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Electron-phonon contributions to the infrared absorption in metals are examined from two
points of view. First, "golden-rule" calculations are given for normal metals and supercon-
ductors which reproduce the phenomenological theory used by Joyce and Richards to analyze
their data in lead. This' theory is expected to be valid for weak electron-phonon coupling.
Second, the Holstein transport theory for normal metals is used to examine the corrections
arising from strong coupling. Solutions are found for the response function at general fre-
quencies and wave vectors. The results are similar in form to the golden-rule theory, and
provide a simple correction factor to this theory. It is suggested that optical measurements
on both normal and superconducting materials may provide a valuable tool for analyzing the
coupled electron-phonon system.

In a recent letter, Joyce and Richards' (JR) have
reported the observation of phonon contributions to
the far-infrared absorptivity in lead. The experi-
ments were done at 1.2oK both for the supercon-
ducting and the normal state (by the application of
a 1200-6 magnetic field). The important feature
of the JR experiment is an additional absorption
above what is expected for a collisionless electron
gas. This extra absorption is ascribed by JR to
the Holstein mechanism in which the incident pho-
ton is absorbed in a second-order process involving
creation of both a phonon and an electron-hole pair.
Evidence for this mechanism is the fact that the
onset of the extra absorption occurs in the frequen-
cy range of abundant phonons, 30-70 cm ', in
normal lead, while in superconducting lead the
onset appears to be shifted up by 22 cm ', which
is 2&, or the minimum energy required to create
an electron-hole pair in the superconducting state.

To further substantiate their identification of the
Holstein mechanism, JR presented a semiquanti-

tative theory in which they assume the absorption
scales as the density of final states for the com-
bined electron, hole, and phonon with energy con-
servation the only constraint. This theory seemed
to give a fairly satisfactory explanation of the
structure that was observed in the ratio of super-
conducting-to-normal- state absorption. However,
the theory had a number of deficiencies. The ab-
solute magnitude of the effect was not predicted.
The role of momentum conservation was unclear.
The electron-phonon coupling strength was taken
into account by the use of the superconducting tun-
neling data of McMillan and Rowell. ' However,
the electron-light matrix element was omitted.

There already exists in the literature a number
of discussions of the Holstein mechanism. Pippard4
has given an elegant qualitative description and
Holstein' an elegant formalism for the normal-
metal problem. Scher has made numerical cal-
culations based on Holstein's formalism in the
local limit where the anomalous skin effect is ig-
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nored. In this paper we present calculations of
the infrared absorption for lead in the normal
state, based on a solution of Holstein's equation'
for the response function at all q and ~. We also
give a derivation of the JR phenomenological the-
ory.

The plan of the paper is as follows. Section I
contains a review of the theory of optical absorp-
tion. The standard solutions for pure metals, both
normal and superconducting, without electron-
phonon interactions, are derived from a golden-
rule argument. In Sec. II we go to second order
in the golden rule in order to include the lowest-
order effect of electron-phonon interactions on the
optical properties in the local approximation. The
resulting theory is identical in form to the JR
phenomenological theory. This theory is formally
valid only for weak electron-phonon coupling and
for frequencies high enough that the anomalous skin
regime is avoided. However, the theory is inter-
esting for three reasons. First, it gives in a sim-
ple form a good qualitative picture. Second, it
illuminates the somewhat obscure results of more
exact theories. In fact, for normal metals the
solution of the Holstein equation can be almost
constructed completely by intuitive extensions of
the simple theory. Third, it turns out for normal
metals that the simple theory is not a bad approxi-
mation to the full theory in spite of nonlocal and
strong coupling effects. Calculations based on the
simple theory are presented in Sec. III.

In Sec. IV, the Holstein theory' for normal met-
als is presented and solved formally. Some of the
consequences of this theory discussed by Holstein'
are rederived in an elementary way. Calculations
based on the Holstein theory are given in Sec. V.
In Sec. VI the results are summarized, and new
experiments are suggested. In the Appendix the
weighted phonon density of states n F and its rel-
atives are discussed.

I. GENERAL THEORY OF INFRARED ABSORPTION

Owing to the presence of free carriers, the light
incident on a metal is largely reflected at low fre-
quencies. The absorption is given by

A = (c/v) Re(Z),

where Z is the surface impedance of the metal, and
is several orders of magnitude smaller (in the in-
frared} than the free-space impedance 4&/c. In
the far-infrared frequencies at low temperatures,
the penetration-depth of light is usually smaller
than the mean free path. Under these circumstances
the surface impedance depends on the nature of the
interaction of the electrons with the surface. An-
other way of saying this is to note that in order for
energy to be dissipated in the metal there must be
some momentum sink to balance the extra momen-

4w'i(uf t"
Z, =, dqln 1 — » ~(q, ~) . (3)

tJO cq
In these expressions, a(q, ~) is the wave-vector
and frequency-dependent transverse dielectric func-
tion which is related to the conductivity o(q, ~) by

~(q, ~) = I+4vio(q, ~)/~. (4)

It is assumed that the metal has cubic or higher
symmetry with the light incident along a cube axis
so that the transverse conductivity is a scalar.

The imaginary part of & contains information
about decay processes for electromagnetic excita-
tions of frequency ~ and wave vector q, For a col-
lisionless gas, energy and momentum conservation
will allow decay by electron-hole pair creation only
if qv+ & ~, where v~ is the Fermi velocity. Thus,
the "surface absorption" is identical with
the large q contributions to the integrals (2) and
(3). When collisions are added, decays become
possible for all q and co. Roughly speaking, the
"volume absorption" is associated with the small
q contribution to (2) and (3). A skin depth 6 is
roughly defined as q ', where q is the minimum
q above which contributions to Z in (2) or (3) are
negligible. If this depth 6 is greater than the dis-
tance vz/&u which an electron travels in a period of
the radiation field, the surface absorption is negli-
gible. In this case, a local conductivity is adequate

turn of an electron-hole pair (which has nonzero
momentum, while the light quantum which created
it has nearly zero momentum in vacuum). A mean
free path shorter than the penetration depth means
that the momentum balance may be taken up in col-
lisions; this type of process is called "volume"
absorption. However, a collisionless electron gas
still has a dissipative mechanism because the pres-
ence of a surface breaks down translational invari-
ance; momentum conservation normal to the sur-
face is no longer strictly required. When the elec-
tronic mean free path exceeds the penetration
depth, "surface" absorption is the dominant mech-
anism for absorption. This is the situation in the
JR experiment at low frequencies (below -30 cm i}
because their lead sample was very pure and the
mean free path effectively infinite. However, above
30 cm ' there is a finite amplitude for scattering
electrons by phonons. In this regime volume ab-
sorption begins to compete with surface absorption.

