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The Wigner ~ethad is employed to develop explicit relationships among quantum-mechan-
ical and classical equations of motion and quantum-mechanical and classical pair-correlation
functions of spin operators. In tQjs method, quantum corrections to the classical theory can
be accqra$e)y eqfj~ated. '/he for~alism is applied to a spin-y Heisenberg model at high tem-
peratures. The most attractive feature of this method is that many of the results are intu-

itively saf$sfying. Finally, we make a connection between our results and the classical calcu-
lations made by several other authors.

I. INTRODUCTION

The classical theory of spin dynamics, in which
the quantum-mecQ@niqg. spin operators are re-
placed by classical vectors of fixed length, has
been investigated both aqalytiegfy' and numerical-
ly.

In particglg. r, these g,authors consider the spin-
spin pair-correlation function

Tr[S„S,...(t)+S,...(t)S„]es"
(1).Ty e

The "classical" Hamiltonian H„(5~ ~ ~ 6„) is ob-
tained from H(5, ~ ~ ~ 5„)by substituting jA, for

~e factor 6,(t) satisfies a classical equation
consistent with H„(A, ~ ~ ~ A„). For example, if
8 is given by the Heisenberg model

the classical Hamiltonian is

(4)

where i and i' label the individual spins, 0. and 0,'

label Cartesian components and, of course,
h S„(f)is the Heisenberg operator for the 1th
component of the spin operator for the itb spin.
The "claysical" approxj~ation for the gyin-j case
consists of substituting vectors jA, for 5;, where
the 6 s are unit vectors, and integrating over the

'(f) =j' f d 5, ~ dG„A,, A, . (t) e '"v

Jdh ~ ~ ~ d5 e' ~~. (2)

and the classical equation of motion is

Q, (f)=—g g, , , Q,.(f)xQ, .(f) .
i'0f

Some authors make somewhat different sub-
stitutions using [j(j+1)]' 'A; rather than jA, . How-

ever, in neither case is it at all clear how closely
the result approximates Eq. (1).

The use of the classical approximation simpli-
fies the computations considerably. It even makes
it possible to study spin dynamics by directly solv-
ing the equation of motion for a large (- 1000)
number of coupled spins.
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Before any consequential physical results are
deduced from these classical calculations, it is
imperative that the classical approximation be
derived rigorously and systematically from the
exact quantum theory and the explicit forms for
the cox'x'ectlons to the clRsslcRl approximation be
evaluated in detail. Recently, the %igner method, s'

in vrhieh a classical approximation emerges quite
naturally from the exact quantum theory, has been
formulated for spin systems. Here me employ
this formalism to investigate an explicit relation-
ship among quantum-mechanical and classical spin
pair-correlation functions and quantum and clas-
sical equations of motion.

Ill Sec. Ii) R br18f sllnlnlR1'y of 'tile Wigllez' Illethod
and its applidation to the quantum equa, d.on Of

motion and the spin coax'ela, tion functions are pre-
sented. This formulation is then applied to the
spin-~ Heisenberg model in Sec. GI„and the quan-
tum corrections are evaluated in the high-temper-
ature region. Finally, the validity of our formu-
lation and other implications are discussed in
See. IV.

x(nI x I I)„' ~ (nl x L;)p

The L,'s have the form of angular momentum
opex'Rtox's

i51=rI/II . (12)

@'ith the aid of the fortitaiislII in Eqs. (6)-(ig),
%e can %rite the quantum correlation function,
Eq. (1), as

~ p

I,,"(t)= — d5, " d5„(e '") G(n,.ReGn, .(t)),
(IS)

II. FORMULATION

. The Wigner methods'4 provides a technique for
evaluating the trace of any function of spin opera-
tors A(f,. ~ ~ ~ f„)by the integration of its "'Wigner
equivalent" A„(51~ ~ ~ 5„):

