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appreciably from its maximum value. The high
scattering rate on the necks may also account for
the heavy damping of the rosette-orbit oscillations,
since this orbit is known to cross four necks.

U. CONCLUSIONS

The magnetoacoustic effect is a bulk measure-
ment in a metal sample, so that surface effects
need not be considered either in performing the
experiment or in the interpretation of the results.
In our relaxation-time studies, this is an advantage
by comparison with methods based on cyclotron
resonance, where the interaction occurs at the
surface of the metal, On the other hand, small-
angle scattering is not as effective in the magneto-
acoustic effect as in AKCR, so it is necessary to
restrict observations to high values of the harmonic
index n in order to unambiguously determine the

total electron phonon scattering rate. It is not
clear that this limiting case has been achieved in
the present work.

In spite of the aforementioned uncertainties, we
believe that the magnetoacoustic effect has the po-
tential for becoming a precision tool in studies of
the electron scattering process. This potential
will be realized more fuQy if some of the intuitive
arguments we have been forced to rely upon can be
justified by formal analysis.
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A simple model of photoelectric emission is solved essentially exactly. The model con-

sists of a one-dimensional solid whose free-electron-like conduction band is cut off by a po-
tential step representing the surface. Inside are sparse random local elastic scattering
centers. The rate equations of Kane are derived rigorously, and hence expressions are ob-

tained for the number of photoelectrons which escape with and without scattering as a func-

tion of the mean free path, the electromagnetic penetration depth, and the transmission co-
efficient of the surface barrier.

I. INTRODUCTION

The photoelectric effect is a powerful experimental
tool for probing the electronic states of solids.
Hopefully one can use it to gain information about
the electronic density states of the bulk material.

Two effects interfere with this aim: (a) Photoelec-
trons may originate near the surface where their
initial wave function differs substantially from its
bulk value; and (b) photoelectrons may scatter a
number of times before emerging from the surf ace.
The first effect can arise from the distortion of
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"band" wave functions near the surface, as recently
discussed by Ashcroft and Schaich' in a model cal-
culation, or from the presence of localized surface
states of the type recently calculated in Cu by
Forstmann and Heine' to explain some earlier puz-
zling data. The second effect has been studied
phenomenologically by Berglund and Spicer' and
with a phenomenological Hamiltonian by Sutton.
Here we treat the second effect from first princi-
ples, but in a simplified model.

Recently Mahan suggested that it might be possi-
ble to alleviate these two impediments by measuring
the angular distribution of photoelectrons from a
perfect crystal. This can only be true if a signifi-
cant fraction of the photoelectrons emerge without
having been scattered; here we calculate this fraction
as a function of the mean free path, the electromag-
netic penetration depth, and the transmission co-
efficient of the surface.

In practice, inelastic scattering is probably most
important. Here we treat only elastic scattering,
because it provides a simple model problem that
can be solved exactly essentially, and perhaps the
beginnings of a theory for the more realistic ease.
Actually, to the extent that the energy change per
collision is a small fraction of the initial energy,
our results for the fraction of photoelectrons es-
caping with and without scattering should be ex-
tendable to inelastic collisions.

The remainder of this section will be devoted to
a general formulation of the problem. The model
will be defined during the course of the development.
In Sec. II the Green's function for the model will be
calculated. In Sec. III the vertex function, and
hence the final expression for the photocurrent will
be obtained. It is shown that the equation for the
vertex function, after suitable approximations, is
the same as a classical rate equation written down

intuitively by Kane. '
We begin with the formalism for the full three-

dimensional case and specialize to one dimension
later. We wish to calculate the distribution function

f(p, r, t), that is, the density of particles of mo-
mentum p in the vicinity of space point r and time
t. Eventually we will take the asymptotic limit
x- ~, that is, we measure the photoelectrons a long
way outside the sample. Quantum mechanically,
the distribution function is defined by

f(p, r, t)= f d'xe @'
«, P'(r--,'x, t)f(r+ 2x, t))), -

(l)
where &( ~ ) ) represents the actual (nonequilibri-
um) statistical average. At t = —~ the system is
taken to be in thermal equilibrium before the vector
potential A(r, t) of the incident photons is applied.
The formal evaluation and perturbation theoretic
expansion of such expressions is standard. In the
interaction representation, the average is expressed

so that the first-order terms in H& in the expansion
of (2) vanish, and to second order one obtains [using
(4)]

f(p, r, t)= f «, f dt f d'r, f d'r f d'xe '~

&& A(r„ t, ) & j (x, t,) g'(r --', x, t)