General expressions for the surface impedance
have been derived by Reuter and Sondheimers for
two cases: Z, corresponding to the case where the
electron surface scattering is specular, and Z,
corresponding to the case where the surface scat-
tering is diffuse:

8$ dqc', q'-(~'/c')~(q, «) '
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(i. e. , q can be neglected in e and o), and Eq. (2) and

(3) can be integrated. The result in both cases
is an ordinary classical wave impedance' for the

surface impedance:

g „=(4v/c) [e((u)] "'.
This formula will be valid in the near infrared and

higher frequencies, and gives the classical expres-
sion for the (volume) absorption,

A~i ——2/(dp T

This equation results from the Drude formula for
e(~), with a transport lifetime & and a plasma fre-
quency ~~, under the assumptions ~w»1 and

A complete program for calculating the far-in-
frared absorption involves first a calculation of
the response function o(q, &u) and then the use of

Eqs. (1) and (2) or (3). For normal metals a semi-
classical Boltzmann equation yields good results
for o(q&u) for low frequencies, but breaks down when

the frequency becomes comparable to phonon fre-
quencies. Holstein' has derived a generalization
of the Boltzmann equation valid in the phonon fre-
quency range by using diagrammatic perturbation
theory to calculate the thermodynamic current-
current correlation function in normal metals. An

analogous formalism unfortunately has not yet been
worked out for superconductors. Nam' has partial-
ly carried through this program for superconduc-
tors by including electron-phonon self-energy cor-
rections in the conductivity. However, he erro-
neously assumed that the ladder diagrams were
negligible. [The Migdal theorem does not hold for
o(q, ~) unless q is comparable to k~, the Fermi
wave vector of the metal. ] In principle, integral
equations analogous to Holstein's and valid for
strong coupling superconductors could be derived.
The algebraic problem would be difficult but not
prohibitive. However, we shall see in Sec. IV that
for normal metals, the effect of the ladder diagrams
is relatively minor. It would not be surprising if
the same were true of the superconducting state;
then the Nam theory could be expected to be quite
adequate.

In the first part of this paper, we will study the
structure of the weak coupling solutions. A simple
unified procedure for this problem is to use the
golden-rule formula for the real part of the con-
ductivity. Then the imaginary part may be found
by Kramers-Kronig transforms, and the errors
may be estimated by appealing to the f sum rule.
As an introduction we now derive the conductivity
for a collisionless electron gas. In this case the
golden rule gives the same answers as the Boltz-
mann equation.

The golden-rule formula for the conductivity at
zero temperature is

where f -„ is the Fermi function [exp(t3ef) —1] ', p

is the inverse temperature, and the wave vector q
of the light is assumed small compared with k.
The superscripts 1 or 2 will be used to denote real
or imaginary parts, the subscripts N or S will de-
note normal or superconducting, and the subscripts
0 or i or ph will denote the collisionless part of

cr, or the part of g arising from impurities, or the
part of 0 arising from phonons, respectively.
Equation (9) can be readily integrated and Kramers-
Kronig transformed to yield precisely the & =~
limit of the familiar transverse conductivity from
the Boltzmann equation. ' Furthermore, it is easily
shown that (9) exhausts the f sum rule '

f o'„, (q, u)) d~ = s ~p .
In order to integrate Eq. (9), it is convenient to
use the assumption of cubic symmetry to replace
v„- by —,'[v-„—(v.„q)3/q ]. We quote the result to
lowest order in ~/quiz [which is equivalent to
neglecting the part (v ~ q) /q ]:

(10)

The 0 function shows that there is no dissipation if
qv& & (d. At low frequencies and temperatures, the
surface impedance (2) or (3) is dominated by values
of q» ~/iz (in other words, the skin effect is highly
anomalous). In this limit (which we shall call the
Pippard limit), Eq. (11) is a good approximation to
the total conductivity, and the 8 function can be
omitted. If this approximation is used in Eqs.

x6(EO+ h&u —Ey)

where l0) is the ground state of energy Ep and the
sum runs over final states lf) of energy Ez. The
perturbation Hamiltonian H has two parts, the ra-
diation field part H, „, and the electron-phonon part
H„. Let us first consider the conductivity in the
absence of electron-phonon interactions. We are
neglecting Coulomb interactions between electrons
throughout this paper. In a normal metal the per-
turbation is

H t —Q f (e/c)(vg«2), A, cg„-cg

where cg is the creation operator for a Bloch elec-
tron of wave vector k, energy &g, and velocity v„-

= (V;ef)/fi, and A is the vector potential of the ra-
diation field, chosen to be in the x direction. We
use Hartree-Fock states for the system, with the
ground state represented by an unperturbed Fermi
sea and an excited state represented by an electron-
hole pair. Then Eqs. (7) and (8) yield

v'„0(q, &u) =(ve /~) Q, v„„f-„(1—f„„)Ei(R~.—-hv„~ q), -

(9)
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(1)-(4) the absorption is

for diffuse scattering, valid when

(i2)

~s,o+~os, o=o'~, o ~t ~

if jgcv& 2g0

((,—'~ z(,(-" /((q) o(he~(se8
1 2& I 1 2&

y,(~) = — i+ —E(q ) —— i ——K(n ),
2 S(d 2 I(v

(17b)

