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The measurement by Verwey. and Haayman of the variation of the transition temperature
of magnetite with stoichiometry is discussed in terms of the molecular-field solution of a
1attice-gas model of the Mott-Wigner insulator-to-metal transition. This model gives rise
to a second-order phase transition. The observed first-order transition is reproduced by
substituting a phenomenologica11y screened interaction, in which the dielectric constant
causing the screening decreases with increasing order parameter. .Since the phenomenolog-
ical screening necessary to produce the observed results is very large compared to that ex-
pected on the basis of electronic screening, we postulate that the dielectric constant includes
the effect of local charge polarization accompanying the orderimg. It is possible to obtain a
consistent picture of many of the experimental data on magnetite using this model. Inelastic
neutron scattering and. optica1 absorption are discussed as means of observing the elementary
excitations of the system and to deduce some of the parameters in the theory. The low-lying
excitations in the ordered (i. e. , insulating) state are shown to be excitons with flat disper-
sion (i. e. , their energies do not depend on wave vector); their energies and cross sections
are ca1culated.

I. INTRODUCTiON

It.was suggested by Mott'~ that the insulating
state of magnetite could be described by a signer
electron lattice, ' and the insulator-to-metal tran-
sition as a melting of this lattice. Objection was
raised to this picture by Rosencwaig' because it
predicted an increase in the transition temperature
as the number of electrons in the system is de-
creased, instead of the decrease that is actually
observed. ' In Secs. II and III, the insulator-to-
metal transition in magnetite is described using a
lattice-gas model, which is similar to the molecu-
lar-field solution of the Ising model of antiferro-
magnetism. The model is found to agree qualita-
tively with the results of Verwey and Haayman on
the variation of transition temperature with stoichi-
ometry. The introduction of a phenomenological
interaction which varies rapidly with the number
ot' free carriers in the system (and hence with the
order parameter) makes it possible to reproduce
the observed first-order transition. The behavior
of the specific heat and conductivity near the tran-
sition temperature is discussed in terms of this
effective-interaction version of the lattice-gas
model. In Sec. IV, the elementary excitation
spectrum, as well as the inelastic-neutron- scattering

and infrared-optical-absorption cross sections, is
found. The low-lying excitations are found to be
excitons with flat wave-vector -independent bands,
and their energy spectrum is calculated. Measure-
ment of the exciton energies would make, it possible
to deduce some of the parameters in the theory of
Secs. II and III.

This model is similar to a model introduced by
Cullen and Callen to describe magnetite in that
both models introduce a temperature-dependent
order parameter to describe the phase transition.
Cullen and Callen's model is a Hartree-Fock-ap-
proximation energy-band model. The present mod-
el leaves out all discussion of details of the elec-
tronic energy states, since it is not known as yet
whether band theory or small-polaron hopping is
a better description of magnetite. The band the-
oretic description of the problem of Ref. 6 is in-
troduced in Sec. III, however, to describe the pres-
sure dependence of the transition temperature.
The treatment presented here shows how the de-
pendence of transition temperature on stoichiometry
can be explained using an electron-lattice model.
With the phenomenological interaction introduced
later, the model is shown to allow a simple and
consistent interpretation of much of the experi-
mental data on magnetite using a few simple param-
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eters. These are the main contributions of this
paper.

In the spinel-lattice structure of magnetite, there
are two types of lattice sites containing metallic
ions, sites with octahedral and sites with tetra-
hedral bonding. ~' In magnetite, all the tetrahe-
dral sites and half of the octahedral sites are oc-
cupied by Fe' ions, and the remainder of the octa-
hedral sites are occupied by Fe' ions. Below the
transition temperature, the Fe' and Fe' ions on
the octahedral sites are ordered in alternate rows
which are perpendicular to each other and perpen-
dicular to the c axis. That is, as we move along
the c axis we encounter alternate planes of rows
of Fe' and Fe' ions &' which are perpendicular.
This is illustrated in Fig. 1. Above the transition
temperature, these two ions are randomly dis-
tributed over the lattice of octahedral sites. It is
generally accepted that it is the- motion of the extra
electron which resides on the Fe' ions (making
them Fe' rather than Fe' ions) which gives rise
to the electrical conductivity. Magnetite is a fer-
rimagnet; all its octahedral sites have their spin
pointing in one direction and all the tetrahedral
sites in the opposite direction. Thus, the net
magnetization is due to the Fe' ions alone. Since
the Neel temperature is around 800 'K, near the
Mott-Wigner transition temperature of 119 'K, the
spins are just about completely ordered. We will,
therefore, assume throughout this discussion that
the octahedral sites all have their atomic spins
pointed in the same direction. Therefore, to con-
sider the charge ordering of the octahedral-site
ions (i.e. , of the extra electrons), it is sufficient
to consider the motion of spinless extra electrons
over the octahedral sites only. (They are spinless
because they are constrained to have the same
spin. ) The remaining 3d electrons on the octahe-
dral sites have spins opposite that of the extra
electron, and hence, need not be considered in our
dis cusslon.