Z= fd61 ' ' ding(8 )~ ~

Integrating Eq. (1S) successively by parts, we
obtain

TrA(f ~ ~ ~ S )= 2j+ 1
4m

dhl ~ ~ ~ d5„A„(nl ~ - ~ 6„). {6) X.=G(e ").,
For a spin-j system, the %igner equivalent of

the 0.'-component spin operator for the jth par-
ticle is

(s,.) =jn...

and the signer equivalent of products of functions
can be obtained by using a "Groenevrold rule, " as
derived in Refs. 3 and 4,

G= D. (1.L';),

for the spin--,' case. The'oughout this payer, sum-
mation is to be understood for repeated Greek in-
dices. Fox' the general values of j,

G=II (+5 II () ( —((( —I))

{A(f," f„)a(f," f,))

=& (61 ~ ~ 6g)G& (51 6N), (8)

vrhere

N

G=g G;,
i=i

G, =i —(I/2j)L, L +(t/2j)L, . n. xl, .

fol' J = 2 ~ A backWard Rl'1'OW Oll RIl Til Indicates
that it operates to the left. For general values of
j the expression for 6, is

Fox' arbitrary VRlues of j %e can %rite the
factor in boldface parentheses in (15) as

n, ReGn, .(t)=n; n, (t)- 2. {L,„n;„)(&„n, (t)) ~

2j

Substituting Eq. (18) into Eq. (15) and integrat-
ing by parts once more, @re obtain

r"„"{t)=(f'/z)fdic, " d|l„q.n,.n,.(t)

+(j/2z) fdh, '' d& [y (L'n )n (t)
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+(I.,„x.)(L...Q,.)n,.(t)] .
Using the identity

2L;Q; = 2Q;~,

(19) main result. (We have given a form for the exact
quantum spin pair-correlation function and the
quantum equation of motion in which the classical
limiting process is directly visible. )

Now' expand n, z(t) in a power series in t,
Eq. (19) can be rewritten as

1;p (t)=[j(j +I)/z]fd@, dn„g n; Q„.(t)
+(j/2&) J dna'''dn„(I. ,„y„)(L n )n, , (t) . (21)

n, ~(t) = n,~+ n,~(0)t+ ~ ~ ~

2jt ~Jlt lQlf OQl Eg + ~ '~ ~
~

V
(26)

Equation (21) is much more convenient than (15).
To evaluate (15), we would have to determine the
derivatives of n, „.(t) with respect to the initial unit
vectors O,.z. This is difficult to do since we do
not usually have an analytic expression for n, .(t)
in terms of the initial values. This is particularly
true in the case of the numerical calculations. Of
course j n, „.(t) in Eq. (21) is the Wigner equivalent
of the Heisenberg operator 8„.(t) and satisfies the
Wigner equivalent of the. Heisenberg equation,

dt j A . (t)=&[H, S. (t)] (22)

For simplicity, let us consider a Heisenberg
model with only nearest-neighbor exchange,

&= —Z &((8; 'S, , (23)

where

J for nearest neighbors
1l 0 (24)

Then

—n,.(t) = ——„QZ„, e.,„n„„(t)GQ,„(t) . (25)

(e „„is the totally a,ntisymmetric tensor. )
It follows from Eq. (25) that

—, n, (t)=- ' Z'n, (t)«, (t)-2', (t), (26)

where the summation on l is restricted to the near-
est neighbors of l, and

r .(t) = Zd &—,.Q, (t)(o —1)n,(t) .1

5,. (2V)

Equation (26) without y, (t) corresponds to the
classical equation of motion (5) and y, (t) can be
thought of as representing the quantum corrections
to the classical equation of motion.

Comparing Eqs. (21) and (26), we see that we have
expressed the exact quantum pair-correlation func-
tion in terms of unit vectors n, (t). The classical
approximation results when we neglect the second
term on the right-hand side of (19), replace y„with
e "I and neglect y, (t) in (26). This constitutes our

This results in the expansion of y, (t) as follows:

gJ2
r, (t) = a 2'[n, (t) -n, (t)l[1 -n, (t) n, .(t)]+O(t') .