& g(r + ', x, t)j (-x„t,) ) ~ A. (r„t,) . (5)

The total photocurrent density, as opposed to its
momentum decomposition above, is given by'

i (r, t)= 2, 3 2e(p-eA)f(p r t) . (8)

Substitution of (5) into (6) reduces to Ashcroft and
Schaich's' Eg. (8) [noting as they do that the second
term in (8) can be neglected to this order].

To evaluate (5), one needs the three-particle cor-
relation function

&
0'(&') 0(i) 0'(2') l(2) 0'(8') l(8) ) (7)

The standard perturbation expansions, however,
give the three-particle Green's function, that is,
the time-ordered expectation value of the same op-
erators. Thus in general, one calculates the time-
ordered product, picks the piece corresponding to
the time ordering of (7), and analytically continues
to other time orderings, so that one can perform the
time integrals indicated in (5).

Here we neglect interactions between electrons,
so that (7) can be decomposed into products

&0(&) 0'(2')) &0(2) 0'(8') ) 8'(&') ((8)), (8)

where we have used (4) to eliminate other possible
factorizations [note that (8) is meant to apply only
to the asymptotic limit where ~~ and ~2 are very
large]. Let

„&0'(",o) c(, t)). "'

and assume that the vector potential has the form

«( (x, t) ((x', t))) =(v '(t) ( (x', t) g(x, t) v(t)), (2)

where & ) represents the thermal average accord-
ing to the unperturbed Hamiltonian H (ground-state
expectation value in our case, since we assume that
7= 0), and v(t) is the ordered exponential

v(t)=re~[-t f «d'r j(r, t) A(r, t)], (8)

where j is the current density operator.
Now, clearly, if l0) is the ground state, then

lim ((r, t) ~0)= lim &0~ / (r, t)=0, (4)
M ao
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A(x, f) = A(x) e ""' ""+ X*(x)e"' "" (10) 2 sin(kx+ ot) sin(kx'+ n)
G x, x', z =— 16)

where q is a positive infinitesimal; then using (8)
and performing the time integrals indicated in (5),
we see that we will need

der
t

dew' " dQ
m J v v

G (x, x', Q) = 4 f dk sin(kx+ u)

& sin(kx'+ o) 5(Q —&„)f(Q), (17)

(xy, x; M)G(x, xp, (d)G (xg, xg,' Q)
( )(Q+ v iq —-(u)(Q+ v +iq —&u')

There are actually four terms that result from the
square of (10), two of them time dependent, but
later it will become clear that (ll) is the only one
which survives in the asymptotic limit.

At this point we describe the model a bit more.
We assume a one-dimensional solid, whose conduc-
tion band is entirely free-electron-like (parabolic).
The surface is described by a potential step at @=0
with vacuum for x &0. The photons impinge from
the right, and are absorbed by the solid in a pene-
tration depth &, so that

(12)

(The real part of the photon wave vector is negligible
in comparison with other oscillatory terms in the
problem. ) The photons excite electrons of energy
&~ from a lower band to the conduction band. The
amplitude for this process is the matrix element
of the current operator [see (5)], which we take to
be given. With no further approximation then we
may take the wave function for the lower band to be
given by its envelope (i. e. , neglect the periodic
modulation) because this is all that is important for
wave-vector conservation, and any numerical er-
rors can be lumped into the matrix elements which
are to be factored out and left unspecified. In any
case, the point under investigation in this work is
what happens to the electron once it gets into the
conduction band, and not how it got there. Except
near the surface, the wave function of the lower
band can then be taken to be

y(x) = (2/v)'~ 'sin(kx+ a) .
Deviations from (13) near the surface give rise to
the surface effect of Ashcroft and Schaich' which
will not be considered here. The Green's function
for the lower band is defined by

d(o A(x, x', (u)

277 g -(d

where A(x, x', ~) is the spectral function

+(xq x 1 R)

= J dt e'"' g'(x, f) ('(x', 0) + g'(x', 0) ((x, i) ), (15)

and is thus

where f(Q) is the Fermi function which in our zero-
temperature case vanishes for 0 &&~ and equals
unity for Q«~, where &~ is the Fermi energy.