II. LATTICE-GAS MODEL OF MOTT-SIGNER
TRANSITION

We begin the discussion with the typical lattice-
gas model based on the Ising-model Hamiltonian

&=-'. Z J(R,. -R,.) ~, ~, , (1)
ij

where b, ; takes on the values + 1 and J(R, —R;) is
the interaction between electrons on sites i and j.
Here, 4; = 2n& —1, where n, is the number of extra
electrons on site i. Then, 6&=+1 means that site
i is occupied by an extra electron (i.e. , is an Fe'~
site), and b, = —1 means that site i is not occupied
by an extra electron (i.e. , is an Fe" site). The
sum over i and j is taken over octahedral sites
only. We neglect kinetic energy or hopping energy
in this model. We will see, later that this is not a

FIG. I. Octahedral sites in magnetite. t, This figure
is copied from W. C. Hamilton, Phys. Rev. 110, 1050
(1958), with the permission of the author. ] Large balls
represent Fe ions and the small balls represent re+
ions.

bad approximation, as experiments indicate that
the interaction is probably much greater than the
kinetic or hopping energy.

In the molecular-field approximation, Eg. (1) is
replaced by

& =Z J(Rg Rg)M)bg ——Z (H+H e'@ ')Aq, (2)

where M& is the thermal average of 6&. Here we
have included a field H and a staggered field H'.
(Wave vector Q is along the c axis and has magni-
tude v/c, where c is the spacing along the c axis
between adjacent planes of octahedral sites. ) Let
us look for' a solution for M& of the form

M~ ——M +M' e (3

i.e. , M& takes on values -', (M sM') on alternate
planes of octahedral sites as we move along the
c axis. With this assumption, Eq. (2) becomes

R'= [J(0)M —J(g)M' -H H'jZ $ 6;-
+ [J'(0)M +J(Q)M' H+H'])~', 6,„,-(4)

where —J(Q) is the Fourier transform of J(R), the
prime on the summation means that i is only
summed over octahedral planes of Fe' sites, and
i+a signifies that i has been translated to an ad-
jacent plane of Fe' sites. The partition function
is found from Eq. (4) to be

Z= Tre =(coshtt[J'(0)M -J(Q)M' -H H']-
&coshP [J(0)M+J(g)M' H+H']] 2 . —
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Using

KT ~ lnZ

KT 8 lngM'=— a -v =0

and setting H = -Z(0)M+H, we find

M' =-,'ftanhP[J'(|)))M' +H ]+tanhP[ J(Q)M' H] }-,

(6a)

1 1

1 e"-"'&- »
1

1+e'"" -» Z(k) '

(6)

where k is summed over the reduced Brillouin zone
introduced in Ref. 6 and where

E(k) =(-,'[&(k) —c(k+ Q)]'+Z(Q) M "Pi',
where c(k) is the one-electron energy and I&. is the
chemical potential. In the limit e(k)/Z(Q)- 0, Eq.
(9) reduces to Eq. (Ga) if we identify I&, with H .
Since in the model of Cullen and Callen, the aver-
age number of electrons per lattice site n is given

by

1 1 1
K E (f') &J) 8 LE (k)-X g 1+e 1+e

we obtain Eq. (6b) from Eq. (10) in the same strong
interaction limit. Th&((s, the model of Ref. 6 re-

M =-', ftanhp[Z(Q)M'+H„]-tanhp f(Q)M' H]&f-,

(6b)

where M' is the order parameter, the difference
between the mean number of extra electrons on
alternate rows per lattice site, M is twice the dif-
ference between the mean total number of electrons
per site and 0. 5 (the value when there is perfect
stoichiometry), and H acts as a chemical poten-
tial. For 8 equal to zero, M is equal to zero,
and M' is nonzero for temperatures below T, ,
where

aT,'=~(Q) .
When T reaches this temperature from below, the
electron lattice will "melt. " The quantity M is a
"stoichiometry parameter, " giving the percentage
difference in number of electrons in the system
from, perfect stoichiometry. The M equal to zero
case corresponds to perfect stoichiometry (i.e. ,
half as many extra electrons as sites).

