, the quantitative details in the profiles
produced by these resonances can be quite different
from those in the g #0 case.

1. Enevgy Profiles

The inelastic energy profiles taken at fixed 6’
show the same general characteristics as those for
the (0, 0) beam with the addition of several com-
plicating features.

(i) The angular position of the $%= 0 point now
varies with the energy of the incident beam even
when the incident beam is normally incident. This
is because adding §,, to an initial wave vector shifts
the final wave vector to larger values of 8’ with the
amount of the shift being energy dependent. We
have a similar situation for a beam not at normal
incidence even whenj =0 because when the electron
has lost energy E{, =k,# 0 no longer corresponds to
specular reflection.

(ii) For fixed 6’ the size of the p{ therefore de-
pends on E as well as w. This affects the details
of the peak splitting in the energy profiles although
the general features will be the same as for the
(00) beam.

(iii) The loss energy w limits the maximum val-
ue of p° and hence the range of 6’ for which we ob-
tain scattered intensity for a given energy E. When
too large a value of p) is needed to place the beam
at the specified ', the inelastic energy profile will
cut off. This can happen at both low and high en-
ergies.

We do not illustrate further these effects in fig-
ures because they occur in the semiquantitative
calculations for Al as shown in Sec. V which are
performed for a beam at non-normal incidence.

2. Loss Profiles

The loss profiles also are complicated by the
shift in angle of the p%=0 point as w changes for
fixed E. Increasing the loss energy moves the
p2=0 point to higher values of 9°. However, as the
variation of w will be small compared to a typical
E'=E -w, this motion does not affect the loss sub-
stantially. The loss profiles look much like those
for the (00) beam if they are taken at a 6’ near the
value where P9=0. If on the other hand, the loss °
profiles are taken at an angle 8’ where D9 is large
(implying only small values of p? occur), the reso-
nance peaks in the loss profile will not show a pro-
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nounced movement with changing incident beam
energy. Also in this case the loss energy cannot
vary over as wide a range as before since we
clearly must have Aw> a,(p3)%.

3. Angular Profiles

In the case of the (10) beam we do not expect the
angular profiles to be symmetric about the angle
96, where p9=0. Broadly speaking, this asymmetry
occurs because the sine and cosine functions do not
have the symmetry about a general 96 that they do
about 6;=0.

For the sake of discussion let us consider the
case of a normally incident beam and the coupling
given by Eq. (3. 6b) for which the angular profiles
go to zero when p) —~ 0. In order to isolate the de-
pendence on the collector angle, we rewrite the
resonance conditioens in Eqgs. (3.27) in terms of 8’,
These become for the (100) faces of monatomic fcc
a'(,ld bce metals, (i) A, resonance (independent of
6%):

Re{k(E) + [F*(E) - g2,]' /%= @n+ 1)n/d; (3.28a)
(ii) A, resonance:
Re(k(E - w) cos8’ + {K*(E - w)
= [~(E - w) sind’ - g, ]2} /?)
=(2n+1)n/d ; (3.28b)

(iii) M (. (0, E), 2/(0, E —w), p2,8,,) sideband-dif-
fraction resonance:

Jjp=Re(k(E) + k(E - w) cos’
- {(w - Nwy,) & = [~(E - w) sino’ - g1°]2}1 /2)
=(2n+1)n/d; (3.28¢c)

(iv) M (%, (0, E), %,(0, E = w), = 1}, &) sideband-
diffraction resonance:

J3,=Re(R(E) + k(E ~ w) cosb’
+ {(w - ﬁwbq)/aa - [k(E - w) sing’ - gm]Z}l /2)
=@n+)n/d. (3.28d)

In writing Eqgs. (3.28) we have made use of the fact
that for the (100) faces of fcc and bce metals

gpra/d=n/d . (3. 29)

