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Following the definition of the model Hamiltonian, a quantum field theory of inelastic elec-
tron scattering from a single-crystal solid is formulated. The interaction of the incident elec-
tron with the ion cores is described by the rigid-ion model. The electron-plasmon interaction
is described using the random-phase-approximation analysis for jellium. The excitation of
both surface and bulk modes is considered explicitly. The electron propagators are renormal-
ized via the electron-electron interactions. Attention is focused on relating diffraction phenom-
ena in the elastic electron-lattice scattering to the differential inelastic cross section. The
"surface" conservation laws of energy and momentum parallel to the surface are a consequence
of our model of the solid. The vestige of momeritum conservation normal to the surface causes
a new diffraction phenomenon, "sideband diffraction, " in the case of the excitation of a bulk-
loss mode. This phenomenon should be observable experimentally in the inelastic angular pro-
files associated with the excitation of bulk plasmons. The general features of both one-step
and two-step inelastic diffraction are described in the simplest (kinematical) approximation.
The qualitative features associated with the model predictions for the two-step process are in
agreement with experimental measurements of differential inelastic cross sections.

I. INTRODUCTION

It has been recognized since the discovery' of
low energy -electron diffraction (LEED) that dif-
fraction phenomena in elastic-scattering channels
exert a major influence on the inelastic cross sec-
tions for discrete energy losses in the range
1& so& 30 eV. Although this result presumably is
valid for all loss energies m, at high values of
gg & 30 eV, multiple low-energy losses obscure the
observation of discrete losses. In the case of low

values of m& 1 eV, the energy resolution ~ of
most existing spectrometers does not permit the
measurement of discrete losses, i.e, , ~-0.5 eV.
Experimental studies of inelastic scattering in the
discrete-loss regime have led to the identification
of a two-step mechanism as the relevant scattering
process' and to a heuristic analysis of this pro-
cess. '

Although only two model calculations have been
given for the two-step process as suchv& ' a substan-
tial body of theoretical literature has been assem-
bled on the general topic of inelastic particle-solid
scattering. The vast majority of this literature
deals with the analysis of particIe-solid scattering
using the Born approximation (i. e. , linear-response
theory) and plane-wave initial and final eigenstates
for the scattered particle. " The application of
this method to describe inelastic electron-solid
scattering has been made for phonon excitation, '~ "
magnon excitation, '

~
"bulk-plasmon excitation, '

and surface-plasmon excitation. The simplest
extension of this analysis which permits a descrip-
tion of the influence of elastic diffraction on the in-
elastic cross sections is the distorted-wave Born

approximation ' (DWBA) in which eigenstates of the
(static) crystal potential rather than plane waves
are used for the initial and final states of the scat-
tered particle. This method has been used exten-
sively in analyses of the anomolous penetration of
x rays, neutrons, ' and high-energy electrons'
in solids. Formal applications have been given to
phonon-emission and surface -plasmon-emission
inelastic processes, but the actual calculations in
both cases were confined to the Born approximation
in the absence of the (periodic) lattice potential.
The only detailed calculation which could be clas-
sified as "using" the D%BA method is one by McHae
and Jennings ' of the cross section for a hypothetical
zero-energy loss process in an ideal monatomic
cubic crystal.

The next level of description above the D%BA is
a quantum field theory of electron-solid scattering
in which renormalization processes and the coupling
of elastic and inelastic channels is included. The
use of this type of theory is required by the over-
whelming importance of the inelastic processes on

determining the elastic-scattering cross sections
in most of the energy range of LEED. Although
several formal analyses of this type have been pre-
sented, ' ' only two actual calculations based on
such a method have been performed. Vy ' In this
paper we describe the theory underlying these cal-
culations. Our analysis also augments the (formal)
theoretical literature by virtue of being the first
systematic quantum field theory of inelastic elec-
tron diffraction in which (i) the electron-electron-
interaction-induced renormalization of both the
electron propagators and the elastic electron-lat-
tice-interaction vertices is considered explicitly,
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and (ii) the surface conservation laws (energy and
momentum parallel to the surface) are incorporated
as an integral part of both the elastic- and inelas-
tic-interaction vertices. In addition, we estimate
the various vertex and renormalization diagrams,
retain those which are relevant for discrete losses
1& m & 30 eV by medium-energy electrons 50 & E

eV, and calculate cross sections for both
surface- and bulk-plasmon emission. The elec-
tron-diffraction conditions are shown to lead to the
prediction of a new phenomenon, sideband diffrac-
tion, in the inelastic cross sections associated
with the excitation of bulk modes of the solid. The
cross sections associated with the excitation of
surface modes are shown to be dominated by the
effects of instrumental resolution and the damping
of the surface modes.

In retrospect, it is evident that the major man-
ifestations in the inelastic-scattering cross sec-
tions of diffraction phenomena in the elastic-scat-
tering cross sections are the occurrence of com-
plementary energy-tuned and momentum-tuned
(sideband-diffraction) resonances. The energy-
tuned resonances are characteristic of two-step
processes. For example, if a resonance occurs
at an incident-beam energy E~ in the elastic cross
section, it is expected to occur in the inelastic
cross section at incident-beam energy E~ if diffrac-
tion occurs before loss' and at energy E~+u if a
loss sv occurs prior to diffraction. & These energy-
tuned resonances are described extensively in the
literature on experimental studies of inelastic dif-
fraction. ' ' The momentum-tuned sideband-dif-
fraction resonances are general consequences of
the vestiges of quasimomentum conservation in
scattering from periodic but strongly dissipative
media. They occur when the component of momen-
tum perpendicular to the surface is "conserved"
(modulo a reciprocal-lattice vector for motion nor-
mal to the surface) independent of the Bragg reso-
nance condition at the elastic vertex. Therefore,
one of their primary manifestations is maxima in
the inelastic cross sections for fixed primary-beam
energy E and loss energy M) for directions of the
scattered beam relatively far removed for the spec-
ular direction. In a kinematical model these max-
ima may be identified by the dependence of their
location on E and zv. »

In this paper, we construct a simple model of
inelastic diffraction via the excitation of boson
electronic loss modes simultaneously with the
elastic diffraction from a rigid lattice. The model
Hamiltonian is described in Sec. II. In Sec. III
we specify our diagrammatic perturbation theory
for the cross sections, outline the various renor-
malization procedures, and estimate the vertex
corrections neglected in our renormalizations.
Low-energy loss processes for which se & ~ af-

feet the elastic (rather than the inelastic) cross
sections. An analysis of this topic has been pre-
sented elsewhere. ' Finally, in Sec. IV we eval-
uate the cross sections in the simple (i. e. , kine-
matical) limits of one- and two-step inelastic dif-
fraction. The paper concludes in Sec. V with a
summary and review of the observable consequences
of the kinematical approximations to the complete
theory. The results of detailed numerical calcula-
tions are presented in Paper II.