&[l(f, f+q) (y'-„-, y„-, -y „.y .„;.)
—p(k, k+q)(y'-„-, y'-„, +r;(r~ , H, .

where y,', is the creation operator for a single-
particle excitation of energy Ef=(e~t+ 6 )" . The
functions l and p are the "coherence factors" oT

BCS. At T =0, only the term with two quasiparticle
creation operators enters in lowest order. The
function p is given by

/2(k k )
1

1 R r+ j f
E.E. (i4)

The expression for the conductivity analogous to
(9) is

o,',0= (((em/(d) Qf vf, pm(k, k+ q) a(E„+z;„-—8'(v),

The integration can be explicitly carried out to
lowest order in (d/qv/ analogous to (11), and yields

and (d7'»1.
The resuits for specular reflection in this regime

differ by a factor f. Dingle" has presented series
expansions in powers of (1- i/(dr) /y for 2, and 2, ',
using the complete Boltzmann equation solution for
cr„rather than the approximation (11). His results
[Equation (6. 4)] in the limit un'»1, y»1 agree
with (12). The code for subscripts on A is "N or
S" stands for "normal or superconducting, " while
"cl, p, or d" stand for "classical, Pippard limit,
or Dingle's series expansion. "

Only diffuse surface
scattering will be considered from here on.

The analysis for a superconductor is completely
parallel, but numerically more complicated. In
order to have tractable expressions for the absorp-
tion, we choose at this point to use the Bardeen-
Cooper- Schrieffer" (BCS) representation rather
than the more accurate extension of this theory due
to Nambu, Gor'kov, and Eliashberg. " Furthermore,
we use a very simple model of the theory where the
gap b is taken to be independent of both R and co.

These approximations are reasonable for weak cou-
pling materials. However, for strong coupling
materials such as lead, this introduces significant
errors of order 6/(dv, where (dv is the Debye fre-
quency.

Within the BCS model, the perturbation Hamil-
tonian is

H.„=P, e/c(v „-„-„),A,

where K and E are complete elliptic integrals of
the first and second kinds, respectively, and g and

p are defined by

(1 ~2) 1/8
(is)

(f IH In)(nlH 10)

Eo —E„ (2o)

We are interested in final states where the elec-
tron-hole pair has a nonzero momentum, the bal-
ance of momentum being taken up by phonon crea-
tion. Elastic collisions with impurities can bal-

These results have the same range of validity as
(11), and yield an absorption in the Pippard limit,

A, ~
= A/((, ~ Re[2e"~/r((v) "3]. (ie)

This shows a vanishing absorption for (d & 2d, and

an absorption rapidly approaching the normal-metal
value (12) when (d & 2~. These results were first
derived by Mattis and Bardeen. '

No integrated expressions analogous to Dingle's
series expansion exist to take the superconducting
absorption beyond the Pippard limit. Partial solu-
tions to this problem have been presented by MQ-

ler. '~ However, the algebra appears prohibitively
difficult, and the corrections are no more important
than corrections for strong electron-phonon coupling
which have been ignored in this analysis.

II. PHONON-ASSISTED ABSORPTION WITHIN

THE GOLDEN RULE

In the collisionless case, the golden rule in first
order gave results identical to the collisionless
Boltzmann equation and satisfying the sum rule
(10). To take account of collisions, we will go to
second order in the golden rule. This is equivalent
to a first iteration of the collision term in the
Holstein-type Boltzmann equation, and will no
longer be as accurate as the full solution of the
Boltzmann equation. However, the loss in accuracy
is partly compensated by the simplicity of the
derivation and of the results. The technique works
equally well for normal metals and superconductors.
In Sec. IV it is shown how the golden-rule results
for the normal metal follow from the weak coupling
limit of the Holstein theory.

The second-order golden-rule formula consists
of replacing (f IH'10) in Eq. (7) by
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H„= 7 M22 ckf. c2 (ay+ at5}, (21)

ance momentum in a precisely analogous way; this
will be demonstrated by making a parallel calcu-
lation of the impurity conductivity. In both prob-
lems the final state in (20) can be reached from
the ground state by operating once with the external
field Hamiltonian [Eq. (8) for normal metals] and
once with the collision Hamiltonian. The collisions
will be electron-phonon interactions (H„) or elec-
tron-impurity interactions (H, ,), and take the
form (for normal metals)

(Fs):

((G(k'k )»
I I:S

(28)

In writing (25) we use the fact that the integrand G

is rapidly varying in ~ and e only very near the
Fermi surface, and falls to zero elsewhere; we
have also assumed that very close to the Fermi
surface the angular variation in k and k is indepen-
dent of e and ~ . Now we define

H, ,= Q Vkf cjoy cf,
kk'

(22)

where Mp„(Vkk. ) is the matrix element for scat-
tering an electron from a Bloch state f to k by
electron-phonon (impurity) scattering, and a~-

is the creation operator for a phonon of wave vec-
tor Q = k —k and energy hO+. Phonon-polariza-
tion indexes are suppressed, as are electron band
and spin indexes.

When the summation over intermediate states in
(20) is performed, using the Hamiltonians (21) and

(22) in (20) and (7), we obtain for the conductivity

7Te
oNkk 2 3 ~ IMkk I

(v —v') f(1—f )3S

x 6(~ —~+ KQo —8&v), (23)

7r
2

2'3 &
I

V22 I' (v- v')'f(1- f')

X 5(E —f —lf(d}, (24)

where the sums go over states of single spin ori-
entation, and subscripts k or k are implied on the
unprimed and primed variables. In deriving these
expressions, energy denominators of the type
~ —q ~ vg have been approximated by (d. This is the
local approximation which together with the weak
coupling approximation underlies the simple theory
of the present section. The local approximation is
intuitively justified for the collision terms in o(q&u)

by the fact that when we calculate Z using Eq. (2)
or (3), the collision terms contribute mainly for
small q, while at large q the results are dominated
by the collisionless (surface) terms.