In analogy with our analysis for the (00) beam,
let us consider how we expect the angular profiles
for a fixed loss energy to behave as we change the
energy of the incident beam. When E< Ey we ex-
pect a singlet structure due to the product pM. Al-
though no longer symmetric, this singlet will be
“centered” near 9'=6,(E). With increasing inci-
dent beam energy, the Jj, resonance will become
important. This resonance will occur first at the
value of 8’ that maximizes J},. Due to the k(E - w)
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Xcosf’ term in Eq. (3.28d), this will occur at a 6’
somewhat less than 6g(E). Further increase of E
will cause a doublet to form which will separate
with increasing incident beam energy. However,
there will be no symmetry developed about 8;(E).
We can see this as follows, from Eq. (3. 28d):

AJ}y= - AG'Re(k(E - w) sind’

k(E - w) cosfTk(E - w) sind’ — g;,]
T = 1w, )/, ~ [ R(E = w) sinb’ = g;o)2 1 /2)

(3.30)

The second term on the right-hand side of Eq. (3. 30)
may be rewritten as

" < k(E = w) cosb[k(E ~ w) sinb’ - g,,] )
€ {w-;Zwbq)ozq—[k(E-w)sine'-gm]z}l/z

__Re[kr(E~-w)]cost’p$
T {w = hwyg) /g = (P12

This term is greater than zero for 8> 64(E) (i.e.,
#°>0) but is less than zero for 8'<§y(E) (i.e., p)
<0). This term dominates in Eq. (3. 30) causing
the splitting into two resonant peaks. However,
since [Rek(E - w) sinfy(E)] #0, the two peaks do not
move at equal rates away from 6= Oé(E). Because
of these resonances and also the growth of the 4,
term, we expect the over-all size of the angular
profile to increase with the onset of the doublet
structure.

As E passes through the Bragg energy, the next
resonance that occurs is the onset of the low-angle
peak in the J7, resonance. At the extreme ends of
the profile p}=0, but offsetting this is the fact that
Rek(E — w) cosf’ takes on its maximum value at the
low-angle end. Hence for some E > Ey the low-
angle end of the doublet becomes much larger than
the high-energy end because of the resonance in
both J3, and J 3.

Increasing E still further causes the low-angle
end of the J ], resonance to move towards 6, (E) and
the low-angle end of the Jj, resonance to disappear.
We thus obtain a singlet structure towards the low-
angle side of the profile.

The A, resonance is the next to enter the picture.
From Eq. (3.28b) we see that this resonance first
occurs at the low-angle end of the profile. In gen-
eral it will give a singlet peak moving to higher
energies with increasing incident beam energy.
With still further increase of E, the A; peak and
the low-angle J i, resonance separate, and we ob-
tain a doublet structure.

Summarizing, with E increasing from a value
well below the Bragg energy, we expect the follow-
ing behavior in the angular profile: We first obtain
a small singlet which then changes into a much lar-
ger doublet with the two peaks being about the same

(3.31)
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FIG. 11. Inelastic angular profiles for the (10) beam
for the case of a normally incident beam. The energy of
the incident beam is noted in the various panels of the
figure. The profiles were calculated using Eqs. (3.2) and
(3. 16) of the text and the parameters shown in the figure.

size. The high-angle member of the doublet will
then decrease in size relative to the low-angle
member. Eventually, at some E< (Eg+w), we will
see only a single peak towards the low-angle side
of the profile. Further increase of E will cause
the singlet to split into a doublet which will finally
go back into a small singlet when E is well beyond
any structure in the energy profile. This systema-
tic behavior is exhibited in Fig. 11. At E=125 eV
(not shown in the figure) the doublet structure re-
appears as expected.

IV. EXCITATION OF SURFACE LOSS MODES

In this section we discuss the characteristic fea-
tures of inelastic diffraction when a “surface” ex-
citation is created in the sample. We can immedi-
ately perform the momentum integral in Eq. (2.1)
to obtain

dzc E-w 1/2
dEdS =< E )

ez Sl 2= D 5, )

x M (k.(0, E), kf(O,E—w),pL(ﬁ?.),é)
XlAb(g;pl(ﬁ?l);E! W)
: +Ac(§; p.l.(is?l))E’ W)|2 ’ (4' 1)

where D is given by Eq. (3.3a) and p,(p%) is a
specified function of 9 that depends on the particu-
lar kind of surface excitation involved.