II. MODEL HAMILTONIAN

In this paper we are considering only inelastic
electron-solid scattering for energy losses I in
the discrete-loss range 1 & zp & 30 eV. A complete
analysis of this scattering requires simultaneous
consideration of the influence of electron-lattice,
electron-phonon, and electron-electron interac-
tions. ' Such analyses have reached an advanced
stage in describing the low -temperature properties
of bulk metals by virtue of their treatment of
electron-electron interactions via expansions about
the Fermi energy. '& ' A complete analysis of
LEED is complicated greatly by the failure of such
expansion methods. This failure causes large
modifications in both the electron propagators and
the electron-lattice vertices beyond those intro-
duced by the many-body-theory extensions ' of the
one-electron models of the low-temperature prop-
erties of solids. For example, we demonstrate in
Sec. III C that for electrons with large angles of
incidence, plasmon-exchange vertex corrections
to the independent -particle -model electron-lattice
interaction can be substantial for precisely the
same reasons that the plasmon-emission electron
lifetimes are short for electron excitation ener-
gies E near and above the plasmon emission thresh-
old E =S&p.

Confronted with such difficulties in achieving an
internally consistent yet tractable renormalized
field theory, we decided it wisest to begin by con-
structing anextension to inelastic scattering of the
phenomenological inelastic -collision model of
elastic scattering ' "and using this model to in-
vestigate the major features of inelastic diffrac-
tion. Therefore, we shall consider a model in
which an incident electron interacts linearly both
with a rigid lattice and with a continuous boson
field which describes the "discrete" electronic-
loss modes (e.g. , plasmons). The effects of the
incoherent inelastic collisions of the incident elec-
trons with the individual valence electrons in the
solid are simulated by propagator renormalization
via an energy-independent electron inelastic-colli-
sion mean free path ' (which is equivalent to the
use of a spatially uniform energy-dependent optical
potential'7}. The Hamiltonian is given by
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'RL + Uel+f + Vee. y (2. 1a)

B(n; k +q, k ) = e ' ' " t„(q, k ), (2. 1c)

Sk t.2 2

cycle + Z cf~cf B(n; k+ q, k),
Pl k~gqg

(2. lb)

scattering data and used empirically in predicting
the results of inelastic-scattering experiments.
For the purpose of numerical estimates in this pa-
per, we adopt the s-wave model

t„(q, k) =t„(E)= —h (e~""N' —1)/4vihm, (2. 2)

k= k„+ki,
U„= 5 cg,g cf, T(n; k+ q, k),

$, %, n

r(n;k+q, k) =e ""h(n;k+q, k),

(2. 1d)

(2. le)

G '(k, E) = E .-I2h /2m —Z(k, E),
G-'(k(E), E) =0 .

(2. 4)

(2. 5)

h(n;k', k)= g, e "'" t„(k', k, p)(b,'+b,-), (2. 1f)

R, = Z~h~(p) (blab;+-', ), (2. 1g)

2'
Vee ~ 2 cubi gcg+qcg' clf,

lr, , k', 4
(2. 1h)

In Eqs. (2. 1), R„„designates the rigid-lattice
Hamiltonian, U„ the electron-loss-mode interac-
tion, X& the loss-mode Hamiltonian, and V„ the
residual incoherent electron-electron interactions.
The cg are the electron-annihilation operators;
the b; are those of the boson loss modes; the
t„(k, q) are the individual elastic site-scattering
amplitudes for the ion cores at sites located at
R„ in the solid; the t„(k', k, p) are the electron-
loss-mode interaction vertices in the unit cell lo-
cated at R„, and the I'~(p) are the energies of these
loss modes as a function of their quasimomenta p.
Polarization indices for these modes'have been sup-
pressed. In the case of the low-order perturbation-
theory calculations presented in this paper, the only
renormalizations embodied in Eqs. (2. 1) are the
use of site-scattering amplitudes t„(q, k) obtained
from a screened pseudopotential" ' in the usual
way. ' If renormalizations due to lattice vibrations
are included, the t„(q, k) also would depend on the
temperature. '

The electron-electron interaction introduces
proper vertex corrections in addition to screening
and renormalization of the electron propagators.
These corrections are important in achieving a
precise theory of the low-temperature properties
of metals" and become larger and energy depen-
dent for energies and momenta of interest in LEED.
Using our model we can estimate the plasmon-pole
contributions to these vertex corrections and find
that they may become large. Therefore, in any
quantitative theory, an additional vertex renormal-
ization almost certainly will be necessary.

In addition to the problems associated with many-
body vertex corrections, it is not possible at the
present time to give a reliable treatment of the in-
fluence of the surface on the ion-core scattering
amplitudes. ' Therefore we adopt a phenom-
enological point of view 7' 38~ 44 in which the t„(q, k)
are parametrized from an analysis of the elastic-

The values of the momentum parallel to the surface
(k ~) and the total energy of the electron E are
taken to be those of the incident beam. ' " There-
fore k, (E) is determined from Eq. (2. 5) using
Z(k, E) appropriate for the electron-electron inter-
action. 4' The s-wave phase shifts 5„(E) are the
parameters describing the electron-ion-core scat-
tering. For purposes of obtaining numerical es-
timates we also use an empirical form" for
Z(k, E), i.e. ,

Z(k, E) = —V —iI'(E), (2.Ga)

and

@&a(p) =h~r + ~p

8&v,(p) =8'(u, +PP„,

(2. &)

(2. Sb)

respectively. However, these relations neglect
plasmon damping which is important in determining
the cross sections. To include this effect, it is
convenient to consider the loss-mode spectral den-
sity Af . .. g (n, m, &u) defined by

Af, .. . „-, (n, m, ~)= j"dte'"'

&( h (n, k4, ks, t) h(m, k2, k~, 0) )r, (2.9)

r(E) = (h'/m~„) t(2m/h') (E+ V)]"', (2.6b)

in which ~„-5A is, by definition, twice the elec-
tron-electron-interaction-induced inelastic-colli-
sion mean free path. ' It is approximately energy
independent" in the region of interest (E & 2h &q)

and is the second parameter describing the elastic-
scattering cross sections. The final parameter
describing the elastic scattering is the inner poten-
tial V. Although it is energy dependent, estima-
tions of it vary widely. ' ' For simplicity, we
use V= ((+Q) in which 0 is the Fermi energy and

P is the work function of the material.
The final definitions required for the specifica-

tions of the Hamiltonian are the loss-mode disper-
sion relations &(p) and their coupling vertices to
the electrons t„(k', k, p). For example, we could
consider bulk and surface plasmons for which the
dispersion relations are
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t„(k', k, p) = U(eV A ~ ), (2. ISa)

(ii) Coherent ("semi-infinite medium" ) coupling
to bulk excitations:

t„(k', k, p) =P, U'{eV A"i ) . (2. 14)

More realistic calculations for aluminum have

been based on jellium models for the electron-plas-
mon coupling and the plasmon-dispersion relations.
Three models have been studied in detail:

(iii) Incoherent ("bulk" ) coupling to bulk plas-
mons in je111QDl:

t„(k', k, p)= [2me'(h~, /P') n']"'e(P, -P), (2. 16)

k ~(p ) = K&y + &y P2, (2. 16a)

in which { ) r denotes the thermal average. Insert-
ing Eq. (2. 1f) into (2.9) gives (for bulk excitations)

Ap, p j",, p (n, m, &) = Z-y t„(k4, k~, p ) t„{k2,k~, p )

&&exp[ i-p (R —R„)]fV( ~)-2i ImD(p, ~), (2. 1,0)

1V(~) = [exp(h~ ja r) —1]-' . (2. 11)

The quantity D(p, ~) is the (retarded) propagato~
for the loss-mode excitation given by
(co- &u+i5, 5-0'),

d "(p, (u)= [8~-8~,(p)] ' —[5~+8~0(p)] '
(2. 12a)

for unrenormalized loss modes. When the interac-
tions between the loss modes and the valence elec-
trons are considered, the loss modes acquire a
renormalization in accordance with a set of Dyson's
equations. ' In keeping with our phenomenological
point of view, we shall use renormalized loss-mode
propagators of the form

D(p, ~) = [K~ -8'~(p)+ii'(p)] '

—[8'~+h~{p) +ii"(p)]-' . (2. 12b)

In Eq. (2.12b) both ~(p) and I'(p) are to be taken
from (independent) experimental measurements.
Any additional multiplicative factors occurring via
the theory of propagator renormalization" are to
be absorbed in the definition of phenomenological
vertex functions t„(k', k, p).

