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Measurements of p and +'T (p is the electrical resistivity and W is the thermal resis-
tivity) of high-purity single-crystal specimens of tungsten have been performed in the tem-
perature range 1.5—6.0 K. The temperature dependence of p and S'T was found to be
predominantly quadratic, in agreement with observations in other transition metals. We
attribute this behavior to electron-electron scattering between different branches of the
Fermi surface. The validity of Matthiessen's rule for impurity and boundary scattering was
investigated to determine whether the contributions of electron-electron scattering p, and
&P' could be meaningfully separated from the total resistivities p and WT. In those samples
in which boundary scattering contributed least to the total resistivities, Matthiessen's rule
was found to be reasonably well obeyed for the electrical resistivity, while deviations were
observed for the thermal resistivity. The Lorenz number for electron-electron scattering,
I 8=p~/+'eT, for these samples was found to range from 0. 2 && 10 " to 0.4 &&10"" WQ/K .

I. INTRODUCTION

Recently, the low-temperature electrical and
thermal resistivities of several transition metals
(Ni, Re, Pd, Os, Pt, and Fe) 7 have been mea-
sured. These studies have been important in re-
vealing a T behavior of both the electrical resis-
tivity p and the analogous thermal transport prop-
erty WT (W is the thermal resistivity) at low tem-
peratures. The T behavior of the electrical re-
sistivity p of a number of transition metals has
been known for many years and was first attrib-
uted to electron-electron scattering between dif-
ferent branches of the Fermi surface. Since
that time, the observation of the T behavior of
S'T at low temperatures in Ni, Re, Pd, Pt, and
Fe has lent further support to the view that elec-
tron-electron scattering can be an important re-
sistive mechanism in many transition metals. ' '"

This paper describes the extension of these mea-
surements to tungsten. We have made a detailed
study of the temperature dependence of p and 8"T
in a number of high-purity tungsten single crys-
tals and have observed a dominant T dependence
for both p and VT in the temperature range 1.5-
6.0 K. In order to determine reliably the mag-
nitudes of the T terms in the resistivities, we
have also examined the validity of Matthiessen's
rule for electron-electron scattering —that is, the
extent to which the coefficients of the T~ terms
in the resistivities are not affected by other scat-

tering mechanisms such as impurity scattering
and boundary scattering.

Considerable effort has been devoted to esti-
mating theoretically the relative magnitudes of
he T term ~, jn ~ and the T2 term 5',T jn 5'T.

Because of the difficulty of estimating the mag-
nitudes of p, and S; separately, several cslcula-
tions have been performed that give the ratio L,
= p, /W, T, the Lorenz number for electron-elec-
tron scattering. The first such calculation was
performed by Herring' in connection with the
measurements of p, and 8',T in nickel by White
and Tainsh. ' Herring argued that the assumption
of a complicated Fermi surface could result in a
considerable simplification of the collision inte-
gral for electron-electron scattering, thus making
it possible to obtain an energy-dependent relaxa-
tion time. In the absence of impurity scattering,
this relaxation time leads to a value of I, of
l. 58x 10 8 Wn/K~, while for situations in which

impurity scattering is predominant over electron-
electron scattering, a value of l. 36&&10 ~ WA/K2

is obtained. ' Although his argument does not
assume any particular form for the scattering
rate, Herring has noted that L, can be quite sen-
sitive to the angular distribution of the scattering.
It is perhaps for this reason that agreement with
experiment has not been particularly good. Mea-
surements of the transport properties of ¹i,Re,
Pd, Pt, and Fe have yielded various values of L,:
1.Q for Ni, Q. 9 for Re, ' l. 1 for Pd, ' 0. 1 for
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Pt, and 1.2 for Fe, each in units of 10 WQ/K .
Other models have been considered that allow