Let us now compare the lattice-gas model with
the model of Ref. 6. In the Hartree-Fock band
model of Cullen and Callen, the self-consistency
condition for the order parameter M' is given in
our notation by

duces to the one-dimensional lattice-gas model in
this limit. One advantage of the lattice-gas model
is that it has the same simple form in three dimen-
sions as it has in one. This is because it can be
easily seen that the parameter J(Q) is the same
on all octahedral sites since it is, within a sign,
the electrostatic potential seen by an extra electron
on an octahedral site. This electrostatic potential
has only the two values s Z(g) on Fe'~ a,nd Fe'2

sites, as seen from the lattice structure (see Ref.
V). Callen and Cullen have extended their band

model to three dimensions. In three dimensions,
because there are four octahedral-site atoms per
unit cell, one must consider four bands. A second
advantage of the lattice-gas model is that we need
not specify whether band motion or small-polaron
hopping is the correct description of the electronic
states. The simplicity of the lattice-gas model
makes it a suitable starting point for a phenomeno-
logical theory, which is able to tie together much
of the experimental data on the metal-insulator
transition in magnetite.

We may obtain T, as a function of M by solving
Eqs. (6a) and (6b) simultaneously, choosing H

such that M remains constant as a function of T.
When this is done, T, (the temperature above which
M' vanishes) is found to be given by

T, = T, (1-M ) for ~M~ «I (11)

(to second order in IM I). Thus T, decreases with

decreasing stoichiometry (i.e. , with increasing
IM I) although the decrease is nowhere near as

great as that observed experimentally. ' Since T,
decreases with lM i, whether the number of elec-
trons in the system is increased or decreased, we
find that the lattice-gas model removes Rosen-
cwaig's objection' to the Mott-Wigner model. T,
does decrease as the number of electrons is de-
creased. The physical reason for the decrease in

T, with decreasing stoichiometry is that added
electrons fill in the sites on the Fe' ion rows and

added holes fill in sites in Fe' rows, thus reducing
the magnitude of the staggered molecular field
[i.e. , Z(Q)M'], which is what holds the system in
the ordered state.

When the system is completely ordered (i.e. ,
M' = 1) and M = 0 there can be no conduction by
octahedral-site electrons because they are con-
strained to be in alternate-filled rows of octahedral
sites. As M' decreases, however, the alternate
rows of octahedral sites are neither completely or-
dered nor completely filled, and thus the system
can conduct electricity. Ther efore, as T approaches
T„the conductivity should increase roughly as
1 —M'. The increase is, however, not as rapid as
observed experimentally. ' %'her eas the lattice-gas
model gives a second-order phase transition, the
transition in magnetic occurring at 120' is actually
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first order. ' Since the lattice-gas model does not
give the observed first-order transition and since
the decrease of T, with |M l given by the lattice-
gas model is nowhere near as great as the ob-
served decrease, ' it is necessary to modify our
original model. There are two important effects
which we have left out of our model which could
account for the discrepancy, the screening of the
interaction by free carriers and local polarization
of nonoctahedral-site ions (particularly oxygen)
around the ordered octahedral-site ions. Screening
effects of free carriers can be accounted for by
dividing the effective interaction J(g) by a dielectric
constant z(Q) which increases with increasing num-
ber of free carriers, i.e. , with 1-M'. Such a
dielectric constant could result in a first-order
transition. ' Because of the magnitude of the screen-
ing necessary to explain the observed discontinuity
in order parameter at T„however, it is quite
likely that it is mainly the polarization of nonocta-
hedral-site ions that accounts for the sharpness of
the first-order transition.