The spectral density A contains in a compact
form all of the information about both the electron-
loss-mode interaction [via the t„(k', k, p)] and the
loss-mode dispersion via &(p) and I'(p) in Eq.
(2. 12b)]. We have examined the influence of the
general form of the coupling constants and disper-
sion relations on the predicted cross sections by
use of two schematic models:

(I) Constant { bulk ) coupling 'to bulk excltatlons:

1(p) = I",+P, P', (2.16b)

In Eq. (2. 18) the + sign in the & function is de-
termined by the requirement that the sums in Eq.
(2. lf) converge for R~ measured relative to the
surface of the crystal. Note that in this case of
surface excitations we insert Eq. (2. 18) into Eq.
(2. 1f) prior to the construction of an equation anal-
ogous to Eq. (2. 10)

These three jellium models and the original two

schematic models complete the specification of the

Hamiltonian for those cases in which we have car-
ried out numerical calculations. The model also
describes some aspects of inelastic diffraction via
phonon emission. " We do not analyze this case in
detail due to the poor energy resolution of most
existing spectrometers.

III. PERTURBATION THEORY

A. Diagrammatic Prescription for the Cross Sections

A complete derivation of a diagrammatic pre-
scription for the differential inelastic electron-
solid cross sections has been given by Duke and

Laramore in the case of electron scattering from
a vibrating lattice. The model described in Sec. II
is an appropriate generalization of that case.
Therefore, we restate without derivation the suit-
ably generalized prescription in a notation appro-
priate for the present model.

To construct all'possible terms of nth order in

the interactions that contribute to the thermally
averaged differential scattering cross'section, we

use the following rules.
(R) DrRw two vertical lines, the one on the left

being directed upward and the one on the right being
directed downward. On these lines distribute s
crosses and m dots (s+m =n) with the restrictions
that at least one cross or dot must be on each line
and there must be an even number of dots. Label

in which 0 is the volume of a unit cell and p, is the
maximum plasmon wave number;

(iv) Coherent coupling to bulk plasmons in semi-
infinite jellium":

t„(k', k, p ) = -i [{me%~, /P ) 0']'~'sgng, ) e(P, -p) .
(2. 17)

The plasmon-dispersion relations are given by
Eqs. (2. 16).

(v) Coherent coupling to surface plasmons to
semi-infinite jellium:

f„(k', k, p) = [{~e'e~,/P„) n']"'&„,„,„8(P, —P„),
(2. 18)

(2. 19a)

{2.19b)
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each dot and each cross with a lattice-site index.
The time variable runs upward on both lines.

(b) Completely interior line segments in this
drawing (those connecting two dots and/or crosses)
represent electron propagators. The four exterior
line segments label the initial and final scattering
states of the incident electron. Label the incoming
line segments with momentum k& and energy E„and
the outgoing line segments with momentum k& and

energy E&.
(c) Label each of the interior line segments by

a momentum variable k and an energy variable E.
(d) Connect the dots in pairs with wavy lines

representing loss-mode propagators. Label each
wavy Line with a frequency variable &.

(e) Construct all topologically distinct diagrams
using the preceding instructions.

(f) With each cross on the left-hand line (the up-
ward-d1rected lille) RssoclRte R 1'61101'111Rlized elRB-
tic-scattering interaction vertex given by B (II; k„k,}
defllled by Eq. (2. 1C) in which s ls 'tile loll-sl'te
label, k& is the momentum incoming to the cross,
and ka is the momentum outgoing from the cross,
With a corresponding cross on the right-hand line
(the downward-directed line) associate B*(n;k„k,).
The quantity {k2—kl) denotes the momentum transfer
at the vertex.

(g) With a wavy line connecting two dots labeled
by n and m associate a factox

V (n, m, kl, k2, ke, k4, so)

= exp [- I (k, —k, ) ~ R„]exp [- I (k4 —kl) ~ R„]

XAI fI I I {s,51, &d)

The quantity A is defined by Eq. (2. 10) [or its gen-
eralization given via Eqs. (2. 18) and (2. 19) for
surface excitations] in which w =h&o. The dot
labeled by m has an incoming electron line labeled
by "1"and an outgoing line labeled by "2", If the
two dots are on the same electron line the dot la-
beled n is associated with the incoming electron
line "3" and outgoing line "4." If they are on dif-
ferent electron lines, the incoming line is labeled
by "4" and the outgoing one by "3." Note that for
the models described in Sec. II, A is independent
of tile Pkl, . . . , kg} subscr1pts.

(h) With each interior line segment in the left-
hand line, we associate a retarded electron propa-
gator Gs, given by Eq. (2. 4), and with each interior
line segment in the right-hand line we associate an
advanced electron propagator G„=G~. The energy
and momentum of the propagator are specified by
the labels on the line segment.

(i) With each dot and cross we associate energy-
conserving 6 functions

2II6 (El —Ep —6 ff&), 21I5 (El —Ea)

respectively, where E~ is the energy variable of the

The lowest-order contributions to the scattering
cross section arising from self-energy corrections
to a propagator line are shown in Fig. 1. It is con-
venient to represent their contribution to the (elas-
tic) scattering cross section as

c
d 0'

= [AR, BI+42,BI]5 {Eq E;)-(3. 2a)

27m8, = „I Qf„(E,)exp[-i (k&-k;) ~ R„]

2 tjpn
Al, = 1 ~ exp [-i (kl —kI) ~ R —i (kI - kl) ~ R„]

&& & Ii (p) I'exp[- ip {R.—R.)j G [«- @& (p)] .
(3. 2c)

In evaluating A„we noted that the vertex functions
t„(k', k, p) depend only on p for the models defined
in Sec. II. Hence we designate them by t(p). We
also used the undamped loss-mode propagator Eq.
(2. 12a) for simplicity.

In the limit that we formally consider the medium
to be uniform, the sums over R„and R give mo-
mentum 5 functions leading to

A2, = (21Im/}'I ) 5„,,„Z(kI, EI)

~(kI EI)=Q I'{p) I'G [«-@&{p)] .
(3.3a)

(3. 3b)

Except for a normalization factor of the unit- cell
volume, in the case of bulk plasmons [model (iii)],
the quantity Z (k„E;)is the usual plasmon-pole
contribution to the electronic self-energy" in the
limit that ',fI, —kz) &p,. The quantity k~= (3II n)'~

incoming electron propagator, Ez is the energy
variable of the outgoing electron propagator, & is
the frequency vaxiable for a, loss-mode line attached
to the dot, and 6 is +1 (- 1) if the loss-mode line
leaves (enters) the dot.