calculation of L, for a particular scattering rate.
Initial progress in this direction was made by
Smith and Wilkins, ' who found solutions to the
linearized Boltzmann equation for combined elec-
tron-electron scattering and impurity scattering
on a spherical Fermi surface. While this model
can be expected to appropriately describe normal
electron-electron scattering" in simple metals,
i.t cannot be applied to the transition metals which
have considerably more complicated band struc-
tures. Bennett and Rice' have modified this cal-
culation to describe the scattering of mobile "s"
electrons in one band by heavier "d" holes in an-
other. To make the calculation tractable they have
assumed spherical "s" and "d" bands, and, in ad-
dition, have assumed that the current is carried
primarily by the "s" electrons. Although this
model is still an oversimplification of the band
structures of the transition metals, it is, never-
theless, instructive because it exhibits certain
features that would probably be retained in a more
realistic model. In particular, their calculation
shows that L, depends rather sensitively on the
angular distribution of the electron-electron scat-
tering. In the limit of small-angle scattering, L,
approaches zero, while for isotropic scattering,
L, approaches a value between 1.36&&10 and
1.58 x 10 W Q/K, the exact value depending upon
the amount of impurity scattering present. For
intermediate angular dependences of the scattering
rate, these calculations show that L, can assume
values between zero and the values calculated by
Herring. Bennett and Rice point out that a scat-
tering rate corresponding to a screened Coulomb
interaction leads to values of L, between about
0. 8x10 ' and l. Ox 10 W Q/K' in a typical transition
metal; this is in reasonable agreement with the
experimental results for Ni, ' Re, Pd, and Fe,
but not Pt. These calculations also show that
significant deviations from Matthiessen's rule can
occur when impurity scattering and electron-elec-
tron scattering act together. The effect is largest
in the thermal resistivity, causing about a 30% in-
crease in [WT —(WT)o] as the amount of impurity
scattering is increased. In the electrical resis-
tivity, a smaller, approximately 10%, increase in

(p —po) occurs.
Other calculations have been carried out by

Rice, ' and Schriempf, Schindler, and Mills using
a spherical two-band model for the Fermi surface
and a screened Coulomb interaction between elec-
trons. Because a specific scattering rate is pos-
tulated, these treatments are special cases of the
calculation of Bennett and Rice and lea.d to similar
results.

To our knowledge, no measurements of the

thermal resistivity of high-purity tungsten have
been made in the liquid-helium temperature range.
Measurements at higher temperatures in a re-
stricted range (14-22 K) have been made by de

Nobel, who finds that WT can be described by
WT = (WT)o+ pT with p = 5 x 10 cm/W K. How-

ever, this temperature range is not sufficiently
large, nor the data sufficiently precise, to dis-
tinguish between a PT' temperature dependence
(electron-phonon scattering only) and a n T + PT'
temperature dependence (electron-electron and
electron-phonon scattering).

Studies of the temperature dependence of the

electrical resistivity of high-purity tungsten have
been made by Volkenshteyn et pl 2o and Berthel~
over a wide range of temperatures. Volkenshteyn
et a/. have measured the electrical resistivity of

a sample with a, residual resistance ratio [p(300 K)/
p(4. 2 K)] of 19 000 over a temperature range
4-300 K. They find that at low temperatures~~
the resistivity can be described by p= po+AT
+BT'with 2=40x10 ' Qcm/K and 8=0.Bxl0"
Qcm/K'. Berthel has measured the electrical
resistivity of a number of single-crystal tungsten
rods with residual resistance ratios [p(273 K)/
p(0 K)] ranging over 15000-330000. His mea-
surements were made in two temperature ranges:
1.4-4. 2 K and 14-27 K. In the 1.4-4. 2-K range,
he finds that p= p, +AT'withA=Bx10 ' Qcm/K
in the samples in which boundary scattering contri-
butes least to the resistivity. In the samples in
which boundary scattering contributes significantly
to the resistivity, the coefficient A is enhanced.
In the 14-27-K temperature range, he finds that

p = po+ C+BT' with B= 601x0 Q cm/K~. Thus
there is reasonable agreement between measure-
ments on the magnitude of the T term, but a con-
siderable lack of agreement on the size of the T'
term.

Berthel ' has pointed out that in less-pure
samples [p(273 K)/p(0 K) & 1500] investigated
earlier by other workers, ' the temperature de-
pendence of p is considerably different from that
of the pure samples; in fact, the electrical re-
sistivity does not appear to exhibit a T5 behavior
at any temperature. Qualitatively, the magnitude
of the temperature-dependent part of the resis-
tivity increases and the dependence on temperature
weakens as the impurity content of the sample is
increased. For example, in a polycrystalline
tungsten sample with a residual resi. stance ratio
[p(295 K)/p(0 K)] of 180, White and Woods'4 ob-
served a &' temperature dependence above 20 K
and a T dependence at lower temperatures. They
measure a coefficient A of the T term of 100&&10 '
Qcm/K, more than ten times larger than the co-
efficient measured by Berthel in high-purity single-
crystal samples. The wide variation with purity



LOW- TEMPERATURE ELEC TRICAL AND THERMAL ~ ~ ~ 3143

of the temperature dependence of the electrical
resistivity emphasizes the need to study deviations
from Matthiessen's rule in experimental studies
of transport processes in tungsten.