Nonoctahedral-site ions can be both displaced,
rigidly and polarized. The gap or excitation en-
ergy E~ = Z(Q)M' (i. e. , the energy required to ex-
cite an electron from a site in an Fe' row to a
site in an Fe'~ row) is essentially a mean elec-
trical potential difference between octahedral sites
in Fe' and Fe' rows as seenby an extra electron.
Then, if d is the spacing between two adjacent ions
in Fe' and Fe' rows, E~/d is the average elec-
tric field between them. For simplicity, we will
treat the charge density between these two atoms
as a polarizable continuous medium.
Then,

Then,

2n 4m~ e (i6)

(16)

where D is a constant )1 and Vo is the gap energy
at T=O. This form is not unique; there are many
other forms that would be equally suitable for in-
terpreting experiments, but this one is simple and

has few parameters to be fit. We will take this

E, to replace J(Q)M' in Eq. (6). We can think of
this as a substitution of an effective "dielectric
constant" in Eq. (6), so that J'(Q) is replaced by

For E~o close to (but less than) 1/4o.', the rate of
change of E, with E«, and hence M', can be very
large. This contribution to the gap energy due to
local distortion or polarization is similar to that
considered by Adler and Brooks in their discus-
sion of the metal-to-insulator transition. In their
model, the lattice distortion alone gives rise to the

phase transition, whereas in the model presented
here the local lattice distortion or polarization is
triggered by the Coulomb interaction.

In order to take into account the effect of both this
local lattice polarization and screening effects of
free carriers on the phase transition we mill con-
sider Eq. (6) with a gap energy that changes rapid-
ly with M'. Since we do not know the precise form
of the function g(E,) in Eq. (13), we will choose a
simple form for E~ as a function of M' having few

parameters, such that E~ increases very rapidly
with M' near M'= 1. We will choose the following

form for simplicity

E,/d=Ego/d +f(p), (12)

Eg =E,0+g(Eg),

where g(E~)=f(p) d since p=p(E, /d). Here we have
used the fact that p is a function of the average
electric field. The gap can be a fairly nonlinear
function of p because the oxygen atomic wave func-
tions vary quite nonlinearly with distance from the
nucleus of the atom. " Thus, a small displacement
of the oxygen electronic charge can cause a large
change in the potential difference between Fe' and
Fe' sites. This is found to be so in calculating
potentials for doing energy-band calculations.
This leads to nonlinear dependence of E, on M'.
For example, let

E =E 0+a (i4)

where f(p) is an unknown function of the polarization,
P is the polarization of the medium, and E,o is the
'gap in the absence of polarization, which is pro-
portional to M'. Then,

where the dielectric constant v@) is given by

M'= tanhx,

where

&= CM'/(D -M'),

(i8a)

(18b)

where

C=PV (D —1) . (18c)

~(Q) = -D

screening due to free carriers were partly re-
sponsible for the first-order transition, it too
would be accounted for phenomenologically by e(Q)
since v(Q) used here increases with increasing
number of free carriers.

If M is taken equal to zero, Eqs. (8) and (17)
may be solved simultaneously to find M' as a func-
tion of temperature. When M=0, Eq. (6) becomes
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X=D x+c

I.O
M =tanh x

0,5

FIG. 2. Method of finding M'

as a function of temperature is
i11ustrated here. In this figure,
D=1.5 and C=-1. Point of inter-
section of the two curves with the
highest value of ~' is the value
of M'for that temperature (i. e. ,
for that value of C). (~' and x
are dimensionless. )

0
0 l,0 2,0 3.0

If we solve Eq. (18b) for M', we obtain

M'=Dx/(x+C) . (19)

Now let us use the phenomenological theory of
Sec. II to interpret some experimental data.

Since the free energy in the screened molecular-
field theory depends only on the order parameter
M', a discontinuous change in M' results in a dis-

To find M' as a function of temperature, we simply
plot Eqs. (18a) and (19) as a function of x and look
for points of intersection of the two curves, for
various values of C (see Fig. 2). In ordinary molecu-
lar-field theory I which we obtain by erasing x in the de-
nominator of Eq. (19)], Eq. (19)isastraightline and

thus intersects Eq. (18a) at only two points. ' In
the case considered here, Eq. (19) bends over and
intersects Eq. (18a) at three points. We take the
solution with the largest value of M', as it will
give the lowest free energy. Above a certain tem-
perature (i. e. , below a certain value of C), the
curves only intersect at M' = 0. Since just below
this temperature M' is nonzero, the transition is
first order, as predicted by Mott' and as observed
experimentally' for magnetite. The simultaneous
solution of Eqs. (18a) and (19) is illustrated in Fig.
1. As D gets closer to 1, the discontinuity of M'
at the transition becomes greater, approaching 1
as D approaches 1 from above. Conversely, as D
increases, the discontinuity in M' decreases. For
large D it is possible to find the transition tempera-
ture analytically by expanding Eqs. (18a) and (19)
to third order in x and solving the resulting cubic
equation.