+7
—+ [n (t) —n (t)][1—n (t) 'n (t)] .

(30)

We note that the first term in the right-hand side
of Eq. (30) gives rise to precessions of A, about the
axis parallel to its nearest neighbor. The second
term gives rise to torques which tend to rotate ~,
in the plane of A, and its nearest neighbor. The
magnitude of this force vanishes for either aligned
or antialigned , 's, and hence will tend to bring
the system into its ordered state. The first preces-
sional terms do not tend to align or antialign the
spins. Obviously, the last term in (30) will give
rise to damping of the precessional motion of A, (t).
The contribution of this term to the spin-wave
damping will be discussed in a subsequent paper.

III. APPLICATION AT HIGH TEMPERATURE

We now wish to apply the formalism embodied in
(21) to obtaining the corrections to the classical
correlation function [cf. Eq. (2)]. We restrict our-
selves to the high-temperature region. In the high-
temperature region, we can obtain an explicit ex-
pression for the Wigner equivalent of the density
operator (see Appendix)-for simplicity in this sec-
tion, we will consider only spin--,':

(e BH) eA{g&- (31)

where

A(p) = —pH + p
—JH +

ill

1
+— Z z(,z„.n('n, , ——Q g2), (n) n, )~

iS lPl' l i l

We are evaluating the 0, 's at t rather than t=O.
This gives the same series to order t. We will re-
tain only the first term in (29). Substituting (29)
into (26), we obtain

—n, (t)= j Q'n„(t) xn, (t)
l'
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Using Eq. (1V), we can write

y =1 —9PH + —P 6
Z J'„(3—ISQ)'Q))

1 ~ 1 p

9
+4 ~ J()J() Q~'Q) ~

rear'

+—Q J, , J „(A, A, )(A„.A„))+ ~ ~ ~ . (38)
&6 &~r~~n

Some straightforward manipulation yields

~=e"") S+ -8 +4 'Za.

In the deviation of (37) we have ignored higher-
order correlations. For example, the next-order
corrections are of the general form

(Q Q)i()Q. ,„Q;„(t))„. (39)

dinary classical approximation is retrieved in Eq.
(3V) if (i) all terms in the right-hand side after the
first are ignored and (ii) Z, (t) -0 in Eq. (26).

We see that the higher-order contributions to
(3V) [including those from A(P)j will contribute to
higher-order classical correlations. It might seem
that the constant term in (32), ~eg, ~, J „,will con-
tribute extra second-order correlations. This
term in e"+' appears in both the numerator and
denominato'r in {35)and just cancels.

IV. DISCUSSION

+P' ) J„J„.A, A, +O(A')+O((t')). (34)
Also, from Z, there are terms,

(Q, Q,.~&„(Q,„Q„„(t)&„.

&r
= dQ' 'd e ~ j j+1~r ~r't

-~(2PJ- e'J')ZQ. ..Q,. (t)

Of course Z can be written as

Z= f dQ, ~ dQ e"~) . (36)

In Eq. (35), the summation on f is restricted
to the nearest neighbors of i, and the summation
on i ' is restricted to the nearest neighbors of i
such that i Wi.

Now we wish to expand (35) in a series of clas-
sical correlation functions of increasing order, and
we shall again keep only the terms of second order:

r," (t) =i (q+ I)(Q,.Q...(t))„
—,.(VJ-e'J')Z(Q, .Q,.(t)&.,

~i6P'J' «Q,-.Q,. (t)&.„ (37)

where ( &„ is defined to be

(' ' '&„= dQ~' ' ' dQJJ e ~ ' '/J dQ~ ~ ~ dQ„e+ ~ .
(36)

The difference between the first term of Eq. (37)
and Eq. (2) is that in the latter, Q,.A. (t) is taken to
obey the classical equation of motion, i. e. , Eq.
(5); in Eq. (3V), Q, ~ (t) obeys Eq. (26). The or-

We insert (34) into (21). Then we expand this
result in a series of correlations of increasing or-
der in the ~r's. Including only terms of second or-
der, this results in

We would expect this term to be very small un-
less, say, i=i . Such a term actually occurs, how-
ever, and it is multiplied by a factor (PJ) with m
at least unity. The other fourth-order correla-
tions should go roughly as the square of the second-
order correlation which is already small in the dis-
ordered phase.