Size-effect studies in tungsten have been carried
out by Berthel ~ and by Startsev et al. ~ in order to
determine the electronic mean free path. Startsev
et a/. have performed careful measurements on
tungsten single crystals of square cross section.
They reduced the thickness in small increments
by more than a factor of 20 by electroetching, and
were especially careful to eliminate errors due to
an inhomogenous distribution of impurities in the
samples. Although they attempted to estimate a
bulk mean free path X~ from their measurements
by assuming a very simple model for the size ef-
fect, values of X~ obtained in this way were not
independent of sample diameter. Without a more
sophisticated treatment of the dc size effect than
is presently available, there is no reliable way to
determine X~ from the measured resistivity and
specimen size. Roughly speaking, however,
Startsev et al. estimated that boundary scattering
contributed about 60% to the resistivity of a
specimen whose thickness was 1.5 mm and whose
residual resistance ratio was 30000.

II. EXPERIMENTAL DETAILS

The cryostat shown in Fig. 1 was designed so
that the electrical and thermal resistivities could
be measured during the same experiment.

The thermal resistivity W was determined by
the usual method of measuring the temperature
difference ~T produced between two points on the
sample by a known heat current tII. However,
rather than computing the temperature difference
directly from the measured temperatures at the
two points on the sample, as is customarily done,
we have used a differential technique that makes
a direct comparison of the temperature along the
sample with the heat current on and with it off.
This technique is particularly suited to the use of
small temperature differences (& 30 mK), and
since it is not commonly used for this type of
measurement, we give a brief explanation of the
method.

One end of the tungsten sample was electroplated
with copper and soldered securely to a copper
platform whose temperature could be regulated
electronically by means of a heater H~ and a car-
bon sensing thermometer R3. Another heater H, ,
used to generate the heat current Q through the

sample, was attached to the other end. In order
to measure the resulting temperature difference
4T across the sample, two carbon resistance
thermometers 7 R, and R~ were soldered to copper
rings electroplated to the tungsten sample about
12 cm apart. These two thermometers were con-

Feedthroughs for
Electrical Leads

Pumping Tube

Carbon
Resistance
Thermometer Rs

Calibrated
Germanium
Resistance
Thermometer R4

Copper
-Heat Sink

Heater Hz

Copper
Platform

Carbon Resistance
Thermometer .

R~

Tungsten Sample

Vacuum Chamber
immersed in
Liquid Helium

Carbon Resistance
Thermometer Rz

Heater H,

FIG. 1. Diagram of the cryostat. Electrical leads
are brought into the vacuum chamber via Epoxy feed-
throughs and are anchored thermally to the heat sink.
From the heat sink, short constantan wires run to the
copper platform where they are again thermally anchored.
From the platform, connect;ions are made to the sample.

nected in two arms of a Wheatstone bridge in such
a way that R, and ~R —= R& -R2 could be measured
directly. The bridge was operated at 85 Hz, and
the null in the output was detected with a phase-
lock amplifier. During each experiment, R& and
&R were calibrated against a standard germanium
resistance thermometer R4 attached to the copper
platform. The resistance of this thermometer was
measured by means of a specially designed four-
terminal bridge described elsewhere, allowing
measurement of the absolute temperature to an
accuracy of at least 5 mK. All of the electrical
leads from the sample were thermally anchored
to the copper platform.

The thermal resistivity was measured as follows:
First, rsR(T, &T)=Rt(T) Ra(T+ b T) and R-, (T)
were measured with a heat current Q flowing in
the sample. Next, the heat current was reduced
to zero and the temperature of the platform was
adjusted by means of the regulator to keep R~ at
the same temperature, and then rsR(T, 0) =Rt(T)
—R2(T) was measured. The temperature differ-
ence &T was calculated by the expression