Suppose the surface excitation is an exact eigen-
state of the system. This would mean that (taking
the T=0 limit)

- 2iN(= w)ImD(P Y, w) = 276(w - Aw (D)) . (4.2)
Note that the energy & function in Eq. (4. 2) is non-
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zero only for certain special (real) values of 0.
That is, there will be only certain directions for
which we can simultaneously satisfy conservation
of both energy and parallel momentum, It is only
for these special directions that we obtain a nonzero
diffraction intensity for a given energy loss. For
a symmetric dispersion relation and fixed azimuthal
angle =9, there will be two values of p9 for which
Eq. (4.2) is satisfied. Therefore, in general there
will be two final angles 6’ for which there will be a
nonzero diffracted intensity for a given energy loss.
Assuming infinite instrumental resolution, an ang-
ular profile for a given reciprocal-lattice vector g
would always show two spikes [provided that a
real nonzero value of 1P| satisfies Eq. (4.2)] as-
sociated with the intersection of the scattering plane
with a cone of inelastically scattered electrons.
The intensity of these spikes would be determined
by the other quantities in Eq. (4.1). In an actual
experimental measurement, the observed profiles
would depend on the angular acceptance cone and
the accepted energy width for the measuring instru-
ment,

In practice, however, no surface excitation is an
exact eigenstate of the system. Consequently, the
spectral density is given by

- 2iN(=w) ImD(p?, w) = 2T/ {fw - w(pd) ]2+ T2},
(4.3)

in which I" is some intrinsic width due to the finite
lifetime of the excitation, and we have taken the

T- 0 limit. Unlike the situation for bulk excita-
tions, for nonzero ﬁ?, a surface excitation always
can decay into a single electron-hole pair.'® This
is because of the relaxation of the conservation con-
dition on the component of momentum perpendicu-
lar to the surface. Hence, the half-width T of Eq.
(4. 3) can become large. This phenomenon broadens
the spikes in the angular profile. However, we still
expect much sharper features in the angular pro-
files for surface excitations than for bulk excita-
tions. Also, $.(09) will generally be a completely
imaginary function which describes the decay of the
excitation with distance from the surface. In such
a case there would be no momentum-tuned side-
band-diffraction resonances. To actually calculate
the profiles for a surface excitation requires a
model for p, =p, (p{) and T'=T(p?). We defer such
a calculation until Sec. V where we consider the
excitation of surface plasmons in Al. In this sys-
tem we can use jellium models for the plasmon
spectral density.

V. SEMIQUANTITATIVE CALCULATIONS FOR PLASMON
EMISSION IN Al

A. Model Description

In this section we present the results of semi-
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quantitative calculations of the energy and angular
profiles for inelastic diffraction from A1(100) for
the case of plasmon emission. The appellation
“semiquantitative” is used because for a nearly
free-electron metal like Al it is anticipated that we
may use semi-infinite jellium results for the plas-
mon-emission vertices.!” We examine the case of
the g=0 (i.e., specular) beam for incident beam
directions sufficiently close to normal incidence
that angular -dependent renormalization effects on
the vertices should not be important. ! In the case
of bulk plasmons we fit the theoretical form!® of
the plasmon damping parameter I' to experimental
high-energy-electron transmission measurements
through Al films.!* In the case of surface measure-
ments we use the theoretical work of Feibelman'®
on Landau damping to obtain I'.