III. INTERPRETATION OF EXPERIMENTAL RESULTS

tanhx + tanhy
tanh x+y =

I + tanhxtanhy '

we obtain

1-P2 1- 2 2 1 1/2
tanhpH~ = —

2 p
+

2M g +
2M@. 2M', p

where we take the plus sign for M & 0 and the minus
sign for M &0, and where p, =tanhPZ». Substituting
in Eq. (Ga), again using the identity for tanh(x+ y),
we find

] —tanh2PII
~ 1 p

2 tanh2B' (2Ob)

and hence, when tMt is increased from 0 to 0. 01
(corresponding to a 1% change in number of Fe~
ions), Eq. (18a) should be replaced by

continuous change in the free energy, or a sharp
peak in the specific heat. A sharp peak in the
specific heat of magnetite at the transition tempera-
ture is observed experimentally. '4

When a small number of holes is added by doping

Fe304 with Fe,03, the decrease of T, with increasing
number of excess carriers is found to be much
greater than predicted by Eq. (11).' Let us now

see if the effect of local lattice distortion and free-
carriers screening, which are phenomenologically
treated by Eqs. (18) and (19), will result in the

sharp decrease of T, with decreasing stoichiometry
observed experimentally. ' We use Eq. (6a) or (6b)
with J (Q) M' replaced by E, given by Eq. (16). Solv-
ing a quadratic equation for tanhPH„as a function
of M, which is obtained by applying the well-known
identity for tanh(x+ y) to Eq. (6b),
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D [x/(x+ C)] = tanhx (21a)

D [ C/( x+ C)'] = sech'x . (21b)

Although AD (the perturbation in M' due to M being
nonzero) depends on x, the dependence is small
when M' is close to 1 and, therefore, we need not
differentiate bD with respect to x in Eq. (21b).
Taking differentials and setting dD = AD, we obtain

[ D —(x+ C) sech x —tanhx] dx —tanhx dC = —xaD,
(22a)

(2DCcoshxsinhx —2x- 2C) dx

+ ( D cosh x —2C —2x) dC = —C coshmxaD . (22b)

Taking the values D=1.04, C =0.05, and g=2. 65,
which give the observed jump of M' by a factor of
100 at T = T„weobtain~

dT,/T, = —dC/C = —246D = —24(0. 004) = —0. 10 .

(23)

This equation gives a change of 10% in T, for a 1%
increase in the number of electrons or holes over
the stoichiometric ratio (i. e., for M=0. 01). These
results are of the correct order of magnitude as
the experimental results of Ref. 5». The T, vs
IML curve is also found to be concave downwards
as in Ref. 5.

As pointed out by Cullen and Callen, if the order
is not complete, the ordered state would correspond
to a semimetallic rather than Bn insulating state.
This occurs essentially because if the order is not
complete, there are many carriers in the "wrong"
rows of octahedral sites which are free to move up
and down these rows, Bnd thus which need not
overcome the activation energy needed to get a car-
rier from one of the ordered rows to the next in or-

M' = (1 —0. 004) tanhx .

As expected, it is found from Eqs. (20a) and (20b)
that M' is a function of I M1, and hence is the same
whether a given I M l corresponds to an increase in
the number of electrons or a decrease below the
number corresponding to perfect stoichiometry.
Since a solution of Eqs. (18) and (19) will now occur
when

Dx/(x+ C) = (1 —0. 004) tanhx,

we may take the effect of nonzero M into account by
replacing D by D+b,D, where AD=0. 004D=0. 004
(since D will be close to 1 in this calculation).