&r= lr A(r, a2') —/n(r, c)]//r'-, (t)

which is valid provided (dRgdT)» e(d Re/dT )(&T)
(see Appendix). Finally, the thermal resistivity
W was calculated from W= (&T/Q)(A/L), where
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A/L is the ratio of the cross-sectional area A of
the specimen and the distance I. between the cop-
per rings. This ratio was determined by mea-
suring the resistance of the sample at room tem-
perature, using a value of 5. 38 p, Qcm for the
room-temperature resistivity to compute A/L; in
computing this ratio we have neglected the small
change that occurs because of contraction as the
sample is cooled to liquid-helium temperature.
We verified that the thermal resistivity lV was in-
dependent of the heat current used for a tenfold
change in heat current and were able to calculate
W to a precision of about 1% for the samples with
diameters of 1.5 mm or smaller, and to a pre-
cision of about 8% for the 8. 0-mm samples. The
peak in the thermal conductivity of each of the
samples occurred at about 4 K, and in the purest
specimen the peak value was 750 W/cmK (the
room-temperature thermal conductivity of tungsten
is 1.8 W/cmK). The samples, their diameters,
and other pertinent characteristics are listed in
Table I.

The electrical resistivity was measured in the
customary four-probe manner. Two fine-copper
voltage leads were attached to the sample at the
points where the thermometers were attached,
and a superconducting wire was used as the cur-
rent lead. A constant current was passed through
the sample, and the potential produced between
the voltage leads was measured by a Keithley
148 nanovoltmeter with an integrating digital volt-
meter readout. We used a current of 2 A in the
1.0- and 1.5-mm-diam samples and 4 A in the
3. 0-mm-diam samples. By making measurements
at different currents, we verified that there were
no measurable deviations from Ohm's law at these
current levels due to the large magnetoresistance
of tungsten. In these samples, we were able to
measure the resistivity p to a relative precision of
about —,'%. An exception occurred in the sample
with the smallest diameter (sample W-8A). In
this sample, we observed a resistance that de-
creased slightly with measuring current. We
therefore used a current of 1 A to minimize this
effect, thereby incurring an error of at most 2%.

Considerable care was taken to eliminate two
potential sources of systematic error in the ther-
mal measurements: (i) loss of heat from the sample
via the electrical leads, and (ii) loss of heat from
the sample via conduction by residual helium gas
in the vacuum chamber surrounding the sample.
In the first case, the loss of heat through the con-
stantan heater and the thermometer wires was
negligible. To verify that there was no significant
heat loss through the copper voltage leads and the

superconducting current lead, we disconnected
these wires and remeasured the thermal resis-
tivity for two samples W-3 and W-'7. In each
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case, the measurements produced results com-
pletely consistent with the original measurements
made with the wires in place. We also verified
that conduction through the vacuum space was
negligible by changing the temperature between
the walls of the chamber and the sample; in ad-
dition, an adsorbent30 was placed in the vacuum
chamber to adsorb residual helium gas.

III. EXPERIMENTAL RESULTS

We have measured the resistivities of seven
electron-beam zone-refined single-crystal tungsten
specimens, six of which were oriented with the
[110]direction parallel to the rod axis, and one
with the [111]direction parallel to the rod axis
(see Table I).

In Fig. 2, we hive plotted the temperature-de-
pendent part of the electrical resistivity (p —pp)
as a function of the square of the temperature for
five tungsten specimens of various diameters and
purities, each oriented with the [110]direction
parallel to the rod axis. The most notable feature
of Fig. 2 is the large temperature dependence of
the resistivity for sample W-8 compared to the

I I I I I I

10 15 20 25 30 35 40

T K

FIG. 2. Variation of the temperature-dependent part
of the electrical resistivity (p-po) with 1" for five single-
crystal tungsten samples, each oriented with the [110]
direction parallel to the rod axis. The origin of each
plot has been displaced vertically for clarity, and the
plots have been arranged in order of rz/d. Each of
the solid curves represents a function of the form &T
+BT, determined by the method of least squares.
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FIG. 3. Variation of 8'T-po/Lo with T2 for five
single-crystal tungsten samples, each oriented with
the [110]direction parallel to the rod axis. Origin of
each plot has been displaced vertically for clarity, and
the plots have been arranged in order of rz. Square
data points were taken with the potential leads and cur-
rent lead attached to the sample, while the circled
points were taken in a separate experiment with these
leads disconnected.

other samples. Similar results have been reported
by Berthel, who shows convincingly that this is
due to the size effect. As a measure of the relative
importance of boundary scattering, we have used
the parameter r~/d to characterize our samples
[where I'~ stands for the residual resistance ratio
p(299 K)/p(0 K) of a specimen with diameter d].
Except in the extreme size-effect regime (where
xs/d tends to a constant value), we expect x„/d
to increase roughly with increasing boundary scat-
tering. As expected, sample W-8 has the largest
value of r„/d, although sample W-V —which does
not show an enhancement of the temperature-de-
pendent resistivity —has the largest residual re-
sistance ratio.