The summations in Eqs. (23) and (24) are most
conveniently performed by integrating over constant-
energy shells:

AO) '
QG(k, k)= - df dk ((G(f, k, k, k }&),
kk~ J -eo

(25)
where N(0) is the unrenormalized density of states
for both spin orientations at the Fermi energy
(which is taken as the zero of energy). The angular
brackets denote averages over the Fermi surface

o',„(&)F(fl)=, ((IM„-„I'(v- v')'5(kn, kf—l)»,
(27)

((I v;f.
I

' (v- v')'»,
2vF ok

where a„F is a phonon density of states weighted

by the amplitude for large-angle scattering on the
Fermi surface. It is closely related to the phonon

density of states F, the dc electrical resistivity,
and among other properties, the function eo~F which

is measured by superconducting tunneling. ' This
function and its relatives and their properties are
more fully discussed in the Appendix. Using these
definitions, the conductivities (23) and (24) can be
written in the form

o' = ((u2/42~) ( I/(u 7), (28)

where v„, is given by Eq. (28) and v„,k is given

by

2' dQ(~ —0) o'„F(O).
o

(3o)

I/~„,k
-»,„((u&,„,

where (&u&,„ is an average phonon frequency calcu-
lated using n, „F(ur)/&u as a weight function, and

~„ is an effective coupling constant, defined as
twice the normalization of the weight function,

(32)

The form (29) is the Drude formula to lowest order
in (~3') 3, which is the effective expansion parameter
of our perturbation-theory approach. Equation (28)
is the standard expression for the impurity-limited
transport scattering time in lowest-order perturba-
tion theory. Equation (30) is the analogous expres-
sion for the phonon-limited transport scattering
time. This scattering time is frequency dependent,
going to infinity as (d ' for frequencies low compared
with typical phonon frequencies, and approaching a
constant value first found by Holstein for frequen-
cies above the phonon frequencies. In the notation
of (A12), this limiting value is
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By use of Eq. (All), this limiting relaxation time
ca» be related to the high-temperature dc conduc-
tivity a=ne &,/m:

I/r„, » - (I/~, ) (a(~& „/2u, 7}, (33)

where T is the temperature at which the resistivity
&, is measured. In the model of a Debye spectrum
and a constant matrix element for electron-phonon
coupling, a„F scales as &o and (&u)„=-', &uD. Using
this model, Eq. (33} reduces to the result given
by Holstein.

The formula (30) for the transport relaxation
time can be contrasted with the random-phase-ap-
proximation (RPA) results for the lifetime rs for
a quasiparticle of energy (d to decay by phonon
emission [see Eq. (56)]:

1 2 1 r(~)I
= 2v dfI as F(Q}, (34}

7o ~ o

where noF is the isotropically weighted phonon
density of states defined by Eq. (A2). At low fre-
quencies noF scales as (d and 7o goes to infinity
as ~. If the difference between a„and o~ is ne-
glected, the transport lifetime &„'» is an average
of vo' over the frequency range 0 to ~. Thus, &„»
has less structure than ro. The difference between
e«and ao causes &„,„to exceed &o, especially at
low frequencies. This reflects the well-known fact
that small-angle scatterings are inefficient in re-
laxing a current- carrying electron distribution.

It is interesting to ask how well the conductivities
derived in second order [Eqs. (29} and (30)] satisfy
the sum rule (10}. In the impurity case, Eq. (29)
diverges when used in the sum rule (10). This
divergence is easily understood'. Our perturbation
theory is an expansion in powers of (&uv) ', which
fails to be small at very small (d. The use of a
Boltzmann equation (or a T matrix ) rectifies the
situation, yielding the familiar transverse conduc-
tivity which does satisfy (10).

In the case of phonons, there is no divergence at
small ~; (~&») ' is small and low-order perturba-
tion theory is valid both at low frequencies and at
high frequencies. At frequencies near ~D, how-

ever, (~r»} ' approaches unity and low-order per-
turbation theory is suspect. The use of Eq. (30)
in the sum rule (10) yields

f d(daN»((d) = s4ipkt„. (35}

Thus, if the coupling constant X,„ is small, the sum
rule is not badly violated. For large ~„, one might
expect that the effect of higher-order corrections
would be to reduce the contribution (35) by a re-
normalization factor (1+X„) '. An argument for
the plausibility of this approach is provided by the
fact, first pointed out by Holstein' (and rederived
in Sec. IV), that in the low-frequency limit the op-
tical mass is renormalized by the factor (1+X,„).

+ m(k, k')(y~i. ,y~, —y;,y„-.,)], (36)

%,=+ I'ff [ ],
kks

(37)

where the quantity in brackets in (37) is identical to
that in (36), and n and m are coherence factors
similar to I and p in Eq. (13). The calculation will
be carried out only in the local limit (q ~ vf « ~) and
at T =0. In these limits, the coherence factors can
be written

I(R, R+q) =I, p(k, k+q) =0,
(36)

Note that in this approximation the factor p, which
was responsible for the collisionless absorption,
now vanishes. This corresponds to the fact that in
the local limit, light cannot create excitations in
a Fermi gas, normal or superconducting. The ef-
fect of the light is through the factor l which governs
the scattering of light by excitations already present.
At T = 0 the only excitations present are those
created by the collision terms (36) or (37), and this
is governed by the term proportional to m . The
factor n thus cannot enter the conductivity in lowest
order. The expressions for the conductivity are

2 I I2» 1 eC —ab,
~s, »= s s ~

I +f&l3 2 EE

x 5(E i E'ihGu- k&u), (39)

7' I
as i = 3as s ~

I
I ff I

(v- v } 2
I EE38 (d

x Q(E iE —if(g) . (4o)

These are analogous to (23) and (24), with the co-
herence factor m now playing the role of the Fermi
factors.