Even for a weak-scattering material like Al, the
Born approximation is inadequate for describing
the elastic scattering. We expect, therefore, that
multiple-scattering effects will be important in any
realistic description of the inelastic scattering.
We are thus forced to “renormalize” the elastic-
scattering vertex in the two-step approximation®
to take into account multiple scattering from the
lattice. This renormalization procedure has been
described elsewhere.® %) 2 Therefore we merely
summarize the relevant expressions. We continue
to restrict our analysis to the case of s-wave
scattering from an ion core in the solid.!® In this
limit we describe multiple intraplane scattering by
replacing the single-site amplitude ¢ in Egs. (2. 3)
and (2.4) with a renormalized “subplane” amplitude
determined by'® #

WE)=t(E) 1 -t, G*(K, E)]~! . (5.1)

In Eq. (5.1) #, is the single-site scattering ampli-
tude for an ion core in the Ath plane (all sites in a
given plane are assumed to be equivalent), and

7, is the total scattering amplitude for the Ath
plane. We refer the reader to Refs. 18 and
23-25 for a definition of the propagators G°°.
Completion of the renormalization procedure to
include interplane as well as intraplane scattering
requires the use of the complete layer ampli-
tudes'® #~% T, prior to the performance of the
lattice-site sums whose result already is incor-
porated in Eq. (2.1).

As noted in the Introduction, we use the elastic-
electron-scattering data to fix all of the parameters
of both the renormalized elastic vertices and the
electronic proper self-energy [i.e., see Eq.
(2.9)]. In Fig. 12 we show a comparison between
theory and experiment? for elastic electron diffrac-
tion from A1(100). The azimuthal angle ¥ is defined
with respect to the cube axes in the (100) face.

The theoretical calculation makes use of the sec-
ond-order perturbation-theory model of Ref, 18
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which is adequate for a weak-scattering material
like Al.# We regard Fig. 12 as a satisfactory
comparison between theory and experiment in view
of the simplicity of the theoretical model and the
generally satisfactory description of the data over
a wide range of incident angles. The relevant pa-
rameters obtained from Fig. 12 are V(=16.7 eV,
N,=8A, d5=%m b6,=%m, where 55 and 6, are,
respectively, the s-wave phase shifts for an ion
core in the bulk or on the surface. Actually, this
fit is almost indistinguishable from one using 6
=8p=%7. Therefore in the interest of simplicity
we use these latter phase shifts in calculating the
inelastic diffraction profiles.

B. Bulk-Plasmon Emission

The effective loss vertex for coherent bulk-plas-
mon is’ 17

tn(l?: E’ E) ==-i [(We 2hwb /pZ) 92]1/ zSgn(pJ.) e(pc "'p) )
(5.2)
where § is the volume of a unit cell and p, is the
random -phase-approximation (RPA) cutoff wave
vector for bulk plasmons® p,=1.2 A*!, This leads
to the following expression for the differential-
scattering cross section®:
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FIG. 12. Comparison of experimental (Ref. 26) and
calculated elastic energy profiles for the (00) beam for
A1(100). The calculations are based on the s wave in-
elastic collision model (Ref. 18) with the parameters
given in the text and a lattice parameter of 4. 042 A. cal-
culated intensities are scaled for 0=6°, 10°, 15°, 20°,
25° by 10, 6, 4, 3, 1.8, respectively. This scaling simu-
lates the fact that, as noted in I, the damping and the
inner potential (and the ion-core form factor) depend on
the angle of incidence: effects which are not described by
the model in the text. The azimuthal angle ¢ is defined
with respect to the simple-cubic (nonprimitive) unit
cell of the fcc lattice.
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INELASTIC ENERGY PROFILES

X 1/50 ELASTIC

ELECTRON ENERGY (eV)

FIG. 13. Calculated elastic and inelastic energy pro-
files for the (00) beam from A1(100) for bulk-plasmon
emission, Subplane elastic-scattering amplitudes ()
have been employed to describe the elastic vertex. The
profiles evaluated are for 6 = 6’ =15°, y=9¥’=45°, and the
parameters used in calculating the profiles shown in Fig.
12. The scaling of the profiles is indicated by the bars
on the left-hand side of the panel.
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In writing Eq. (5. 3) we have taken the zero-tem-
perature limit because of the high energy of the
plasmons relative to k7 and have taken the plas-
mons to have a finite lifetime. However, if we
consider plasmon damping, then from Eq. (2.7)

- 2iN(-w) ImD(p, w) = 2T(p )/{ [w - w(@)]?+ T%p)} .