The temperature dependence of the electrical
resistivity of all of the samples can be adequately
described by p= po+AT +ST' for the temperature
range covered in this experiment. For those
samples in which Matthiessen's rule is approxi-
mately obeyed, it is reasonable to identify each
of these terms with the unique contributions of
impurity and boundary, electron-electron, and
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FIG. 4. Comparison of the temperature-dependent
part of the electrical resistivity (p-pp} for two single-
crystal tungsten samples with different crystalline
orientations. Samples W-2 and %-3 were oriented with

the [111]and [110]directions parallel to the rod axis,
respectively.

electron-phonon scattering. Although the real
situation may be more complicated, there does
not exist at present a more soundly based expres-
sion having as few parameters; consequently, we
have been obliged to use this expression to fit our
data. , The values of po, A, and 8 were determined
by the method of least squares for each of the
samples and are tabulated in Table I.

In Fig. 3, we show the variation of WT with T
for each of the five tungsten samples shown in
Fig. 2. The temperature dependence of WT can
be described by WT = (WT)0+ oT . A PT' term in
S'T, corresponding to,the I3T' term in p due to
electron-phonon scattering, is not evident in the
data; if such a term is present, the coefficient
P would have to be smaller than 5&&10 cm/WK.
As shown in Table I, the value of n varies by
about 30/o among the samples oriented with the

[110]dii ection along the rod axis. In ge'neral, the
value of n tends to increase with increasing im-
purity content, although sample W-8 appears
again to be an exception.

These measurements were performed mainly
on specimens with the [110]direction parallel to
the rod axis; however, one specimen W-2 with
the [111]direction parallel to the rod axis was
also studied. In Figs. 4 and 5, we compare the
resistivities of samples W-2 and %-3. Although
the temperature dependence of the electrical re-
sistivities for the two samples are nearly iden-
tical, the temperature dependence of the thermal
resistivities are qualitatively different; sample
W-3 appears to exhibit a quadratic temperature
variation, whereas sample %-2 increases at a
somewhat faster rate. Ordinarily, in bulk mate-
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FIG. 5. Comparison of (W&-pp/L p}for two single-
crystal tungsten samples with different crystalline
orientations. Samples W-2 and W-3 were oriented with

the [111]and [110]directions parallel to the rod axis,
respectively.

rial the resistivities of a cubic crystal, such as
tungsten, must be isotropic because of the sym-
metry of the lattice. However, in specimens with

significant amounts of boundary scattering, ex-
ceptions can be expected to occur. "

In Fig. 6, we show the variation of the Wiede-
mann-Franz ratio p/WT with temperature for the

six samples plotted in Figs. 2-5. The Wiedemann-

Franz ratios of the samples in which boundary
scattering is not appreciable (W-3, W-4, W-5,
and W-7) extrapolate to within a few percent of

the Lorenz number L0=2. 44&10 WQ/K2 as the

temperature approaches absolute zero. This be-
havior is expected when the scattering is dominated

by elastic impurity scattering. Oa. the other
hand, sample W-8, for which boundary scattering
is expected to be appreciable, shows a departure
from the Wiedeman -Franz law that is many times
larger than the limi s set by the random error in

the experiment.
We performed further measurements on sample

W-8 in an attempt to clarify this effect. Sample
W-8 was spark cut into two shorter rods of equal

length. The residual resistance ratio of each half

was measured and was found to be essentially the

same as that of the original sample. One side of

one of the pieces was removed by electroetching
to produce a specimen with a smaller effective
diameter (semicircular cross section) but with

substantially the same mean impurity content.
This sample was designated W-8A. The other
piece was electroetched uniformly for a short
period to remove the mirror finish of sample W-8,
resulting in a sample with a matt finish identical
to that of W-8A, but with a diameter essentially
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0-e /K

electron scattering, L, =A/o. , as shown in Table I.
This ratio is probably not very meaningful for
samples W-S, W-SA, and W-88 because of the
size-effect enhancement of A. For the other
samples, L, ranges between 0. 2~10 and 0.4
x10 'WQ/K'.

IV. DISCUSSION

tO

O

W"5

W"3
W-2
W-8
W-7

I i I i I i I i I i I

I 2 3 '4 5 6

FIQ. 6. Variation of the Wiedemann-Franz ratio
p/S'T with temperature for six single-crystal tungsten
specimens.

the same as sample W-8. This sample was des-
ignated W-88.