We now return to the reduction of (11) and hence
(5). Since the Fermi level must be below the vac-
uum level and since (11) asymptotically vanishes for
values of ~ or (d' less than the vacuum level, we
may replace the G~'s in (11) by the respective spec-
tral densities, so that according to (14), (11) be-
coQles

dQ
G (xy, x; Q + v + i'g)

)& G(xi x2q Q+ v —iFJ) G (xay x( I Q) ~ (18)

Finally, the substitution of (10), (12), (lV), and

(18) into (5) with the proviso mentioned earlier that
the single-particle current matrix elements M are
to be factored out, yields

x~ M
~

~ —sin(kx& + o.') sin(kx2+ a) 8"~ '"2'

xG(x„~--', x, &, +~+iq)

x G(~+-,' x, x„e„+v - ig) . (19)

In writing (19) we have. specialized (5) to our one-
dimensional case, and have also assumed that 6 is
much greater than a lattice spacing, so that the
factor 8'"~ "~' ' could be factored out of the matrix
elements.

II. GREEN'S FUNCTION

We recall now that in our model there is a ran-
dom distribution of impurity scattering centers in
the solid (x & 0). Therefore, we must take an en-
semble average (denoted by ( ),„) over all im-
purity distributions. Thus, we need

(GG) = (G),„(G)„+~ ~ ~

The difference between the left-band side of (20)
and the first term of the right-hand side is the ver-
tex correction to be calculated in Sec. III. Here
we calculate (G)„, which we denote for brevity by

The average Green's functiongsatisfies Dyson's
equations
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~ ~E~i&I+, —V(x) g(x, x'; E~i&I)

= a(x-x'&+ f a~z(x, kg(x x'; z+in)

~ ~Beirut+, —v(x &) g(x, x ', z*iq)dx'

=a(x —x'&w fdxg(x, x; zoic)z(ix'), , (21b)

n(r) = se(- r), (23)

and t„(x,x') is the scattering matrix for an electron
scattering off an isolated impurity located at point

We make one further simplifying assumption
about our model, that the scattering is local, so
that Z(x, x') is proportional to 6(x —x'). (This would
be rigorously true for impurities with a &-function
potential. ) We are thus neglecting any momentum

subject to the boundary condition that g vanish as x
or x'- +~. Here the potential V(x) vanishes inside
the solid (x & 0) and is equal to a constant Vo outside
(x &0). The diagrammatic expansion for the self-
energy Z in terms of the Green's function is well
known. We assume that we are in the limit of low

density of scatters (I Z I «E). In this case the dia-
grams contributing to Z are indicated in Fig. 1(a);
they have the sum

Z(x, x') = 1 dr n(x) i„(x,x'), (22)

where n(r) is the density of scatterers

dependence of the scattering. Therefore, since the
real part of Z is negligible in the low-density limit,
we have

Z(x, x'; E+i&I) = + (i/2v) 5(x -x') 8(-x),
where v is the mean free time:

I/2r = +n~t~ Img (x, x; E+i &)I.
Henceforth we will take 7 to be independent of x
[but note the e function in Eq. (24)]. This is not ex-
actly true because (25) contains the true averaged
Green's function g rather than the bare Green's
function; the latter varies with x in a small region
near the surface (unless E» Vo).