(5.4)
The damping parameter is given by'% 5 T'(p)
=1.06p% eV and p| is given by Eq. (3.3a). With
the presence of damping it is no longer possible to
perform the p, integral analytically. A, and A,
are given by Egs. (2.3) and (2.4), respectively,
with multiple-lattice-scattering effects being in-
cluded as discussed previously. The plasmon dis-

persion relation is given by'?
rw(p) = (16.0+3.37p? eV. (5.5)

In the expressions for both I" and Zw the momentum
p is to be expressed in A-!. The envelope function
My, is given by*

Mbn(kl(()’ E)’klf(o, E _vw);pl,g)
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leo

=| [1 ~R(®.(0, E), (0, E - w), p,, €)]*

- [1 = R(k,(0,E),k{(0,E ~w), -p,€)] 2. (5.6)
Note that

lim My, <p? asp ~0. (5.7

pL =0

Therefore the general features of the profiles for
the U= p, coupling of Sec. III B2 are expected to
apply to this case.

In Fig. 13 we show calculated inelastic energy
profiles for various loss energies. The profiles
correspond to P=9’'=45° and 6=0'=15° with “pla-
nar” renormalization of the elastic vertex [i.e., in
Egs. (2.3) and (2. 4) we have taken {— 7]. The elas-
tic energy profile is shown in the panel to the rear
of Fig. 13. The intensity of the inelastically dif-
fracted beam is on the order of 1% of the intensity
of the elastically diffracted beam. This should be
well within the range of experimental observation.
The elastic peak at about 70 eV is a suitable feature
of the elastic profile that shows the doublet forma-
tion in the inelastic energy profile. The members
of the inelastic doublet move further apart with in-
creasing loss energy. There is no hint of the for-
mation of the four-peaked sideband-diffraction
structure in the energy profile. This is due to both
multiple-scattering effects and plasmon damping.
We only see one member of the inelastic doublet
corresponding to the low-energy elastic peak at
about 20 eV. This is because of the low-energy
cutoff effect for non-normal beams as mentioned
in Sec. IIIC. This cutoff occurs because the p?
necessary to put the inelastic beam at §’=15° has
such a large magnitude that the Lorentzian of Eq.
(5. 4) has no strength.

Inelastic angular profiles for bulk-plasmon emis-
sion are shown in Fig. 14 for a loss energy of 18
eV. Note the formation of the sideband-diffraction
doublet structure as the incident beam energy moves
over peak positions in the inelastic energy profile.
For purposes of comparison, the inelastic energy
profile is shown for 6'=15° in the insert in the
lower right-hand portion of the figure. The exper-
imental observation of the change in the profile
from a singlet to doublet and then back to a singlet
with changing incident beam energy would constitute
a verification of the sideband-diffraction phenomena.

Although we have taken into account some intra-
layer multiple-scattering effects at the elastic ver-
tex, there are the further interlayer multiple-scat-
tering renormalizations that can be made.'® 2 It is
worthwhile to consider how this additional multiple
scattering might affect the inelastic angular profiles
and in particular how it affects the features due to
sideband diffraction. To check this we make a fur-
ther renormalization. Prior to the layer sum lead-
ing to Eq. (2.1) we replace ¢ with 7°° where
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T =141, 20 G™ 1y (5.8)
ME

is the second-order perturbation-theory approxi-
mation® to T,. In performing the layer sum we

only consider the case where both the Ath and the
A'th planes are below the plane where the energy
loss takes place. The results of this calculation
for the angular profiles are shown in Fig. 15. In

general the features of the profiles are qualitatively

the same as in Fig. 14, although there is a quanti-
tative change in some cases. We expect that the
further multiple-scattering renormalization makes
little additional change in the qualitative shape of