The results of measurements of the resistivities
of these two samples are shown in Table I. Most
noteworthy are two facts: (i) The Wiedemann-Franz
ratio of each sample extrapolates to within a few
percent of the Lorenz number as the temperature
approaches absolute zero, and (ii) the residual re-
sistance ratio of sample W-SB is 53000—signifi-
cantly smaller than the 75 000 residual resistance
ratio of, sample W-S. A further brief etching of
the surface reduced the residual resistance ratio
of sample W-SB to only 49000. These results
indicate that the nature of the sample surface may
be important in determining the contribution of
boundary scattering to the resistivity. It is in-
teresting to conjecture that specular scattering
may be responsible for these effects. Although
this could explain the sharp decrease in the re-
sidual resistance ratio of sample W-88 after the
removal of the mirror finish, it is not clear why
the Wiedemann-Franz ratio should also be affected.
Further experiments as well as a better character-
ization of the smoothness of the sample surface
would help clarify the puzzling behavior of this
sample.

From the values of A and n determined from the
electrical and thermal resistivity measurements,
we have calculated the Lorenz number for electron-

A central problem in this investigation has been
the separation and identification of the scattering
processes important in tungsten at low temperatures.
In order to identify each scattering mechanism
from the temperature dependence of the resistivity,
we felt that it was necessary to perform measure-
ments on enough samples to be able to assess the
validity of Matthiessen's rule. The residual re-
sistance ratios of the tungsten samples that we
used covered a tenfold range from 9400 to 95000.
Our results indicate that the magnitude of the T
term in p is not substantially affected by the pres-
ence of impurity scattering. On the other hand,
with the exception of sample W-8 for which bound-

ary scattering is appreciable, the 'magnitude of
the T term in O'T appears to increase systemat-
ically with increasing impurity content. These
observations are in qualitative agreement with
the theoretical calculation of Bennett and Rice. '

We have also tried to assess the effect of bound-
ary scattering on the temperature dependence of
the resistivities. The temperature dependence
of the electrical resistivity is not appreciably af-
fected by the presence of boundary scattering in
those samples for which xs/d ~ 30000 mm '. How-

ever, for greater values of ts/d, the te'mperature
dependence is enhanced. If a similar effect occurs
for O'T, it is clear that it is comparable to, or
smaller than, the deviations from Matthiessen's
rule that we ascribe to impurity scattering.

Our data, and also that of Volkenshteyn" and

Berthel, show an apparent T behavior of p in
high-purity samples which is presumably a con-
sequence of electron-phonon scattering. However,
we have found no indication of a corresponding T
term in WT. At low temperatures, electron-
phonon scattering is confined to small angles and
is inelastic, so that the Wiedemann-Franz ratio
for this type of scattering should be substantially
smaller than Lo, i. e. , BT /pT «Lo, or equiv-
alently p»BT2/Lo. Using our measured values of

B, we estimate that at 6K, p»2x10 cm/WK.
Although a value as small as 5x10 cm/WK should
be observable, we have been unable to detect any
T variation in O'T at all.

The principal evidence for the presence of elec-
tron-electron scattering in the transition metals
is the dominant T2 dependence of both p and O'T

at low temperatures. To the extent that it is
possible to isolate the contribution of electron-
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electron scattering to the total resistivities, we
have measured the Lorenz number for electron-
electron scattering in tungsten and have obtained
values ranging from 0. 2x10 to 0. 4x10 WQ/K
for samples W-3, W-4, W-5, W-6, and W-7.
These values are significantly below the values
calculated by Herring, yet are consistent with the
calculation of Bennett and Rice, which does al-
low lower values of L,. However, it is doubtful that
quantitative agreement with thehe theories should
be expected in tungsten in view of the obvious short-
comings of the two-band model for this metal.
Considerable s-d hybridization of the electron
wave functions occurs in tungsten, making the dis-
tinction between s and d portions of the Fermi sur-
face much less meaningful in tungsten than, for
example, in palladium. It may be significant,
however, that the theories do allow a decrease in

I-, below the Herring values in accord with all the
experimental results obtained to date.
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APPENDIX: COMPUTATION OF THERMAL RE-
SISTIVITY FROM EXPERIMENTAL DATA

The quantities measured in the experiment are
R,(T), ~(T, AT), hR(T, 0), and Q. By expanding
Ra(T+&T) in a Taylor series in &T about T, it
follows that

venient to fit the data to the formula of Clement
and Quinell

I/T = & g/InRp+ &0+ &glnRa ~ (AS)

lnRz
T (0 g/InR2) —Qg lnRa

(A4)

In practice, Eq. (AS) is used to calculate T from
the measured value of Ra(T) =R,(T) —bR(T, 0).
Then Eqs. (A2) and (A4) are used to calculate hT.