(I) Mllltlply the fRctol's associated with 6Rch diR-

gram by

(m /II ) (IkgI/IkI I) 5 (EI —EI-L„h&„) '

where the (d~ are the frequency variables of the loss-
mode propagators connecting dots on the left-hand
line to those on the right-hand line. Sum over all
energy and momentum labels fox the electron propa-
gators and all frequency variables labeling the loss-
mode propagators. Finally, sum over all site indi-
ces labeling the dots and crosses.

In concluding this description of the diagrammatic
prescription, we note that it contains vertex renor-
malizations associated with multiple electron scat-
tering in a single cell [see, e. g. , Eq. '(60) of Ref.
34] but does not contain the subplane renormaliza-
tion characteristic of the inelastic-collision model
of elastic LEED [see, e. g. , Eq. ('73) of Ref. 34].

B. PfopBg8tol' RcllOM18bzBtloB
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is the Fermi wave number. In deriving Eqs. (3. 3)
we neglected all umklapp processes resulting from
the lattice sums because we regard Eqs. (2. 1d)-
(2. If) as discrete representations of the electron
interactions with a, continuous long-wavelength
boson field.

A similar result also is obtained when the lattice
sums are perf ormed directly for the finite lattice
following the method of Duke, Anderson, and
Tucker. ' In the case of bulk excitations we proceed
via the following sequence of operations: (a) per-
form the sum over the components of R„and R
parallel to the surface; (b) integrate over d h, using
the 5 function on k„, resulting from step (a); (c)
sum over the components of R„and R normal to
the surface; and (d) integrate over d'p. Portions
of the last two steps are reversed for surface ex-
citations. If we neglect umklapp terms resulting
from step (a) and change the notation such that
k, - k and k&=k', then we obtain at the completion
of step (b)

2iim (2w), im
h A " " IA

—~ [k)) - p(), h. , E —h& (p)] = o (3.5)

and A is the surface area of a unit cell. Let us
consider the case of forward scattering in which
k' ~ R~, k ~ R~&0. If the lattice sums are per-
formed directly we obtain

d p It (p) I

(2ii)' h,[k„-p„, E —h&u (p)]

& Q exp[- i(k'- p) ~ R~+t(k- p) .R,
n, m

+ i ki [k„—p „, E —h(k) Ip) ] ~
R~ -R, } . (3. 4)

The quantity

hi [kll- pll, E - h&(p)1 -=hi(E, pll)

is the solution to the equation

E —h~(p) —h'(k, —p„)'/2m

2)im im (2ii) 5(k,', —k„) d p t(p) 1 1
k' ~K ( —n(k, -k,') (kw)' n k, (n, p) 1 —n[k, (n, p,„)+k,—k[] 1 — [(znk)-ko, +k, ],)

(3.6)

ft(h, ) =e'"",
k, k„+zk„, k„&0

(3. 7a)

(3. 7b)

in which d is the layer spacing, i. e. , the depth of
a unit cell. The fact that factors of (1 —R) ' occur
in Eq. (3. 6) is a direct consequence of our using
a lattice-periodic boson field rather than a con-
tinuous one. Another manifestation of the lattice
periodic field is the factor of the unit-cell volume
0 in the t(p) given by Eqs. (2. 15), (2. 17), and

(2. 18). The limit of a continuous field is achieved
by taking the d- 0 limit in Eq. (3. 6) and using the
result that dA = 0 to cancel the fl factor in It(p) I .
Thus t Ip)=tIp)/tI is independent of Q. Taking this
limit, we get

kf gEf

k)y E) kf, Ef

k
) v E

forward scattering. Indeed, setting k,'= k, inside
the integral over d p and using Eq. (3. 5) to convert
the quantity in braces into a factor of

Go (k- p, E —hler((p)) leads to

A
2iim z(2v) 5(k„—k„) ~ (k h E)k'- k 8 II& j.&l

(3. 9)

in which Zs(k„, h„E) is the bulk-single-boson (e. g. ,

plasmon ) exchange self-energy in which k„and E
are determined by the corresponding external

continuum ]in)it v ( ) 5 (kI) kn) p
~

$) ~

2

h h h' —h (2]i)' k( yE} I r k&, E&

1 1 1

k (nn) k.(n, i„.)+9, . k,' k.(n, u„) 9.+k.)-- kf yEf k(, E;

(3. 8)
k;, E) kf, Ef

To interpret Eq. (3. 8) we first note that when we

make a self-energy insertion in an intermediate
state of the form shown in Fig. 2, an extra integral
over d h' occurs. In this integral the (2ii) 5(k,', —k„)
gives forward scattering parallel to the plane of
the crystal and the (h,

' —h~)
' factor acts like the

function 2)ii5(h~ —h, ) in the integral over h,'. Thus

Eq. (3. 8) for the self-energy insertion does produce

(a)
FIG. 1. Diagram for the lowest-order loss-mode self-

energy contributions to the elastic-scattering cross sec-
tions. These contributions are the interference terms
between the Born amplitude for rigid-lattice scattering
and the amplitude for the diffuse, predominantly forward
scattering of the electron from virtual inelastic excitations
in a dissipative medium.
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kf, E

k], E;
k, E) ~~

k) k;, E;

E-
k, E; i

kf, Et:

Diagram for the lowest-order loss-mode self-
energy insertion, (b), in the intermediate state of a. con-
tribution to the rigid-lattice cross section, (a), which is
third order in the electron-ion-core scattering amplitude,

quantities and A', is the value projected out by the
(hz —h, )

' factor in an integral over dsh'. There-
fore Eq. (3. 9) is directly comparable to the formal
infinite-medium result given by Eqs. (S. 3).

Propagator renormalization via the use of Fig.
3 for the electron propagator is an immediate con-
sequence of Eq. (3.9). The (2zzm/h ) prefactor is
associated with a diagram of any order via steps
(i) and (j) in our prescription given in Sec. III A.
The quantity in large parentheses in Eq. (S.9)
removes the extra momeritum integral in iterated
versions of Fig. 3(b). Therefore we arrive at the
inelastic- collision-model result, postulated by
Duke and Tucker, ~ that in the case of bulk loss
modes we can replace "bare" Go propagators by

G =Gs(l —Gs Z) ' (3. 10)

The incorporation into the theory of propagator
renormalization associated with surface-plasmon
loss modes is more complicated because the self-
energy exhibits a logarithmic divergence for for-
ward scattering rather than one proportional to
(h,', -h„) '. The systematic use of a distorted wave
set of basis states seems required for a description
of these renormalization processes.

The lowest-order contributions to the (elastic)
scattering cxoss section which exhibit the form of
vertex corrections are indicated diagrammatically
in Fig. 4. Their contribution to the cross section
is of the form

de {4a)
= &(Ez —&t) [8s.»+&s.»)]dE dQ

27rm
Q exp[-z(ks-k, ).Rs]t„82

~l.4

(3. 1la)

x exp [- z (k&- ks —p) ~ Rs —z(k& —k&+ p) ~ R&]

xG (k„E,—hu&(p))G (ks, E, —h&u(p)) . (S. 11b)

We have used free-boson propagators [Eq. (2. 12a)]
for convenience and will take t„[E,-h~(p)] to be
independent of ns j.e. , to be t [E - )ztu(p)] j.