The integrations can now be carried out by an-
alogy with the normal-state calculation to yield

crs = (u)ss /4v(u)(I/(or, }, (41)

Thus, the sum rule (10) can be exactly satisfied if
the total conductivity is considered as a sum of the
collisionless conductivity and the phonon term (30),
with the effective plasma frequency in each case
reduced by (1+&„) '. This is really only an ad hoc
procedure. A more accurate scheme for including
higher-order corrections, discussed in Sec. IV,
is not quite equivalent.

We now fill in an analogous derivation of the ef-
fect of collisions on the conductivity in superconduc-
tors. The Hamiltonians analogous to (21) and (22}
are

H,~= Q Mfp(a@+ a u)[n(k, k')(yf. , yz, +y r, y~. , )
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1 2m
f a) -2h - 4g2 1/2

dQ(&u- Q)E
TS yn (d Jp

x a2t, E(Q),

4~2 1/f
(43)

where E is the complete elliptic integral of the sec-
ond kind. Both relaxation times (42) and (43) are
infinite when the frequency is less than 24. These
results reduce to the normal-metal results at large
frequencies.

The results (30) and (42) are precisely equivalent
to the semiquantitative expressions of JR, with
three modifications: (a) It is now possible to fix
the over-all magnitude. (b) The effect of the elec-
tron-light matrix element which was left out by JR
is to convert the isotropic density of states aoE
to the anisotropic form a2&, E. (c) The introduction
of coherence factors in the superconducting case
serves to simplify the JR theory by eliminating a
term proportional to the elliptic integral K which
occurs in their Eq. (3}. This also has the effect
of sharpening the threshold of Holstein volume
absorption.

III. CALCULATION BASED ON THE GOLDEN-RULE

THEORY

In Sec. I we presented nonlocal conductivities
for normal and superconducting metals in the ab-
sence of collisions. In Sec. II the contribution to
the local conductivities arising from collisions was
calculated in lowest order. We now present a
simple approximate scheme for calculating the
total absorption, and comparethe results with the
measurements of JR on lead. The scheme consists
of taking the absorption to be the sum of the Pippard-
limit absorption for the collisionless gas and the
classical absorption for the collision terms. This
is essentially the procedure used by JR to analyze
their data. The scheme has obvious defects, the
worst of them being that it is a poor approximation
for the superconducting absorption in the case of a
strong coupling material like lead. The scheme
does have virtues, namely, it provides a simple
analytical form for analyzing experimental data.
Furthermore, it provides a faithful representation
of the structure to be expected in the normal-state
data, and is quantitatively not far wrong. In the
case where it fails badly, namely, the supercon-
ducting state with strong coupling, the only recourse
is a complicated theory based on numerical solu-
tions of the Nambu-Gor'kov- Eliashberg" integral
equations.

The first step in calculating the phonon-assisted
absorption is the determination of the function
am&, E(&o). Calculations of the related function &OE(&u)

have been discussed previously. ' For pb, &0E(~)
is known from experiment. For the purpose of
calculating the ratio o.'„/&mo we have used a "spher-
ical model"' characterized as follows:

(i) The phonon spectrum Ao is approximated by
spherically symmetric functions.

(ii) The phonon-polarization vectors are taken to
be purely longitudinal or purely transverse.

(iii) The Fermi surface is represented by the
free-electron sphere, with an isotropic mass m&/m

given by the ratio of the band-structure density of
states to the free-electron value.

(iv) The wave functions on the Fermi surface are
approximated by single orthogonalized plane waves
(OFW's).

(v) The electron-ion matrix element is represented
by a pseudopotential. For Pb we have found'9 the
model potential of Animalu and Heine~P to be ade-
quate.

(vi) Umklapps are explicitly included. This leads
to errors at small ~o where the single OPW model
allows unphysical umklapps to occur. However,
in this region o,Q is very small and errors are
unimportant.

The spherical model is probably quite good'9 for
calculating the coupling constant A. ; it is less good
for apF, and certainly still less good for e'„F.
However, it is probably reasonably fair when used
to calculate the ratio o„/ao. Using the techniques
described in Ref. 19, we have calculated this ratio,
which turns out to be a decreasing function of (d in
the important part of the phonon spectrum. The
most important feature of the ratio is that is is half
as large in the region of the longitudinal-phonon
peak (& &, ) as it is in the region of the transverse
peak {r&,). This is because the factor (v —v') in
n&„ tends to eliminate most of the normal (N} scat-
tering contribution which occurs in e~, while leaving
the umklapp (U) part less altered. This results in
a bigger reduction in the longitudinal-phonon con-
tribution than in the transverse contribution. This
matter is discussed further in the Appendix. Ac-
cordingly, in our calculations we have taken the
empirical a~F of McMillan and Rowell and scaled
it by a linear function of f ) which is twice as large
at (.), as it is at (I, . The over-all magnitude was
adjusted to give X„=0.9, a value calculated in the
spherical model.

As a partial justification of our simple scheme
for the absorption, we have made a more compli-
cated calculation for the normal metal. This con-
sists of taking the familiar transverse conductivity
from the Boltzmann equation in the collision-time
approximation, using the frequency-dependent col-
lision time (30). In Sec. IV it is shown that this is
the correct form for the weak coupling theory. The
resulting absorption is shown in Fig. 1, based on
Dingle's series expansion' for diffuse boundary
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conditions. The over-all shape is in fairly good
agreement with the experimental data, in contrast
with the absorption predicted when the collision
time is infinite. The absolute magnitude of the
data has been scaled by JR to agree with the Dingle
theory at around 30 cm '. The extra absorption
due to phonons appears as increases in the slope
of absorption vs frequency occurring at the trans-
verse- and longitudinal-phonon frequencies. A

precise comparison between theory and experiment
is not possible, because the noise level in the ex-
perimental data is quite high.