Substitution of (24) into (21) yields a set of equa-
tions which are easily, but rather tediously solved
for G. The solution is

G(x, x'; E -iq)

~ ~

1 ibi(~ +" ) — "ib1lx-x' l

2ibg i(b, +b~) 2ibg

for x&0, x'&0

1 „~ 1-ib2(x+x ) ib2lx-x' 1

i(b, + b,) 2ib,

for x&0, x'&0

e ib&"eib&~ for x&0, x'&0
i(b, +b~)

e@&"e"~~ for x &0, x' &0, (26)
i(b~+ b2)

b, =E -i/27, bg =E —Vo-i&I, (27)

i /

with Imb, &0 and Imb&&0. The solutions for
G(x, x'; E+iq) are the complex conjugates of (26).
The mean free path l is given by l = 2E'~ 7, and an
electron of energy Z has a momentum of magnitude
i&, = E' inside and Pz= (E —Vo)' outside. Since
I/r «E, (27) becomes approximately

be=&2 ~ (26)

FIG. 1. Part (a) shows the diagrams which contribute
to the self-energy in the limit of a low density of scatter-
ing centers. The solid lines represent the true averaged
Green's function g, the dashed lines represent the po-
tential of the scattering center, and the crosses repre-
sent the position of a single scattering center, which is
to be multiplied by their local macroscopic number den-
sity, and integrated over all space. The external g lines
are shown only for clarity and are not included in the
definitions. Part (b) shows the diagrams which contrib-
ute to the average of two Green' s functions.

so that

G(x, x', E -z&I)

Pj P2
Pl+P2

(29)

1
( l/El2(Pe)-l 2& /(x+&x'& + e-l(P&- f/2&&&x-x'&

)
ZPf

for x' &0, x &0

In fact, we may neglect the imaginary parts in (28)
altogether, except where they appear in the expo-
nentials in (26). The transmission coefficient T
and reflection coefficient 8 of the surface barrier
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y&/3 ef(py-f/al) x 8-lpga''
2i(pro, )"'

for x&0, x &0, (30)

plus similar relations for the other cases.
We now evaluate f(p) and hence the photocurrent

in the approximation (GG)«=gg; that is, we consider
only the first term in the diagrammatic summation
in Fig. 1(b). The vertex corrections to this will be
considered in Sec. III. Physically, then, we will
be calculating the contribution to f(P) arising from
those electrons emerging from the surface without
having been scattered.

Reference to Eq. (19) shows that we .will need the
quantity

f dx sin(kx+ n) e+" g(x, r--,x; E —iq), (31)

which on substitution of (30) becomes

1 T e-f 0,' efu

4i p+2 pq —0 —i(l/25+1/2l) p&+ 0 -i(l/26+ 1/2l)
(32)

This is only large when p&- k, since p& and k are
much larger than 1/6 or 1/l and are both defined to
be positive; therefore the second term can be ne-
glected so that squaring and substituting into (19)
gives

6(p, -p) rX'
0 ~ 4

X
(p, —a)'+ (1/26+1/2i)' ' (33)

where we denote this unscattered contribution to
f(p) by fp(p). Again since 1/6 + 1/l is small, we

have

2v51

(P —u)'+ (1/26+1/2f)~ 6+ t

trons is essentially proportional to the product of
the squared matrix element, the joint density of
states, the transmission probability of the surface,
and an effective depth which is the harmonic mean
of the skin depth and the mean free path.

Vfe now make the local assumption for t made
earlier; that is,

t„(x,x') =t5(x-x)5(x- x') .
Defining

F(x, x')=(G(x, x'; E+iq) G(x', x; E —iq))„(38)

F,(x, x') =g(x, x', E+iq)g(x, x', E —iq),

we obtain

(39)

F(x, x') =Eo(x, x')+ n f dxFO(x, x)F(x, x'), (40)

III. VERTEX CORRECTION

The diagrammatic expansion for (GG),„ in terms
of g is well known, and for 1/v «E, it is given ex-
actly by the sum of diagrams shown in Fig. 1(b).
Physically, these diagrams represent contributions
to the photocurrent by electrons which have been
scattered zero, one, two, or more times, respec-
tively, before escaping.