The evaluation of A.3, proceeds via the sequence
of steps described above Eq. (3. 4). The result
just prior to the integration over h«and hs, is (set-
ting kz =k, kt =-k')

In our present phenomenological model, impli-
citly we already are including propagator renor-
malizations in the propagator specificed by Eq.
(2.4). Evidently the complete renormalization pro-
cedure ' ' 3 involves using the full electron-elec-
tron-interaction-induced self-energy in Eqs. (2.4)
and (3.10) rather than just the plasmon-pole term
given by Eq. (3. Sb). As vertex renormalization
also occurs, one must solve a complete coupled
set of Dyson's equations for the renormalized ver-
tices and propagators: a task beyond the scope of
the present. analysis. Subsequently in this paper,
we consider all propagator xenormalizations to be
included by the use of Eqs. (2. 4)- (2. 6) for G (k, E).

C. Vertex Corrections

&s. = s & s &(klan-ku-g) s ~t(P)~'t[&-h&(p)]) "G(ks-ps, ha, &z-h&(p))

"6 '„-p((, k„,E-@~ exp -g '-k, -p .8„+,— +p R„+,-k, P,„e-"'3,
j s2s3

(3. 12)

in which a2 is the displacement of the central lattice
sitefor the Rs sum from its position inthetop (Rs=0)
layer. The strong maxima at forward scattering of
both plasmon vertices suggests the restriction Ry z,
A3, & A2„and leads to the result that the transition
from the incident to the gth scattered beam must oc-
cur at the lattice scattering associated with the H2

t

sum. This fact already is embodied in Eq. (3.12) in
which g is the external beam index as described by
Duke~ Anderson~ and Tucker. A descrlphon of the
procedure for carrying out the sums over the JR,.}
when g4 0 is given in Appendix A. Proceeding by
first performing the 4, ; integrals and subsequently
the sums over R„R„and R, (in that order) gives
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A„=, g (2)])'5(k,', —k„—g)(l —exp[i[(k,'+ k, ) d —g ~ a]])-'

m i ' ' d'])) t(f&)
' t[E -8(u(p)]

O' J (2)T)' 2 1 —exp(i[(lp, +$,')d -g ~ a]]
1 1

) —exp[)[P, P,'-P, )d —a')) e] ) —exp[a[P,'+P, +P, )d-ag aa) (3.13a)

u„-=u, [k, -p„,E -~~(p)], (3.13b)

5,'-=I, [k„'-p„Z-e~(p)] . (3.13c)

In Eqs. (3.13) k, (k „E)is given by Eq. (3.5).
To estimate the quantity di„we consider the g= 0

case. As noted in Appendix A, the continuum na-
ture of the loss-mode field introduces no additional
simplification in Eq. (3. 13) due to the backscatter-
ing nature of the elastic scattering from the lattice
in the "intermediate" state (see, e. g. , Fig. 4).
If we neglect the E dependence of t(E), we can re-
write Eq. (3.13) as

(3.14a)

d'I ~f(P) ~'

(2v)' 1 -exp&i[(j, +a,')d]]

1 1
) —exp [a(P, Pl -p, )d] ) —exp[)[P,'ap, p )d])'

(3. 14b)

Noting that for parameters of interest (i. e. , E
= 100 eV, nonglancing incidence),

u„k,'»p„p„; Z»h~(p),

we can write

tions. Not only can these corrections be substantial
(see also Refs. 35 and 36), but we have demon-
strated above that they may depend on the beam pa-
rameters E and 8 for values of these parameters
of interest in I EED.

IV. QUALITATIVE FEATURES OF LOW-ORDER
PERTURBATION THEORY

A. Single-Step Diffraction (Born Approximation)

Single-step elastic diffraction is associated with

the contribution to the cross section indicated in

Fig. 5 but calculated using renormalized propaga-
tors and electron-lattice interaction vertices.
%ithin the spirit of our phenomenological approach,
we do not consider explicitly the vertex corrections
and incorporate propagator renormalization via our
use of Eqs. (2.4)-(2. 7) together with

[a„(g, Z)+au„, (g, Z)]'=I'(Z) -(k„+g)' (4. 1)

to determine the internal wave vector of the elec-
tron in terms of its external beam parameters E
and k„. -In terms of this model the contribution to
the cross section associated with the diagram shown

in Fig. 5 (the "kinematical" approximation) is

I I -e~[f(I, +u,') d]]', ~,
~
t(p)

~

'. (3.15)

If we further neglect the exponential factors in the
strong-damping limit, we obtain

F„-2(4ve'p, ) 8 [d, (mA/g')(md'/5'), (3.16)

which is a quantity of order unity or larger. In

addition, Eqs. (3. 14) and (3.15) indicate that the
vertex correction depends on the beam parameters
due to the lattice-diffraction resonances. Con-
sequently, the vertex corrections may be large and

may exhibit resonances at certain values of the
beam parameters.

In conclusion, it seems relevant to recall that
the vertex correction calculated above is the plas-
mon-pole contribution to the electron-electron-in-
teraction vertex correction. This contribution
occurs in addition to those estimated in the low-
energy case, ' associated with. incoherent parti-
cle-hole excitations. Authors 0' ' often allege that
they use "realistic" electron-ion interactions de-
spite their neglect of both kinds of vertex correc-

(4. 2)

In Eq. (4. 2) B, is defined by Eq. (3.2b). For iden-
tical ion-core-scattering factors, it becomes the
well-known resu. lt

2&~i(Z) (2v)'
Bik„,g, Z =

x5(k' —k„-g) [1 —f~(k„, g, E)] ',
(4. 3a)

B(k„,g, Z) =exp(i[(a, (0, Z)+k, (g, Z))d —g a.]],
(4. 3b)

in which k, (g, E) is defined via Eq. (4. 1). Equa-
tions (4. 3) predictbroadenedmaxima in the intensity

FIG. 3. Diagrammatic version of Dyson's equation for
the renormalization of the electron propagator due to the
electron's interaction with the loss modes alone.
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k)~Ef k„E;

k;, E;

{a3

kf, Ef

kf p Ef

FIG. 4. Diagram for the low&est-order loss-mode ver-
tex corrections to the Born approximation to the elastic-
scattering cross section.

&(k', k, p)=(Zvm/a )& „i„(p)exp[-i(k'-k-p) R„] .
(4. 5b)

Because the consequences of Eqs. (4. 5) depend on
the case under consideration, we consider its appli-
cation to describe the emission of surface plas-
mons, incoherently excited bulk plasmons, and
coherently excited bulk plasmons in turn.

In the case of surface plasmons, we recall that
the p integrations in Eqs. (4. 5) are interpreted as
an integral only over p„with p, =+ ip„. [See Eqs.
(2. 18) and (2. 19).] We obtain for w» gT in the
continuum limit as defined in Appendix A,

profiles at the "kinematical" Bragg energies de-
termined by the solutions to

k„(0, E)+k„(g, Z) =2m'/d+g ~ a/d (4. 4)

for the scattered beam labeled by g. The presence
of intralayer multiple scattering causes appreciable
effects on these cross sections only at energies
E ~ 50 eV for short inelastic-collision mean free
paths (y 5A') 27, 29, 1,44

The analogous Born-approximation expression
for the inelastic scattering is obtained from the
diagram shown in Fig. 6 to be

collision damping causes k, to be complex. The
loss-mode lif ctime-'broadened energy-conservation
g function causes a conelike distribution of inelas-
tically scattered electrons about the specular direc-
tion for energetically permitted transitions I'((t, (0)
& s(& @(d,(p, ). In particular, the maximum ampli-
tude f the el3st c-scatte g e oss se t ons oc-
curs for values of k,', such that

~k,', -k„~ =p„(~),

1(o, [ p„(zo)]=a .
(4. 7a)

(4. 71)

d g F —$0 2gt86(g& 2gtg 8 0 dp~
dZ dn, „, z h' h' A, 2&

21"(k'„-k„,p, )
+P J. [~ @(d (ktl kill Pi)] + F (kll ktll P J)

In deriving Eq. (4. 7b) we presume, of course, the
emission of only a single loss-mode 'quantum.