The results of our simple approximate scheme
for normal lead are shown in Fig. 2. In this figure
the inverse lifetime vN', „has been scaled by the
semiphenomenological factor (1+ X„}'. The agree-
ment with experiment is fortuitously good. By
comparison with Fig. 1, it is clear that the Pippard
limit overestimates the collisionless absorption at
higher frequencies, although it is asymptotically
correct at lower frequencies. However, the clas-
sical limit scaled down by (1+ X„) ' agrees very
well with the extra phonon-induced absorption. This
can be understood as follows: The extra absorption
can be written as a power series in (on) ', with the
first term adequate everywhere except possibly
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Absorption vs frequency for normal lead. The
surface absorption (Ag is calculated in the ptppard limit
for diffuse boundary conditions and scales as co . {This
corresponds to the first term of Dingle's series expan-
sions, Ref. 12.) The volume absorption ~ is calculated
in the classical limit, and equals (2/o&p)(t+1, P '. The
experimental structure near 150cm"~ is instrumental in
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near «~. The coefficient of this term is such that
the extra absorption can be written

0.003 A„,—A, = e(o&}(2/»~r,„}, (44)
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FIG. 1. Absorption vs frequency for normal lead.
The surface absorption (AJ is calculated from Dingle's
series expansions {Ref. 13) for diffuse boundary condi-
tions, using free-electron parameters for lead and v =~.
The total absorption (A~+A/ is calculated in the same
way, using the frequency-dependent phonon-limited life-
time ~ as explained in the text. The experimental data
is from J'oyce and Richards {Ref. 1). The structure near
150cm ~ is instrumental in origin.

where e(o&} is weakly varying with frequency. In
the wave-number range 50-150 cm ', 4 is close
to 0. 5 [and not very different from (1+I„)']. At
high wave numbers (near 1000 cm '), f& approaches
the classical value of 1.

A similar series expansion undoubtedly holds for
superconductor s, although no one has derived it
yet. Thus, it is reasonable to try the same approx-
imation. This is illustrated in Fig. 3. The Pip-
pard limit has again been used for the collisionless
absorption, and is expected to be an overestimate
at high frequencies. The structure in the phonon-
assisted absorption is somewhat more visible in
both the theory and experiment than ft was in the
normal-metal case. This is a consequence of the
peak in the electronic density of states of the super-
conductor. There are real discrepancies between
theory and experiment in Fig. 3. The most serious
discrepancy is the failure to reproduce the observed
sharpness in the onset of absorption above the en-
ergy gap. This discrepancy is well known, and has
been resolved by Swihart and Shaw, 2~ using the
strong coupling theory of Nam. 9 They found that
the strong coupling effects and departures from
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Absorption vs frequency for superconducting
lead. The surface absorption (A,) is calculated in the
Pippard limit for diffuse boundary conditions. The volume
absorption (A„) is calculated in the classical limit and
equals (2/u&pi (1+A,p . The experimental structure
near 150 cm is instrumental in origin.

the Pippard limit were of roughly equal importance
in explaining the extra steepness of the absorption
onset. However, even away from the onset, the
experiment shows sharper structure than the simple
theory.

Figure 4 shows the ratio of the absorption in the
superconducting state to that in the normal state.
When plotted this way, the data show strong struc-
ture associated with the phonons, and the noise level
is expected to be smaller than in the previous figures
because spurious structure associated with cavity
modes is eliminated. The structure in the theoretical
curve is not as dramatic as in the measured curve;
three sources contribute to this discrepancy. The
first source is the local approximation for the col-
iisions and the Pippard limit (nonlocai) for the sur-
face absorption. The truth for lead lies between
these two extremes. Hopefully, the extremes give
qualitatively correct answers. The second source
is the breakdown near ~=()D of the expansion in
powers of (ice')-', which we will call strong coupling
of the first kind. The third source is a more fun-
damental limitation of our theory. This is the
structure of the superconducting gap function &(&u)
(strong coupling of the second kind) which was
eliminated by our use of the BCS theory. For a
strong coupling superconductor, there is in fact
no separation between collisionless and interacting
cases. When phonon collisions are eliminated, the

In Sec. II we showed that a weak coupling theory
of the local conductivity reproduces the semiphe-
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FIG. 4. Ratio of superconducting-to-normal absorp-
tion vs frequency in lead. The theory uses the
Pippard limit with diffuse boundary conditions for the
surface absorption (Ag and the classical limit for the
volume absorption |Ag. The ad Roc factor (1+&t,) is not
included in the volume absorption. Also shown is the
isotropically weighted electron-phonon density of states
noF deduced from superconducting tunneling experiments
by McMillan and Rowell (Ref. 3) and the anisotropically
weighted version at, I' appropriate for the conductivity as
defined in the text.

superconductor goes normal. If a correct treat-
ment of the strongly coupled superconductor is used
to calculate optical properties, as in Nam's for-
mulation, strong images of the phonon spectrum
may be expected. ' 3 This occurs even though real
collisions are not entirely accounted for in a theory
like Nam's which omits ladder diagrams. Much
of the effect of real phonons is automatically in-
cluded through the imaginary part of the self-energy
corrections, which must necessarily be present in
a correct treatment of the superconducting state.
In addition, there are strong dispersive effects in
the real part of the superconducting self-energy.
It is these strong coupling effects of the second kind
which are probably responsible for much of the dis-
crepancy between theory and experiment in Fig. 4,
including the noticeable shift of the experimental
absorption onsets to higher frequencies. ' Strong
coupl. ing of the first kind also is important, but
gives results not very different from the weak
coupling theory, as shown in Sec. IV.

It must be concluded that the golden-rule theory
has serious limitations when applied to strong cou-
pling superconductors. The limitations should be
less important for the normal state, although the
data are not good enough yet to confirm this. How-
ever, the theory does give a good qualitative ex-
planation of the features observed, and should be
quantitatively correct for weak coupling metals.

IV. HOLSTEIN THEORY FOR NORMAL METALS



P. B. ALLEN

nomenological theory used by JR to analyze their
data on Pb. However, numerical calculations pre-
sented in Sec. III show that the discrepancies be-
tween this theory and experiment are more severe
than was believed by JR. This is not surprising,
since neither weak coupling nor a local approxi-
mation are particularly valid for lead.