From Fig. 1(b), then, it is clear that we must
solve the integral equation

( G( „xfx; E+iq)G(x,', x„E—iq))„
=g(x„x,'; E+iq)g(x,', x„E—ig)

+ f n(x)dw f dx, f dx2 f dx, J dxa

=g(x„x„E+iq) g(x2, x2; E —iq)

&& t„(x„x„E+iq)t„(x„x„E—iq)

x (G(x„x,'; E+iq) G(xa, xp,' E —iq)),„. (37)

so that

25(e„+v —k ), (34)
6+3

where

n=niti'=2E/f . (41)

fo(P) = xA' dk ' P 5(e, + v -k~),
p ~ I

&n+&

(36)

and the current from this unscattered contribution
ls

jo= 2epf(p)—4p
27r

=ed dk TM 5 &~+v-k6+(
0

Apart from the factor in the large parentheses, the
integral in (36) is the joint density of states.
Therefore the rate of emission of nonscattered elec-

The function E(x, x') is clearly all that is needed
to obtain the full four-argument function (GG)„.

The function I'0, obtained essentially by squaring
(30), has three terms for x and x' less than zero;
all three terms are exponentially small for x and
x' widely separated from each other and the sur-
face. The cross term, however, has in addition
a rapid sinusoidal variation which arises from the
phase memory of an electron reflecting off the
surface; that is, the reflected wave interferes
with the incident wave. This phase memory would

not occur, and the sinusoidal term in E0 would

average to zero, if the position of the surface for
each subsequent reflection were random on the
scale of the photoelectron's de Broglie wavelength,
which is rather small if the electron is to escape
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for x &0 and x'&0 . (42)

In fact, it would be inconsistent to do otherwise in
view of our ear&ier approximation of constant 7. in
Zcl. (24).

Note that Eo, as well as any finite-order itera-
tion of (40), is a sum of decaying exponentials.
However, the exact solution is qualitatively dif-
ferent:

1 1+8 x
E(x, x')= — —

I
for 0&x&x'

2E 1-R l
for x&x' &0.

(43)

The reason for the difference relates to the fail-
ure of any finite iteration of (40) to satisfy the
Baym'0 self-consistency criteria; that is, any
nth-order perturbation theoretic solution fails to
conserve particles because it essentially assumes
that any electron disappears after it is scattered
x times. Thus the scattering does not prevent
electrons from reaching the surface from long
distances, and the evanescence of the vertex func-
tion at these distances is the fiction of a poor
approximation.

The contribution to f(P) by those electrons that
have scattered at least once is [according to Eq.
(19) and Fig. 1(b)]

5j(p) = (2/v) ~A
~

' f dJt ~M
~

' J'
"

dx e '"

ultimately. Since the presence of the sinusoidal
term in Eo makes (40) more difficult to solve,
and because a physical surface probably is diffuse,
we neglect this interference term, taking

(I/4@) (fthm
(x+x') / t e-Ix-x' I/t)

26 ————T 2m~
l 5l

(4'/)

Therefore (44) becomes

5j(p) =.A3 da '(p3 p) M3-
p

x 25 — T 6 &q+ p —k3
5l

(4S)

Therefore the whole asymptotic distribution func-
tion j(p) =fo(p) + 5f(p) is

f(p)= vA3 djp
~ M (26)5(e„+p —k ),

p p

(49)
and the total photocurrent

j=eAsfo dkM (25)6(e, + v —k3) . (50)

Note that this is completely independent of the
mean free path l and of the transmission coefficient
of the surface, T. We may also calculate the
fraction of photoelectrons that escape without
scattering

=(2p p) '

independent of x and x (provided that x& 0, r +-,' x&0).
Thus, the only further quantity needed is that in
the curly brackets in (44). We cannot use (32) for
this because now x' and x are both negative, so
that g is now more complicated and has more
analytic segments. In fact there are now eight
terms instead of two in the analog of (32) and hence
64 terms in the curly brackets. As before, these
simplify considerably in our case where 6 ' and
l ' are much less than the wave vector of the photo-
electron. In this case the curly brackets in (44)
are simply equal to

j 0/j = l T I/(I + 5) (51)
x(J dx [ f dx' e"/ ' sin(kx' +n)g(x', x)]]

x(2Z/I) (G (x, ~ ——,
' x; F+i8) G (r + & x; ~ —f'/)) )„,

(44)
where 8 = &~ + v. The quantity

(G(x, ~ --', x)G(r+ —,'x, x)),„ for x&0, x s-, x&0

may be simply evaluated:

(G(x;~--,'x; &+iq)G(~+-,'x, x; Z —ig))„
=g(x; r —-', x; F. +ig)g(r+ —,'x; x; E —ig)