the profiles®” and hence the general features of side-

band diffraction remain observable.
C. Surface-Plasmon Emission

The effective loss vertex for surface-plasmon
emission is' 17
155 K, p)= (e 1w, Q%/p)" 26, _ip, 6Om =11
(5.9)

where Q is the volume of a unit cell and p,, is a
cutoff wave vector. This leads to the following ex-
pression for the differential-scattering cross sec-
tion:
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FIG. 14. Calculated inelastic angular profiles for the
(00) beam from A1(100) for bulk-plasmon emission. The
parameters used in the calculation are the same as for
Fig. 13. The insert of the lower right shows an inelastic
energy profile and the insert on the upper left illustrates
the plasmon dispersion curve and the plasmon damping
parameter.
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FIG. 15. Calculated inelastic angular profiles for
the (00) beam from Al(100) for bulk-plasmon emission.
The parameters used in the calculation are the same as
for Fig. 14 except that the second-order scattering amp-
litude (T5°) has been used instead of the layer amplitude
(1) as described below Eq. (5. 8) in the text.

x| Ay(g, D), B, ) +A,(g, i}, B, w)| %0 (pm - p7) .
(5.10)
In Eq. (5.10) the damping parameter is given by'®
I'(p,)=1.28p, eV; the dispersion relation is given
by'® hw(p,)=(11.1+5.2p,) eV; with p, being ex-
pressed in A-', The envelope function My, is given

by*
Msn(k_!. (0’ E)) k.!.’(os E - W), ipl?)
= |1~ R, (0, E),k/(0,E —w), ip?, €)| 72, (5.11)

where p{= Ipl | and p! is given by Eq. (3.3a). For
the case of surface plasmons all integrals can be
done analytically even in the presence of plasmon
damping. Finally, we recall that whereas Eq.
(5.9) recovers the well-known results of Stern and
Ferrell!” # for plane-wave electrons, in our cellu-
lar model the integration is in effect carried out
only over the interior of the solid. Therefore Egs.
(5.10) and (5.11) do not correspond directly to the
usual plane-wave results!” # because we have used
renormalized electron propagators inside the solid
and have neglected the coupling of the surface plas-
mon to the bare electron outside the solid. This
neglect changes the magnitude of the surface-plas-
mon emission process, but not its qualitative line
shape.. Both the size and detailed line shape of the
inelastic cross section depend sensitively on the in-
cident electron’s wave function in the immediate

* vicinity of the diffuse electron cloud at the solid

surface. As we do not know the wave function of
the electron in this region, it seems to us most
sensible at this stage in the development of the
model to treat only the interaction inside the solid
(in a fashion parallel to our analysis of bulk excita-
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FIG. 16. Calculated inelastic angular profiles for the
(00) beam from Al(100) for surface-plasmon emission.
Layer elastic-scattering amplitudes (t) have been used
to describe the elastic vertex. The profiles are for
0 =15°, =y’ =45°, and the parameters of Fig. 12. The
insert on the lower right shows an inelastic energy profile
taken at 6’/=12°. The insert on the upper left illustrates
the plasmon dispersion curve and the plasmon damping
parameter.

tions) and simply note that in detail (but not in qual-
itative outline) our predictions may differ from those
of a more extensive calculation by factors of order
unity.

In Fig. 16 we show calculated inelastic angular
profiles for surface-plasmon emission for the case
of electrons diffracting from A1(100). We have used
the “planar” renormalization of the elastic vertex.
In the presence of damping, the two spikes discussed
in Sec. IV broaden into peaks having a finite width.
Unlike the case of bulk-plasmon emission, the angu-
lar profiles always show a doublet structure. The
positions of the doublet peaks are determined by the
Lorentzian in Eq. (5.10). The envelope function
Mg, exhibits no resonant behavior. The over-all
size of each member of the doublet is determined
largely by Mg, for a given E and w. The choice of
cutoff momentum p,, has little effect on the profiles
provided that it is large enough to include the peak
positions. It merely indicates how far the low-in-
tensity ends of the angular profile extend.