In this section we analyze the infrared absorption
from the point of view of the most complete theory
available, the Holstein theory' for normal metals.
This theory is parallel to but more complete than
Nam's theory9 for superconductors. In both theo-
ries, the conductivity is calculated by a diagram-
matic analysis of the current-current correlation
function using thermal Green's functions. Both
theories include phonon self-energy corrections
exactly to first order in (m/M)"', where m/M is
the electron-to-ion mass ratio. The Holstein theo-
ry then includes ladder diagrams exactly to the
same order by writing an integral equation (the
Bethe-Salpeter equation). The theory obeys local
charge conservation. The Nam theory leaves out
the ladder diagrams, contains no additional integral
equations [beyond those necessary to calculate the
superconduction energy gap &(«)}], and can be ex-
pected to violate local charge conservation. In
spite of the shortcomings of Nam's theory, we shall
see that the formal solution of the Holstein theory
is very similar to the normal limit of Nam's theory.
This partially justifies the Nam theory and explains
the success of calculations based on it. ~

The Bethe-Salpeter equation of Holstein's theory
yields an integral equation for the conductivity,
which has the form of a generalized Boltzmann
equation,

v(s, )=Sv'T v- vs ( ' ' )I, (ss)

((4 v-„- )ss=v;, 4 Z)Msv)'(vs-s;. )
I

(46)

where

~ ~

f (e ')+ N(~;) I-f (e ')+ N(~;)
f —f + jg(o —i5 f —f —S«-- g

f (e +K«)+N)(() )4~1 f(e'+I«))4 N((d1)-
6-f +fQz+ j5 f-f —g'~+ jQ

(4V}

and where 5 is a positive infinitesimal, N((d) is
the Bose function (s'" —1) ', and $ plays role of
the distribution function. Holstein' has also de-
rived coupled equations for the electron- and pho-
non-distribution functions for the case where both
distributions deviate from equilibrium. However,
we shall assume that the phonons are in equilib-

rium.
The kernel of the integral equation (46) bears a

striking resemblance to the equation for the elec-
tronic self-energy arising from phonons:

(M OCS

Z(o&yi6)=M( (d)+f1'( «))= d«)', de n(OE(«) )
D

f (a' ')+ N(«) ') 1 f(e-') + N(~.) ')
X + I

&» —6' + «y jt} co —f —(d + i5
(48)

%e have assumed isotropy of the electron-phonon
system in neglecting the k dependence of Z in (48).
%e can exploit this resemblance and obtain a for-
mal solution of the integral equation. The tech-
nique is similar to the method of Scher, ' who found

solutions in the local (q= 0) limit. We make the

ansatz

4, = v, „/$[q ' v; —(d - W-(q, (d )]. (48)

Then the integral equation (46) becomes an equa-
tion for W which can be written

s„(4—is) —s„(4 ~ is))
~ ~

(50)

where Z„is the same as Z in Eq. (48) except that

a~ is replaced by aP„defined as

(51)

Note that Eq. (50) is still implicitly an integral
equation for W. However, the integrand depends
on W only through the function (51) which can be
seen to be .independent of W in a number of limits.
These limits are (i) q v» (d; (ii) q v«(), and
either (a) (d»(o~, or (b) (d«(d~. In fact, in the
frequencies of interest for the infrared absorption
problem, there is only the region qv~& M, «-«&,
where c(,+ depends significantly on W. It is pre-
cisely this region which Scher~ has solved by an
iterative method for the case of an Einstein phonon
spectrum. He found that even in this region W

could be approximated by W, causing an error of
less than 8%. Equations (50) and (51) then deter-
mine W in terms of a weighted density of states
cd' which is effectively independent of W. Thus,
the transport problem is formally solved. The
angular weighting factor of a&„

fv, q ~ v-co-W
~g

v, q v -«-W'
is more complicated than the factor (v —v '} /5 of
the function e„of the simple theory. However.
in the local limit, in cubic symmetry, and neglecting
umklapps, they are the same.
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One region of phase space where Eq. (50} remains
an integral equation is the dc limit

(d -(d 1 1 2 12

x ln, ——ln,~+~ (d M
(58)

W= ((])I )i(f( ((]}+ I/Tgi(6~ (((])~

](.„=[M (z+ (o) —M„(e)]/g(d,

I/r„= [r„(~+(d)+ r„(e)]/II,

(52)

(53)

(54)

where ~„and v„play the roles of effective renor-
malization and scattering-time parameters. Ex-
plicit equations for M„and I'„at zero degrees are

(q v, (d) «ke T «keev,
where e~ is the Debye temperature. In this limit,
the dc conductivity has been solved by variational
techniques which give the result (A5). Nam's theory
gives an incorrect expression for the dc conductiv-
ity. However, if the temperature is of the order
of the Debye temperature or higher, Eq. (50} is no
longer an integral equation and the result (A10) is
obtained.

It is convenient to rewrite Eq. (50) as

1 0 da 1
r(((]) g((] T„(e& (0)

d(d' ((d —(d') a„F((d') .
0

(60)

Q2

o(q, (d) = —ie9P'(0)-
q ~ v„" -& -zpv*(rzj (61)

Note that if af, is replaced by a], (which is a good
approximation when qvz «o) then I/7((d) is identical
to 1/r„»((d) derived in Eq. (30). Moreover, the
renormalization parameter T(.(v) is intimately re-
lated to the Kramers-Kronig transform of I/r„»
x(((]). In the limit of small frequencies X((d) becomes
a constant, equal to ~„ if o„equals a„. The weak
coupling equation (58) can be rewritten as

COg) 1

M„(t) = d((]'u„F((d') ln
E'+ A

F„(e)= vf]"d(o' a'„F((d) .