There are two sources of systematic error in
this method: The first arises from the neglect of
the small quadratic term in Eq. (Al), and the

second from the fact that the actual temperature
and the temperature that one calculates by Eq. (AS)
differ by a small amount c(T) because of the dif-
ficulty of fitting the data within the experimental
error.

In the first case, the effect of the quadratic term
is to multiply bTby the fa, ctor [1 ——,'(R'a'/R'a)(&T)].
The second derivative B~' can be calculated from
Eq. (A4). One obtains

The data are divided into two temperature ranges:
1.5-4.0 K and 3.5-6. 5 K. The data in each range
are fit by using the two points at each end of the

range and one point in the center of the range to
determine the three coefficients a „a0, and a, .
The fits obtained in this manner compare favorably
with those obtained by a least-squares method. The
systematic deviations of the data from the fit are
always less than 5 mK. The first derivative R2, is
obtained by differentiating Eq. (AS) with respect to
temperature. One obtains

b.R(T, b T) —~(T, 0)

R2(r T) —,'R", (—~T)'+ — (A1)

A~' 2 R'~ 2a ~T R~
R'2 T Ra (InR2)~ R2

(A5)

& T = —[nR(T, & T) —hR(T, 0)]/R'2 (A2)

The derivative R'3 is calculated from an analytical
fit of the resistance da, ta. We have found it con-

where R'a =dR2/dT and R'z'=daR2/dT The quadr. atic
term in Eq. (Al) is typically less than I'//p of the
linear term for temperature differences less than
30 mK. Thus, to first order, the quadratic term
can be ignored. In this approximation ~T is given

by

ln the second case, the effect of c(T) on WT can
be calculated by replacing T in Eq. (AS) by T —e(T).
One finds that to first order in & the actual value
of WT is obtained by multiplying the calculated
value of WT by [1 —(&/T)+ (de/dT)]. Typically,
we find that I de/dT I

~ 0. 02 and ) e/T I
& 0. 002. The

quantity & and its derivative can be determined
with a precision of about 40%. Consequently, after
making these corrections, we are able to reduce
the total systematic error in the thermal resistiv-
ity to a value of less than 1%.

~Work supported by the Atomic Energy Commission
under Contract No. AT(30-1)-2150, Technical Report No,
NYO-2150-67, and by the Advanced Research Projects
Agency through the Materials Science Center at Cornell
University, MSC Report No. 1501,

~G. K. White and R. J. Tainsh, Phys. Rev. Letters
19, 165 (1967).

J. T. Schriempf, J, Phys. Chem. Solids 28, 2581
(1967).

J. T. Schriempf, Phys. Rev. Letters 19, 1131 (1967).
J. T. Schriempf, Phys. Rev, Letters 20, 1034 (1968).
J. T. Schriempf, Solid State Commun. 6, 873 (1968).

~A. C. Anderson, R. E. Peterson, and J. E. Robi-
chaux, Phys. Rev. Letters 20, 459 (1968).

VJ. G. Beitchman, C. W. Trussel, and R. V. Cole-
man, Phys. Rev. Letters 25, 1291 (1970),

See, for example, W. J. de Haas and J. de Boer,
Physica 1, 609 (1933); G. K. White and S. B. Woods,



LOW- TEMPERATURE ELEC TRICAL AND THERMAL ~ ~ ~ 3149

Phil. Trans. Roy. Soc, London A251, 273 (1959).
W. G. Baber, Proc. Roy. Soc. (London) A158, 383

(1937); for a general discussion of electron-electron
scattering, see N. F. Mott, Advan. Phys. 13, 405 (1964).

' There has been some controversy over the interpre-
tation of the results of Ref. 1; see F. C. Schwerer and
J. Silcox, Phys. Rev. Letters 20 101 {1968); and A.
Fert and I. A. Campbell, ibid. 21, 1190 (1968).

In Os the T term in S'T was obscured by electron-
phonon scattering which contributes a T3 term to S'T.

~2C. Herring, Phys. Rev. Letters 19, 167 (1967); 19,
684(E) (1967).