Equation (4.6) also predicts a maximum inthe cross
section for forward scatter lng: 0'g = kg» kii= kiI. How-
ever, this equation is derived by calculating the
sum over R„ in Eq. (4. 5) only for R„,&0. Such a
pl escl iption 18 RppropriRte solely for bulk excltR-
tions. For plane-wave (i. e. , undamped) electrons,
we can add to Eq. (4. 6) the contributions from the
sum over R„,&0. The resulting expression for
(d a/dE dQ) is obtained by multiplying Eq. (4. 6) by

4[k,', -k„~'/[(u,', —I„)'+ (k,', -k„)']
and setting k~= k,z= 0. It gives the well-known re-
sult~' for the probability of surface-plasmon emis-
sion by high-energy electrons (E& 10' eV). The
problems inherent in adding the contributions for
A„,& 0 to those for 8„,&0 in the case of damped ex-
citations inside the solid (i. e. , the case for which
the inelastic-collision model orignally was formu-
lated to describe3') are discussed further in connec-
tion with Eq. (4. 16).

In the ease of incoherent coupling to bulk plas-
mons [Eqs. (2. 15) and (2. 16)] we obtain from Eqs.
(4. 5)

1
(k'„—t,„)' (tkl —k„(+tl, +t:„P)

2I (Ikl 'kt(I )
~kI) kll ~ + ~ kII kl( I

(4. 6)

1 R(k„k'„P,) -1 R(kj, k(,, —P()-
(4. 8a)

R(k„k,', p, )-=exp[i(k, —k,'+p, ) ~ 3] . (4. 8b)

We have not taken the continuum limit (although
umklapp processes in k„have been neglected be-
cause we expect p « I gI).

As expected, the cross sections are largest near the
forward. direction (k„'-k„, k„-k»). However, the
cross section is nonzero even in the specular re-
flection geometry (k,', = -k„), because the inelastic- k, E =E

FIG. 5. Diagram for
the Born approximation
for the elastic-scattering
cross section
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Equations (4. 8) illustrate a new feature of in-
elastic reflection spectroscopy from a lattice-
periodic loss-mode spectrum: sideband diffrac-
tion. This phenomenon is predicted in the reflec-
tion geometry k,', ~ d = —k,',d because the factors of

~ (1 —R)~ in Eqs. (4. 8) exhibit maxima when

k„+kI1+ pi = 2vs/d . (4 9)

In a given experiment, the detector angle and final-
state energy determine k' and hence

p(i = &~') —k(i (4. 10a)

is determined uniquely. However, energy conser-
vation [in the I'- 0 limit] relates the specified loss
energy co to the energy of the excitation k+(p). As
p, ~

is determined by Eq. (4. 10a) the energy-conser-
vation condition determines p, via

~ = k(o [ p„, p„(zv, p„)] . (4. 10b)

In fact, in the I'- 0 limit, the P, integral in Eq.
(4. 8a) is replaced by the density of states

(4. 11)

d'0 '" F. -~ '~'2pm@&, 2~me'A
dEdA, b~ E A, h

&c dp, 1 2I"
2 1'k,', -k„I +P, [e) —k(u(k, ', —k„,P„)] + I"

~1f(k„', -k„P,)'+ (k„+k,', )']-'
+ [(k&1 k» + Pi) + (k»+ kJ2) ] (4. 12)

In the absence of the inelastic-collision damping of
the electrons (i. e. , k»-0), the sideband-diffrac-
tion maxima at (k„—k» +P, ) = 0 become forward-
scattering momentum-conservation 5 functions,

k, E'= E-MI

k, E'= E-4

FIG. 6. Diagram for
the Born approximation
for the loss-mode-as-
sisted inelastic-scatter-
ing cross section. This
diagram designates the
process of "single-step"
inelastic diffraction.

Therefore momentum conservation normal to the
surface is not a selection rule determining the
quantum numbers of the internal beam. Its vestiges
in this ease are the two sideband-diffraction reso-
nances in the cross section for s = 0 in Eq. (4. 9).
These are most easily observed by varying the
angle of the detector while holding all the other
beam parameters fixed. ~

The relationship between sideband diffraction and
momentum conservation is even more obvious in
the continuum limit which leads to (Appendix A):

in a fashion similar to that described in
I. ~ L J.

Sec. III 8. However, Eq. (4. 12) predicts some in-
elastic scattering even in the ease of reflection
geometry. In this case, k,'1 &Oin Eq. (4. 12) and

0, and k,
' are determined by the experimental ex-

ternal beam parameters k „Eand k'„E', respec-
tively. These contributions to the cross sections
are of the same order of magnitude as the diffuse
back-scattering self -energy coritributions to the
elastic cross sections (Sec. IIIB). Therefore,
they usually are small near normal incidence rela-
tive to the elastic lattice-assisted back scattering.
This fact renders it unlikely that the contributions
to the cross sections associated with the diagrams
shown in Fig. 6 can be distinguished from the dif-
fuse background in observed reflection-geometry
inelastic cross sections. Indeed, this analysis ex-
plains why two-step rather than one-step diffrac-
tion is observed in reflection-geometry experi-
ments.

The final topic of interest in this section is the
distinction between coherent and incoherent coupling
of the incident electron to the loss-mode boson field.
The microscopic origin of this difference in coupling
is the boundary condition at the surface satisfied by
the loss-mode field. '"" In the case of bulk plas-
mons, the requirement that the electrostatic field
of the plasmon vanish outside the medium is the
cause of the factor sgn(p, )/2i in Eq. (2. 17). This
factor requires that the contributions to the cross
section for p~ &0 add coherently to those for P, & 0
rather than incoherently as in Eqs. (4. 8) and (4. 12).
The analog of Eq. (4. 8a) in this case is given by

(
d'o "' Z-w "' 2mmh~, mme'n'

dEdQ, & E h h A

dp, 1 2l
J 2v ~g„' g„~ +p, [w -h&(k, ', —k„,p, )] +I'

&&
~

[1 -R(k„k,', P, )]-' —[I -R(k„k,', -P, )]-'~ ',
(4. iS)

where R(k„k,', p, ) is given by Eq. (4.8b). The
most significant distinction between Eqs. (4. 13) and

(4. 8) occurs in the limit that p, - 0. In this case
the quantity in large parentheses under the p, inte-
gral in Eq. (4. 8a) becomes approximately constant
whereas the analogous quantity in Eq. (4. 13) van-
ishes linearly in P, . This is the result that led us
to define the schematic models (i) and (ii) in Sec.
II. Model (i) simulates incoherent coupling and
model (ii) coherent coupling. We shall find in the
final (fourth) paper" of this series" '4 "that the
form of the electron-loss-mode coupling exerts a
substantial influence on the inelastic angular inten-
sity profiles predicted by the model.
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k, E-W

k, , EI

k, E =E-W

(a)

(c)

I
ski, EI

k, E

kl, E-W

k, E-W

k', E-W

(b)
k, E-W

x[ A3„(k', k, p, E)+Ay(k', k, p, E —w) ],
(4.14a,)

d3I3
A33(k k p E)

~ ( )3
A (k kg p)

xG(ki, E)Ti(kq, k, E), (4.14b)

Tq(k, k, E) =Z„B(m; k', k)

=Z t (E) exp[-i(k' —k) R„], (4. 14c)

A(k', k, p) =(2am/h )Z„t„(p)

xexp[ —i(k' —k —p) ~ R„], (4. 5b)
FIG. 7. Four diagrams which contribute to the inelas-

tic cross sections associated with "two-step" inelastic
diffraction: (a) the physical process of diffraction prior
to loss; (b) the process of loss prior to diffraction, ' (c)-
(d) interference processes associated with the coherent
nature of the two types of contributions to inelastic diffrac-
tion.