The effect on T, of adding carriers to the system
will now be calculated by adding M=0. 004 to D in
Eq. (19). For any T ~ T„the values of M' given by
Eqs. (18a) and (19) are equal. At T, their slopes
are also equal. Then

der to conduct. If this were the case, however,
near the transition temperature there would be
greater conductivity perpendicular to the C axis
(i. e., along the ordered rows) than along the C axis,
which is exactly opposite to what is actually found. "
Since the conductivity below T, is always greatest
along the C axis, the system must be nearly com-
pletely ordered below the transition temperature,
even near T,. If the system is nearly completely
ordered below T„it could turn out that the conduc-
tivity due to tunneling of carriers from a rom of Fe'
ions to a rom of Fe' ions could be larger than the
conductivity due to the few free carriers that al-
ready exist in "wrong rows" below T,. This could
give the observed result that the conductivity is
greater along the C axis than perpendicular to it. '
Therefore, the transition must be quite sharp. If
the electrical conductivity is assumed to be propor-
tional to 1-M', Calhoun's data" indicate that M
must drop to zero from a value which is close to
99% of its zero-temperature value since the con-
ductivity jumps by a factor of 100 at the transition
temperature.

We will now look at the pressure dependence of
. the transition temperature. In order to discuss the
dependence of T, on pressure, it is necessary to
include the electron kinetic or band energy. There-
fore, the lattice-gas model that we have been using
is not appropriate here. Hence, we will now use
the one-dimensional energy-band model of Cullen
and -Callen. 6 To accomplish this, we will expand
Eq. (8) to first order in the ratio of bandwidth to
Z(Q) at T =0 with p, =0 (this corresponds to M=0).
We find

(24)

Here, we will set J (Q) equal to 8, of Eq. (16) eval-
uated at M' =1, its zero-temperature value. Pres-
sure will increase the bandwidth by increasing in-
teratomic overlap, and since the electron-electron
interaction is usually not increased substantially by
pressure, we see from Eq. (24) that pressure leads
to a reduction in M' and thus an increase in con-
ductivity. Since M' is reduced at T = 0 by pressure,
it is reasonable to assume that the transition tem-
perature should be reduced, Bs is found experi-
mentally. ' Since the functional dependence of the
bandwidth on pressure is not known, we will not
proceed with a quantitative discussion of this effect.
It should be noted, however, from Eq. (23), that
because of the effective dielectric constant intro-
duced here, a small reduction in M' caused by pres-
sure, which, as was shown, is effectively accounted
for by increasing D, can lead to a reduction in T,
20 times larger.

The choice of E, in Eq. (16) is certainly not
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In this section me discuss the use of optical ab-
sorption and inelastic neutron scattering to check
some of the predictions of the Verwey model of
Fe304, to obtain elementary excitation energies, and
to obtain experimental values of some of the param-
eters characterizing the ordered state. In the or-
dered state, the octahedral site Fe' and Fe' ions
order in mutually perpendicular rows. 7 An ele-
mentary excitation of the system is obtained by tak-
ing an electron from an Fe' ion and placing it on a
nearby Fe" ion. Because of the interaction between
this electron and the hole left behind, there may be
bound excitonic states.

To discuss the eigenstates of this system, we
a,ssume tha, t the electron and hole created are able
to move along their respective rows of Fe'3 and
Fe" ions with their respective kinetic energies giv- .

en by

p',„/2m, (25a)

p2, /2m', (25b)

where m, and m, are the effective masses of the
electron and hole, respectively. Here, we take the
x direction as the direction of the rom of Fe' ions.
The interaction between the electron and hole is
given by

g/(c + xy + yg) (26)

where g is the coupling constant (i. e., e divided

by the dielectric constant) and where c is the dis-
tance along the C axis between two adjacent per-
pendicular rows. The coordinates a.re the coordi-
nates in a Wannier-function representation used by
Elliot'7 in his discussion of excitons in semicon-
ductors. We now assume for simplicity that the
radii of the exciton states are much larger than a
lattice constant, and thus we neglect c compared to
the exciton radius and invoke a. continuum approxi-
rnation like that used by Elliot" (i. e., we take the
position vectors of the sites to be continuous vari-
ables). For simplicity, we take m, = m2 = m*. Now

the effective exciton Hamiltonian in the Wannier-
function representation is given by

H = (i/2m+) (P',„+P',, ) —g/(x,'+ y', )'",
which is just a two-dimensional version of the
hydrogen-atom Hamiltonian. If we look for eigen-

unique. Other forms which produce a rapid increase
of the molecular field with increasing M' yield simi-
lar results for the sharpness of the transition. For
example, if F., is taken proportional to M', a, first-
order transition is also obtained. In this ca,se, the
discontinuity in M' at T, is a,bout 0. 9.