C. Herring {private communication).
H. Smith and J. W. Wilkins, Phys. Rev. 183, 624

(1969).
' Umklapp processes are not explicitly considered; in

their absence the contribution of normal electron-electron
scattering to the electrical resistivity vanishes for a
spherical Fermi surface.

'6A. J. Bennett and M. J. Rice, Phys. Rev. 185, 968
(1969).

M. J. Rice, Phys. Rev. Letters 20 1439 (1968).
' J. T. Schriempf, A. I. Schindler, and D, L. Mills,

Phys. Rev. 187, 959 (1969). Although this paper deals
with Id: Ni allbys in the context of electron-paramagon
scattering, a brief discussion of electron-electron
scattering in Pd and Re is given on pp. 971 and 972.

'9J de Nobel, Physica 23, 349 (1957).
N. V. Volkenshteyn, L. S. Starostina, V. Ye.

Startsev, and Ye. P. Romanov, Fiz. Metal. i Metalloved.
18, 888 (1964) (Phys. Metals Metallog. (USSR) 18, 85

(1964)].
K. H. Berthel, Phys. Status Solidi 5, 399 (1964).
By low temperatures, it is meant temperatures for

which p, &2 (p —po). The coefficient of T quoted in the
translation of Ref. 19 is in error; the value quoted in the
original article is smaller by a factor of 10.

G. J. van den Berg, Physica 14 111 (1948).
G. K. White and S. B. Woods, Can. J. Phys. 35

656 (1957).
K. H. Berthel, Phys. Status Solidi 5, 159 (1964).
V. Ye. Startsev, N. V. Volkenshteyn, and G. Q.

Nikitina, Fiz. Metal. i Metalloved. 26, 261 (1968)
(Phys, Metals Metallog. (USSR) 26, 76 (1968)J.

'56 0, ~& W, Allen Bradley Co. , Milwaukee, Wise.
The resistors used were matched to about 1% at 4.2 K.

CR2500L, Cryocal Inc. , Riviera Beach, Fla.
~J. W. Ekin and D. K. Wagner, Rev. Sci. Instr. 41,

1109 (1970).
3 Molecular sieve, Union Carbide International Co. ,

New York, N. Y.
See for example, The I'hysics of Metals I. Electrons,

edited by J. M. Ziman (Cambridge U. P. , Cambridge,
England, 1969), pp. 185-9.

G. V. Chester and A. Thellung, Proc. Boy. Soc.
{London) 77, 1005 (1961).

New independent evidence for electron-electron
scattering has been obtained in field-emission studies
of tungsten at 20K; C. Lea and R. Gomer, . Phys. Rev.
I etters 25, 804 0.970).

J. R. Clement and E. H. Quinell, Rev. Sci. Instr.
23, 213 (1952).

PHYSICA L REVIEW B VOI UME 3, NUMBER 10 15 MAY 1971

Anisotropic Electron-Phonon Coupling*

F. David Peat
Division of Chemistry, National Research Council Of Canada, Ottasea, Canada

(Received 15 October 1970)

The interaction between electrons and "pseudolorigitudinal" or "pseudotransverse" phonons
is derived and used in the calculation of renormalized phonon modes. Coupled modes involv-
ing plasmon and optical pseudolongitudinal or pseudotransverse phonons are expected to give
rise to observable anisotropic results in Raman scattering.

I. INTRODUCTION

Wave motion in homogenous isotropic media is
capable of a convenient representation in terms of
transverse and longitudinal modes. In the case of
real elastic media, such a decomposition becomes
idealized, sound waves moving near to a surface or
light passing through an anisotropic medium may
not be discussed in terms of purely irrotational or
divergence free waves. Similarly the lattice vibra-
tions of' many crystals are not purely longitudinal
or transverse except in certain particular direc-
tions. The treatment of phonons and of electron-
phonon interaction in solid-state physics is usually
based upon an isotropic model for the crystal. If

such a model is augmented in favor of one display-
ing some on the anisotropies of real crystals it be-
comes interesting to consider the consequences.
In Sec. II of this paper an anisotropic electron-pho-
non interaction is derived and used in Sec. III to
determine the renormalization of the acoustic modes
and of th electron gas. Some of the consequences
are outlined in Sec. IV together with a, discussion
of the possibility of the existence of observable ef-
fects. Finally in Sec. V the mixed optical phonon
and phonon modes are derived and their significance
in Raman scattering discussed.

II. ANISOTROPIC ELECTRON-PHONON COUPLING

In a crystal, having a single ion in each cell, the