B. Two-Step Inelastic Diffraction

Two-step inelastic diffraction is the term which
has been used' 7 to label the contributions to the
inelastic differential cross section associated with
electron-scattering processes in which the incident
electron once scatters from the rigid lattice and
once undergoes an inelastic collision involving a
discrete energy loss. The fact that a scattering
from the rigid lattice is involved in the processes
implies that fine structure in the elastic-electron-
scattering cross sections will be reflected in the
inelastic cross sections. In its usual form, ' this
concept is kinematical in nature with both the elastic
and inelastic vertices being single-scattering
events. Therefore, it is the direct analog in an in-
elastic channels of the double-diffraction approxi-
mation in the elastic channel. ' Although several ex-
tensions of this concept to include multiple scatter-
ing in each of the elastic and inelastic events sepa-
rately can be made easily, "~"for clarity we confine
our attention here to the double-scattering limit. It
is the simplest approximation in which we achieve
our objective, noted in the Introduction, of assessing
the influence of elastic diffraction on the inelastic
cross sections. Experimentally, the existence of a
strong influence of this nature has been amply docu-
mented. '

The four diagrams describing the possible fourth-
order inelastic-scattering processes which include
a rigid-lattice scattering in each propagator line
are illustrated in Fig. V. After some manipulation,
the sum of their contributions to the cross section
may be written as

d0' E —K f dp
dEdp E ( )3 [-2 iN(- w)Im D(p, w)]

~ d'u
A3, (k', k, p, E —w)=)

( )3
T(k', kq, E —w)

xG( k„E—~)A(k„k, p) . (4. 14d)

xZ
l
1 —R(k, (0, E), k,'(0, E —w), ip„„

1
xl»(g E)+A.(g, Z —w)I' ~k, ', —k„

2I'( k,', —k„-g )
[w g~(k, ', -k„-g)]3+r3(k,', -k„

g)l.
'

-g) '

(4. 16a)

Comments in experimental papers notwithstand-
ing, the amplitudes for the "diffraction before loss"
(A3, ) and "loss before diffraction" (A3, ) processes
are added coherently because they connect the same
initial and final states. If we take se» xT and use
the free loss-mode propagator, Eg. (2. 12a), then

—Ziti( —w) Im D(p, w) ~ 2a 5(w - Ii(u( p )) . (4. 15)

In this limit our formalism reduces to that of the
conventional quantum field theory. ' Therefore the
cross sections may be specified by the bremsstrah-
lung diagrams for A» and A2, directly, a notation
which was used by Duke, Laramore, and Metze in
their analysis of two-step inelastic diffraction pre-
dicted by model (i) in Sec. II.

Our next task is the specification of A» and A2,
in the various special cases. As usual, we consider
eases in which t„(E) and t„(p) are indep, endent of n
(i.e. , identical scattering layers for both the elastic
and inelastic vertices). The analysis proceeds as
indicated above Eq. (3.4). Our only restriction'~
on the sums over the loss-vertex sites (labeled by
n) and the elastic vertex sites (labeled by m) is that
because of the forward-scattering nature of the loss
processes, the loss must occur closer to the surface
than the elastic event, i.e. , R, —R„,. The final
result for the surface-plasmon case in the zv» ~T
limit is given by"

(4)d20 g ~ 1/2 27Tmk(d ffL Fe 2g2

dEdQ, ~ F. h2 h A
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R (k,', k„p„g ) = exp [i(k, + k,'+ p, )d —i g a ], (4. 16b)

mit(E) 1

k'Ak, (g, E) 1-R[k,(0, E), k, (g, E), g] '

(4. 16c)

R(k,', k„g) =exp[i(k,'+k, )d —i g ~ a, ], (4. 16d)

mit(E w)—
k Ak'( — E — )

x , - -- , . (4. 16e)
1 —R[k,'( —g, E —w), k,'(0, E —w), g]

The k, ( g, E) are defined by Eq. (4. 1). Comparison
of the single-diffraction expression [Eq. (4. 6)] with
Eq. (4. 1) reveals that the only difference between
the two expressions is the factor of g; IA~(g)
+A, (g)1 . Near maxima, in A, and A, this extra
term can become quite large, making the two-step
diffraction dominate the single-step diffraction.
Furthermore the single-step diffraction exhibits no
structure related to similar structure in the elastic

channel. However, Ab(g) mirrors structure in the
elastic intensity profile at the energy F., at which it
occurs. The quantity A, (g) mirrors this structure
at the higher energy E= (Es+w). Therefore experi-
mental correlation of structure at E~ in the elastic
intensity profile with similar structure at both E~
and F&+zv in the inelastic profiles constitutes
prima facie evidence that the two-step diffraction
process dominates the single-step process. This
remark is true for both bulk- and surface-loss-
mode excitations. However, a distinguishing char-
acteristic of surface plasmons, evident in both Eqs.
(4. 6) and (4. 16), is the appearance of a local mini-
mum in the inelastic cross sections in the specular
direction because of the conelike distribution of the
inelastically scattered electrons as discussed in
Sec. IVA.

Essentially identical results describe two-step
inelastic diffraction via the excitation of a bulk-loss
mode. If zo»~T, the cross sections associated
with the sum of the diagrams shown in Fig. 7 are
given by

~M[k, (0, E), k,'(o, E-w), p. , g)]l»(g, E)+A.(g, E-w)l'. (4. 17a.}

Thy quantity lA&+A. , l is identical to that occurring
in Eq. (4. 16a) and reflects structure in the elastic-
scattering cross sections. The factor M(k„k,', p„g)
depends on the incoherent or coherent nature of the
electron-plasmon vertex. It is given by

M;„,(k„k,', P„g ) = 2(~ 1 -R(k~, k,', P~, g )

+~1 —R(k„k,', —p„g) -'},
(4. 17b)

M,~,(k„k,', p„g)=
~

[1 —R(k„k,', p„g )] '

—[1-R(k„k,', -P„g)] '~'

(4. 17c)
in the two cases, respectively. The function
R(k„k,', p„g) is defined by Eq. (4. 16b).

A set of remarks parallel to those made below

Eqs. (4. 16) apply to Eqs. (4. 17). The one- and

two-step cross sections are identical except for
the extra factor of lA&+ A, I in the two-step case.
Sideband diffraction occurs in the case of bulk-loss
modes because of the M(k„k,', P„g) factors. For
small values of P~, M,» approaches a constant
whereas M,~bc' p, . Therefore, as in the surface-
plasmon case, the single- and two-step inela, stic-
diffraction angular intensity profiles (fixed incident
beam parameters, varying final angles, fixed loss
energy) are similar in structure. However, their

energy intensity profiles {fixed angles, varying in-
cident beam energy, fixed loss energy) are quite
different because of the modulating factor lA, +A, l

in the two-step expressions.