IV. OPTICAL ABSORPTION AND INELASTIC NEUTRON
SCATTERING IN ORDERED STATE

functions of the form

q(x„y,)=[ p(r, )/r ' '] e' ', (28)

where

x=~~, v= i/~a,

where

x =(-2m" Z)'~'/5, a=8''/gm+ .

This is the hydrogen-atom radial equation with
l(l+ 1 ) replaced by m' ——,'." This equation may be
solved, like the ordinary hydrogen atom, using
hypergeometric functions. We then obtain exciton
states with energy given by

—+ jV
1 g (so)

where Eo is the energy to create an unbound elec-
tron-hole pair, and where P is given by

P =-,'+ /m/+m', (sl)

where m' is a positive integer. Unlike usual exci-
tons, these excitons do not form a band labeled by
a wave vector, because they are not free to move
through the crystal but are bound to a particular
pair of rows. This occurs because the excitons
wave functions are centered around the intersection
of a row of Fe' and a row of Fe' ions. Unbound

electron-hole eigenstates can also be found in terms
of hypergeometric functions following Elliot's treat-
ment. " The solution that we have obtained is valid
lf

a»c.
Even if this relation is not satisfied, the solution
should still be valid for large p, for which the radi-
us of the exciton becomes large.

Following Elliot, ' the optical-absorption and
neutron-scattering cross sections are proportional
to

(32)

where

for optical absorption and

for neutron scattering. Here, q is the photon wave
vector or neutron-scattering vector, p is the mo-
mentum operator, & is the photon polarization vec-
tor, and o' is a Pauli spin matrix. We then obta, in

where r and 8 are the polar coordinates [i.e., ~
= (x, +y2)' '] and m is a, positive or negative integer,
we obtain the following radial equation:

( , ——,'+ ——— p(x)=o,
dx x x
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(oi c.iP) =KM;(R, -R,)e" e(R„R,), (33)
fi

where R,. and R& denote electron and hole positions,
respectively, C (R;, R&) is the exciton wave func-
tion in the Wannier-function basis, and

M~(R( —R~) =
2 f d xgu*(r —R(+R~) e~~'w(r)

(34)

for neutron scattering since all spins are assumed
up. Here, m(r) is a Wannier function. For optical
absorption,

M;(R,. —R&) = J d yw*(r —R,. +R&) e ~ pe"'m(r) .

(35)

We see from Eqs. (32)-(35) that although the ab-
sorption and neutron-scattering cross sections de-
pend on the wave vector, the exciton lines should

appear for all q at the same energy given by 'Eq.
(30). From Elliot's paper, "we see that both the

neutron diffraction and optical absorption will be-
have in the following way as a function of energy:
There will be a series of discrete excitons on the
low-energy side of the spectrum. These will even-
tually form an energy-independent continuous cross
section, as illustrated in Eq. (3. 10) in Elliot's pa-
per. At still higher energies, the cross section
will increase with an (Eo —E)'~ energy dependence
which represents the continuum of unbound electron-
hole pairs. From Eqs. (18) and (19), we find that
if the discontinuity in M' at T, is 0. 99, the continu-
um occurs at an energy of about 7KT, or around
70 meV, which is in the infrared for optical absorp-
tion and is within the range of neutron energies.
Because these are charge-transfer transitions, the
optical absorption and inelastic-neutron-scattering
cross sections are proportional to the square of an
overlap matrix element M;(R, —R&) which could re-
duce the cross section somewhat over that of usual
exciton states. Unfortunately, there is no reliable
way to estimate M~(R; —R;).

Observation of these excitons would serve as a
measurement of the ratio of the dielectric constant
and effective mass in magnetite. It would also al-
low us to estimate the energy of ordering of the
Fe ' and Fe' ions. Even if a tight-binding exciton
theory, which might be more applicable to magne-
tite, were used, the result that the exciton energies
are wave vector independent would still be valid.
This result is simply a consequence of the lattice
structure in the ordered state. The other results
should still be qualitatitively correct.