Because of the large qualitative difference in line
shapes evident between Figs. 14 and 16, inelastic
electron diffraction shows promise as a spectro-
scopic tool for identification of the type of excita-
tion involved in the energy-loss procedure.

VI. SUMMARY AND CONCLUSIONS

In this paper we have investigated the predictions
of the two-step diffraction model of inelastic dif-
fraction.'™® We noted that an inelastic-diffraction
experiment could be specified by the energy and
angles of the incident beam, the angles of the dif-
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fracted beam and the amount of energy lost by the
electrons during the scattering process. We de-
fined intensity profiles where only one of these pa-
rameters was varied at a time and presented the
results of numerical calculations for these profiles.
We investigated the effect of different couplings
between the beam electrons and electronic ele-
mentary excitations of the solid. We found that

the inelastic energy profiles are rather insensitive
to the particular form of the coupling used, but that
the inelastic angular profiles can be quite sensitive
to the nature of this coupling.

In general two peaks occur in the inelastic energy
profile for each peak in the elastic energy profile.
This is a general consequence of the two-step
model of inelastic diffraction and the relevant
conservation laws

E=w+E', (6.1)

1'{'":1'{’(' +§|| _g' (6.2)
Under certain circumstances we found that for a
bulk excitation these two peaks could split into
four peaks due to the “accidental” conservation of
the component of momentum perpendicular to the
surface

Rek, = Re[k/ +p, -G, |, (6.3)

where G, is a reciprocal-lattice vector for motion
normal to the surface. We called this effect side-
band diffraction. However, for realistic values
of the excitation dispersion relation and the ex-
citation lifetime, multiple-scattering effects would
make its observation in the energy profiles highly
unlikely.

Our examination of the inelastic angular pro-
files revealed that sideband diffraction produces
a characteristic doublet structure for beam en-
ergies near peak positions in the inelastic energy
profiles. We concluded that it should be possible
to observe this effect experimentally, even in the
presence of multiple-scattering effects, a realis-
tic “flat” dispersion curve, and excitation life-

time effects.
We then considered surface excitations and noted

that they do not produce a sideband-diffraction ef-
fect. We found that the inelastic angular profiles
for surface plasmons should be quite different from
those for bulk plasmons. Hence, at least in the
case of plasmon excitation, it should be possible

to use inelastic electron diffraction to determine
the nature of the elementary excitation involved in
the loss process.

Finally, we presented the results of semiquan-
titative calculations of the inelastic profiles for
bulk- and surface-plasmon emission from Al1(100).
We could do this for Al because it is a nearly free-
electron metal so we could use the sharp-junction
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semi-infinite jellium model to obtain values for the
electron-plasmon interaction, !’ the plasmon damp-
ing, '*~¢ and the plasmon dispersion.!® We used
experimental elastic scattering data® to determine
all adjustable electron-lattice and electron-electron
interaction parameters in the calculation. We cur-
rently are undertaking more accurate calculations
for Al using higher partial waves and taking into
account the effects of lattice vibrations.®’? If we
can predict accurately the inelastic scattering data
for Al, we will turn to the transition metals and at-
tempt to identify the various energy-loss mecha-
nisms in these materials.

Note added in proof. Porteus and Faith® recently
observed inelastic diffraction angular profiles from
Al(111) and found remarkably good agreement with
the predictions of our highly simplified model cal-
culations. In particular they studied the angular
profiles associated with an elastic Bragg peak at
an energy of ~ 50 eV and found both the surface-
plasmon doublet at a loss energy of 13 eV and
what may be the sideband-diffraction structure

I1... 3213
associated with bulk plasmons at a loss energy of
15 eV. Evidently the theoretical free-electron
dispersion relations!? that we used in this paper
have higher p =0 values than those experimentally
found. No structure was observed in the experi~
mental profiles for a loss energy of 18 eV. Pre-
sumably this is due to the greatly reduced coupling
strength as the loss energy increases (see Fig. 13).
We are now engaged in analyzing their experimental
data in an attempt to determine the actual surface
plasmon dispersion relation for Al.
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