V. SUMMARY AND CONCLUSIONS

In Sec. II of this paper we constructed a model
description of the interaction of an electron incident
on a solid with both the (rigid) lattice potential and

various loss modes characteristic of the solid. In

Sec. III we specified a diagrammatic method for
calculating the electron-solid scattering cross sec-
tions. This method was applied to demonstrate that
propagator renormalization associated with bulk-
loss modes leads simply and directly to the in-
elastic-collision model of Duke and Tucker. 7 Ver-
tex corrections due to loss-mode exchange process-
es were estimated. They seem to be substantial
for back-scattered electrons and, in addition, de-
pend sensitively on both the incident beam energy and

angle. From this result we infer that their neglect
in any quantitative theory is a serious omission.
However, in our phenomenological model we for-
mally can incorporate them into empirically de-
termined renormalized vertex functions.

Presuming that we could construct suitably re-
normalized vertices and propagators, we evaluated
in Sec. IV both the single- and two-step inelastic-
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scattering cross sections for a discrete energy loss
1~M ~30 eV. Our major conclusion is that although
they both exhibit comparable orders of magnitude,
only the two-step process is modulated as a function
of incident beam energy F. in resonance with similar
modulations of the elastic intensity profiles. In
particular, this resonance occurs both at the energy
E and at E+ se. As such a relation between the
modulations of the elastic and inelastic cross sec-
tions is observed experimentally, ' it is evident
that in such cases two-step inelastic diffraction
dominates single-step inelastic diffraction near
maxima in the cross sections (i.e. , the Born ap-
proximation is manifestly inadequate to describe
inelastic electron-solid scattering).

The appropriate conservation laws to describe
both elastic- and inelastic-scattering processes are
those of energy and the component of momentum
parallel to the planar face of the single-crystal sol-
id. The vestiges of conservation of momentum
normal to the surface lead only to sideband-diffrac-
tion resonances in the angular intensity profiles, for
the excitation of bulk loss modes. These conserva-
tion laws are built into our model, and its predic-
tions seem to be in accord with experimental data.

In Sec. IV we derived and discussed several fea-
tures of the predicted cross sections which could
lead to the experimental distinction between bulk
and surface loss modes and between various types
of electron-bulk-loss-mode coupling. As these fea-
tures depend on the values of the model parameters,
their discussion is deferred until the following pa-
per'4 in which we evaluate the two-step inelastic-
electron-scattering cross sections from W(100) and
Al(100) using the various models constructed in Sec.
II. Our current work is devoted to as precise as
possible a test of the model in the (most-favorable)
case of aluminum. If the model provides an ade-
quate interpretation of experimental data in this test
case, we intend to apply it to describe scattering
from other materials (most notably Ag and W) for
which the identification of the various mechanisms
for inelastic electron diffraction is uncertain.
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APPENMX

In the text of this paper we have several occa-
sions to perform multiple sums over lattice posi-
tions normal to the surface. In general, these
sums contain lattice-site indices associated with
both electron-ion-core interactions and electron-
loss-mode interactions. As written in Sec. II, the
electron-loss-mode interactions exhibit the period-

icity of the lattice. In this case, we use a conven-
ient device to perform nested sums over a loss-
mode index p& and an ion-core index p2. Note that
if a is the shift in the position of the central cell
from one layer to the next, then for most simple
crystal faces [e.g. , all low-index faces of cubic
crystals but not the (0001) face of hexagonal crys-
tals], (n+1) a= 0, , where n is the number of layers
between identical layers and R„ is a lattice vector
parallel to the surface. Thus, for example, a typi-
cal double sum over layers for the (100) face of an
fcc or bcc lattice takes the form

S,=d E exp[ik', dv, ] 2 exp[ik, dv, -ig a,]
vg= 0 v~= v~

xe p[ik~ v, —,~], (AI)

in which a& is the shift in the location of the central
unit cell for the layer indexed by p2. In the case of
the (100) face, we can write an= v2a because
g p2a= 2m if pa is even. Thus S, can be evaluated
by inserting a factor of 1=exp[iv, g a] exp[-iv, g a]
giving

S,=d 5 exp[i[(k,'+k, )d —g a]v,)
vy= 0

x Z exp(i[(k, + k) d —g a]y)
V=0

Sq = Z '"'" exp[i(k', —k)x] dx

x Z e px[i( k+ )kd pv-ig a2]
Vg= Vy

exp[i(k', —k) d] —1 1
i(k'„- k) 1 —exp[i [(k', + k, ) d —g a]]

x (1 —exp(i[(k, + k) d - g a]])-' . . (AS)

Note that we take the continuum limit of the p, sum
prior to performing the p2 sum. Otherwise the fac-
tor —kx in the integral in (AS) would be replaced by
k,x. Such a replacement would require that the net
phase of the "central-cell structure factor, " given
by the quantity in bold parentheses in Eq. (A3),

= d(1 —exp(i[(k', + k,) d —g a]]) '

x(1 —exp(i[(k, + k) d —g a]]) ' . (A2)

Equation (A2) is not directly useful for evaluating
the limit in which the boson field is regarded as
being characteristic of a uniform medium rather
than a periodic solid. In this case we must replace
S, with its precise definition. [We included the d
factor from 0 = unit-cell volume = Ad in the coupling
constants given by Eqs. (2. 15), (2. 17), and (2. 18)
in the definition of S,.] This definition is obtained
from (Al) to be
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is determined by sums over cell-periodic functions.
As such a requirement is evidently incorrect, our
ordering of the operations of integration and sum-
mation is unique.

The structure factor in Eq. (A3) occurs in our
model only for continuum loss-mode vertices. It
llas 'tile effec't of Illlll'tlplylllg the f„(k k p) 111 Eqs.
(2. 13a), (2. 14), (2. 15), and (2. 17) by the structure
factor

(„-, -„) Bzp[i(k, —al-p, )d] —
1) ( )i(k, —k', -p, )d

However, as at the loss vertices we already have
noted that only forward scattering occurs, i.e. ,
(k'„+p, —k, )«d ', we see that E„:1for t-he param-
eters of interest in our calculation. Consequently
we have neglected such structure factors in Sec. II.

Finally, the continuum limit is obtained by ne-
glecting the cell-periodic nature of the solid. For

example~ lI1 'this 111111't tile vI sll111 ill Eq. (A3) is coI1-
verted to an integral by taking d- 0. This prescrip-
tion gives [k', +k, ] in lieu of the product of the first
two factors on the right-hand side of Eq. (A3). The
only sensible definition of this limit seems to be via
systematically setting d 0 in (A3) because of the
indeterminacy of the upper limit on the va sum in
any other prescription. Practically speaking, the
"continuum" nature of the loss-mode fields has the
consequence of justifying power-series expansions
of exponentials in forward-scattering diagrams
(e. g. , F,-l}, but exerting negligible effect on
back-scattering diagrams because in actual situa-
tions the k, (g, E) are never small relative to d '.
Stated alternatively, a complete d-0 continuum
limit eliminates the ability of the lattice periodic
potential to cause back-scattering "umklapp" elec-
tronic transitions. Therefore, the application of
this limit to estimate back-scattering factors from
the v, sums in Eq. (A3) has no meaning.
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