V. CONCLUSIONS

It appears that much of the present experimental
data on the Mott-Wigner transition in magnetite can

be fit into a consistent picture based on a molecular-
field electron-lattice-gas model with a phenomeno-

logically screened molecular field. The reason for
the extremely rapid change of excitation energy F»
with M' near M' =1 needed to explain the experi-
mental results is still not completely understood.
A more detailed calculation of the electronic states
of the crystal is probably necessary to understand
this phenomenon.

The experimental results that can be fit by this
model include the observed first-order phase tran-
sition, ' the specific-heat anomaly, the dependence
of the transition temperature on stoichiometry, ' and

the Verwey ordering of Fe' and Fe' ions in rows
as observed by neutron diffraction. The dependence
of transition temperature on pressure cannot be ex-
plained with the lattice-gas model used here because
kinetic or hopping energy is not included in the mo-
del. We have sketched how one might treat these
results using the model of Cullen and Callen. A

similar treatment could probably be given using a
small-polaron hopping model. In both cases, the
functional dependence of hopping or band energy on

pressure is required, and these functions are not
known well enough to do a fit of experimental results
quantitatively. The elementary excitation spectrum
to be observed by optical absorption and neutron dif-
fraction were also discussed.

Three experiments that remain to be done are in-
elastic neutron diffraction, optical-absorption mea-
surements, and measurements of the anisotropy
of the resistivity as a function of doping with Fe20, .
The former two will give information on the various
parameters occurring in the theory and will
test some predictions of Sec. IV of this paper. It
should also be possible to determine the gap ener-
gy as a function of temperature in this way. Mea-
surements of the anisotropy of the conductivity as
Fe,O, is added to Fe3O4 (i. e. , as holes are added)
mill test out a prediction of the discussion in this
paper that the phase transition occurs when enough
free carriers are present to reduce the effective
interaction sufficiently to make the ordered state
unstable. Adding Fe203 increases the number of
such free carriers. If the transition occurs before
the conductivity can become greater normal to the
C axis than along it, this would indict, te that adding
carriers in this way and increasing the tempera-
ture have the same effect. Another useful experi-
ment is a carefully done elastic-neutron-scattering
experiment to determine whether or not the Fe'
and Fe' ions are completely ordered just below T, .

In this paper, it was assumed that the Coulomb
repulsion of electrons plays a dominant role in
bringing about the ordering. In addition, we specu-
lated that there is probably also an accompanying
distortion of the lattice which stabilizes the ordered
state, by making the ionic potential more positive
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near Fe' sites than near the Fe'3 sites. This
stabilization lowers the electronic energy and in-
creases the electronic excitation energy. This is
to be contrasted with the Adler-Brooks mechanism"
of the insulator-metal transition in which the tran-
sition is caused entirely by the splitting of the en-
ergy bands caused by the reduction of the lattice
symmetry resulting from lattice distortion. Al-
though this mechanism is present in the magnetite
transition, the electronic interaction clearly plays
a dominant role. If there is such a local polariza-
tion of the nonoctahedral-site ions, it could possibly
be detected in a carefully done elastic-neutron-scat-
tering experiment.

Recent elastic-neutron-diffraction experiments'
have revealed peaks in addition to those predicted by
the Verwey ordering. Recent Mossbauer data are
consistent with these results. ' Cullen and Callen
have explained' these experiments by doing a three-
dimensional energy-band calculation with four bands

and three order parameters. The extra neutron

peaks imply that not all sites are equivalent within

a single row of Fe' or Fe'3 sites. This could con-
ceivably also be caused by some sort of local lat-
tice distortion, but the Cullen and Callen mechanism
appears to be simpler. There still remains the
question of why such ordering should occur, which

is not answered by either explanation. We have not
considered these effects in this paper. In order for
the ordering of Ref. 10 to exist, the ions cannot be

completely ordered as predicted by Verwey. "
Further theoretical and experimental investigation
is clearly needed to straighten out these points.
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This paper discusses a new technique for evaluating the matrix elements in tight-binding

band calculations. The method employs an expansion of the crystal potential in reciprocal-
lattiee vectors and the atomic wave functions by a Fourier integral. The matrix elements are
reduced to sums over the reciprocal lattice.

One of the difficulties associated with the tight-
binding method of band-structure calculation is the

evaluation of the matrix elements of the overlap

matrix and Hamiltonian matrix. These matrix ele-
ments are weighted sums of many-center overlap

and potential integrals. When the wave functions