To use (37), we can simply use the numerical
results of, say, Ref. 2 for the correlation functions.
In doing this, we would be ignoring an essential
quantum feature of the spin problem. That is, we
would be approximating y, (t) in (26) by zero. We
have already pointed out that y, (t) is the factor
which provides both a torque tending to align the
spins and a term tending to damp out the spin-wave
modes. Both of these effects are essentially quan-
tum mechanical in nature.

An alternative approach would be to use Eq. (30)
as the equation of motion, compute the pair cor-
relations, and substitute these results into (3V).
This program would not involve any more difficult
a numerical computation than was required in Ref.
2. It would provide an estimate of the quantum ef-
fects in the equation of motion.

In summary, we have, employing the Wigner
method, exhibited the exact quantum spin pair-cor-
relation functions and equations of motion in a form
which allows the quantum corrections to classical
results to be accurately estimated. 'This has been
applied to the high-temperature spin- —,

' pair-cor-
relation function to obtain various pair-correlation
additions to the classical results.
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D =-(e-~) (A1)

Then,

(A2)

APPENDIX: DERIVATION OF EQS. {25)AND (26)

Consider

Try the form

eh&8) g(p) Q + pn
n-"&

Then, substituting (A4) into (A2) and equating the
coefficients of P" in both sides, we obtain

a, =-H„, a, =-,' [(H')„-H„'],

where

(As)

a, = ——,[(H'). -H.'] +a,H. ,
1

and Eq. (26) follows straightforwardly.

(A5)
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The anomalous Hall coefficient R of dilute magnetic alloys exhibiting the Kondo effect is
calculated in the second Born approximation using the s-d exchange model. The variation of
8 as a function of the magnetic field, for fixed temperature, is studied. Comparisons are
made with other theories and recent experimental data.

I. INTRODUCTION

The effect of an external magnetic field on the
Kondo behavior of the electrical resistivity in di-
lute magnetic alloys has been studied theoretically
from two different approaches: The 8-matrix theo-
ry of More and Suhl~ and a second-Born-approxima-
tion calculation by the authors. ' The first approach
is in principle correct at all temperatures and
fields, but because of its complexity and the amount
of computer calculation needed lt cannot easily be
fitted to the experimental results. The second one
gives explicit formulas which can readily be com-
pared with experiment, but it is only a rough ap-
proximation, and the limits of its validity can only
be fixed through the exact theory. Both papers
contained calculations of the conduction-electron
relaxation times for spin up (7;) and spin down

(7 ). Recently, More has used the 8-matrix life-

times to compute the Hall coefficient as a function
of the magnetic field It (H) for fixed temperatures. ~

He obtains curves of 8 (H) increasing more or less
rapidly with H, which he compared with the experi-
mental data on impure gold due to Gaidukov. ' How-

ever, the physical explanation of this behavior could
not be obtained from this calculation. In the pres-
ent paper we shall calculate H, (H) using the expres-
sions for ~, and ~ obtained ln third-order pertur-
bation theory. %'e show that the field dependence
of 8 is essentially explained in terms of the square
of the impurity spin magnetizations for low fields
gpsH/AT&1. We compare this result with More's
and with the recent data. We also obtain the very
high-field (g p, s H/k T &10) behavior of H, (H). This
last case is discussed more extensively elsewhere. e

The behavior of R is compared with the similar be-
havior of the magnetoresistivity, and suggestions
are made for further experiments.