+(2E/l) J dx'E(x, x')g(x'r ——,'x; E+iq)

&&g(x', ~+ ,'x; Z-zq) . (45)-
Using (30) and (43), we obtain

(G(;;~--,'x; Z+iq)G(~+ ,'x; Z-fq)),„-

and

p 0(x) =- 2p, p, F0(x, x' ) = -,' Te" '

q(x) = 2P, PgF(x, x'),

(53)

(54)

where x' & 0, and substituting (42), (53), and (54)
into (40) gives

We now show that Eq. (40) for the vertex func-
tion is the same as the rate equation for photo-
electric emission written down by Kane by intui-
tive considerations [Eg. (5) of his paper]. To do
this we let x' be outside the sample, while x is
inside, so that E(x, x') is independent of x'. For
these values of x and x', Eo(x, x') is given by

E (x, x') = (1/4P, P,) Te"/ ', (52)

where we have used (26), (29), and (39), plus the
usual approximation that l is much longer than the
de Broglie wavelength. Defining
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q(x) = po(x)+ d~r ~ate(x+x'&I( -Ix-x'I/t~
( y)

This is the same as Kane's Eq. (5), except that
we have not added a nonconserving scattering
mechanism as he has. This could, of course,
easily been done in an ad boc manner by letting
the coefficient in the exponents in (55) be greater
than I

IV. CONCLUSIONS

An important accomplishment of this. work is to
derive rigorously from first principles Kane's
rate equations for photoelectric emission and,
hence, his results; this is a derivation of the photo-
electric rate equations in the same sense that the
work of I anger and others constitutes a derivation
of the Boltzmann equation for impurity scattering
in the bulk. The derivation makes clear that al-
though the rate equation is not exact (just as the

Boltzmann equation is not exact) even for this
idealized model, it is nevertheless a very good
approximation for most reasonable values of the

parameters.
Let me now list several other conclusions, which

although implicit or explicit in Kane's work, have

not, I believe, been fully appreciated within the
context of the first-principles type of calculation
fashionable today. The first is that the true vertex
function for scattering is qualitatively different
from any perturbation theoretic approximation to
it, no matter how weak the scattering. Thus an
infinite order of scattering must always be con-
sidered. Of course, the conclusion that the vertex
function no longer decays exponentially at all, de-
pends on the (inexact) assumption of elastic scat-
tering; in a more realistic cise, the true vertex
function would still decay, but at a much slower
rate than perturbation theoretic approximations

to it. Said another way, photoelectrons emerging
from the surface can originate from points much
deeper in the bulk than the mean free path. A
final point is that even in the limit of infinitesimally
weak scattering, the photocurrent is not given ac-
curately by neglecting scattering from the begin-
ning, that is, the order of the limits is important.
This may be seen most clearly by noting that as
the mean free path becomes infinite, the ratio (51)
does not approach unity, but rather —,'T. The

physical reasons for this is clear and have been
discussed before, but have not, I believe, been
adequately appreciated by those doing first-prin-
ciples calculation. Note that the effect is especially
pronounced near threshold where T is small, so
that the scattered electrons would dominate the
photocurrent, and thus would obscure the angular
dependence of the intensity of unscattered electrons.

These general conclusions probably do not de-
pend onthe details of most of the various simplifying
assumptions of our model, such as the one dimen-
sionality and the locality of the self-energy, al-
though the details of the energy distributions surely
do. Said another way, it is our guess that (51) is
more general than its derivation. The most im-
portant effect in real systems not included here is
inelastic scattering. This will, of course, com-
pletely change the momentum decomposition of
the emitted photoelectrons, that is, the scattered
ones no longer have the joint density-of-states-type
relation. However, for electrons of energy suf-
ficiently high that the fractional energy loss per
collision is small, then formula (51) should still
be qualitatively valid, even though the momentum
decomposition in (48) is clearly wrong. Except
for the surface effect, the three-dimensional ver-
sion of (35) will be right in any case (when properly
calculated with the true band structure and matrix
elements) and (51) can be used to estimate what
fraction of the photoelectrons are given by (35).
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