(55)

(56)

This is identical to the solution of the usual semi-
classical Boltzmann equation in the scattering-time
approximation, with a renormalized velocity, den-
sity of states, and scattering time defined by

The formal solution for the conductivity has the
form [from Eqs. (45), (49), and (50)]

v* —= v/[1+ %(&u)],

N" (0)-=N(0) [1+T((u&)],

I/r*((u) = I/r((d)[I + &((d)] .
(62}

o(q, (d) = ie N(-0)2 dE

QP
For a spherical Fermi surface, (61) leads to the
well-known expressions

2

t(. V„.—gl I (E )] -(/T (a, ])'
3 (d,*2 qe~F

(6 '
~ '/r' ~ '/r') (63)

(5V)

where the angular brackets denote averaging over
the Fermi surface in the manner of Eq. (26}. This
formula is similar to the usual solution of the semi-
classical Boltzmann equation. Arguing intuitively,
Scher~ proposed essentially the result (5V) as a
semiphenomenological method of including nonlocal
effects into his local theory.

In the weak coupling limit, defined by X„«1and
I/&ur„«1, Eq. (5V) can be simplified

2
2 vx

~(q, ]=- ~~(O& i„-- (( ~ i( ]]- /i( &)'

(58)
where X and 7 are defined by

')].(v) = —](.„(e, (d)
0 dE

1 1 ~ x
g(x) =~ (x —1) ln +2x

1+@

(v~~ = (d2/[I+X((u)] .

(64)

(65)

V. CALCULATION BASED ON HOLSTEIN THEORY

Scher has presented solutions of the Holstein-
Boltzmann equation (46) in the local limit. His
method is equivalent to the use of Eqs. (5V) and (51)
with q set equal to zero. The weighting factor

~v' q ~ v —(d —@(q, (d)
(v„q v' —&o —Wg, (q, (d)

then becomes equal to the usual transport weighting

Equation (65) shows the result, first proved by Hol-
stein, ' that the optical mass at low frequencies is
renormalized by thephonons. However, at low fre-
quencies, for a good metal at low temperatures the
Pippard limit determines the optical properties. In
this limit, g(x) = iv/x and renormalization effects do
not appear in the conductivity (63) or the absorption
(12). This was first shown by Nakajima and Watabe. '
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factor

(67) I.8

in the two extreme limits &u «ruo (where W is a con-
stant) and &o» &u~ (where W«u&). In the region
~ - co&, an integral equation needs to be solved. He
found that for an Einstein model, the solutions of
the integral equation were very similar to the sim-
ple integral obtained using (67) in place of (66). He
then replaced (67) by a constant factor 0. 56, ob-
tained from the Animalu-Heine pseudopotential. He

finally used the classical approximation (5) to ob-
tain the absorption. In this context the classical
approximation has roughly the same validity as the
calculations of Sec. III, i. e. , it can be viewed as
the leading contribution from collisions in the Din-
gle series expansion. Scher's work goes beyond
the approximate theory of Secs. II and HI by in-
cluding dispersive effects as well as dissipative ef-
fects, which is necessary when the coupling is
strong. In the present section we present calcula-
tions which take the nonlocality into account as well.

A completely thorough calculation of the nonlocal
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FIG. 6. Effective renormalixation parameter X(fd) and
scattering time 1/{dT({d) vs frequency for lead. These
parameters enter the approximate form of the Holstein
theory. They are calculated from Eqs. (59) and (50) us-
ing the tunneling data of McMillan and Rowell (Ref. 3).
The scattering-time parameter also enters the golden-
rule theory in Eq. (30).
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FIG. 5. Real fM({d)] and imaginary [I'(co)] parts of the
phonon-induced electronic self-energy calculated from
the tunneling data of McMillan and Rowell (Ref. 3) for
lead. The results are plotted vs energy in cm ~ mea-
sured from the Fermi energy. A graph of the related
function Z =—1 —Z/(d is given by W. L. McMillan and
J. M. Rowell, in Superconductivity, edited by R. D.
Parks (Marcel Dekker, New York, 1969).

conductivity would require taking explicit account
of the angular factor (66). Roughly speaking, how-
ever, the influence of the factor (66) should be in-
termediate between a factor like (67) and a factor
of 1. For values of q greater than vr/&o, the factor
differs from 1 by a term varying almost randomly
with angle. For the sake of simplicity, the calcu-
lations of this section are carried through with (66)
replaced by 1. Then a~+ is identical to aIOE, which
is known from tunneling measurements. The theo-
ry is then exactly the normal limit of Nam s theory.
The remaining integrations are tedious but straight-
forward. As a first step, the self-energy Z =M -il
was calculated from (55) and (56). The results are
shown in Fig. 5. The coupling constant &= &0 was
normalized to 1.5. The effective-renormalization
and scattering-time parameters were then calcu-
lated from (59) and (60). These are shown in
Fig. 6.

Using these quantities, the conductivity was cal-
culated from Eq. (57), assuming a spherical Fermi
surface. The result was compared with the approxi-
mate conductivity (63) at 170 points in the (q&o)

plane. The real parts were found to agree typically
to better than 5%, with a maximum discrepancy un-
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0.004 For weak coupling materials, Eq. (44) should be
quite adequate.
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VI. SUMMARY, CONCLUSIONS, AND SUGGESTIONS

In Secs. I-III we have presented a theory of the
phonon-assisted infrared absorption which should
be valid for weak coupling metals. The absorption
is expressed in terms of the phonon density of states
and has the same structure of the semiquantitative
theory of Joyce and Richards. ' The results are
written

0.001
A„,„=e„(~) — did (~ —n) a'„F(fl),
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FIG. 7. Absorption vs frequency for normal lead.
The Holstein theory is basically Eq. (57), with the sur-
face impedance determined by numerical integration using
Eq. (3) for diffuse boundary conditions. The approximate
Holstein theory [Eqs. (61) through (65)] gives almost
identical results, using the Dingle series expansion. The
free-electron Fermi velocity is used. The experimental
data of Joyce and Richards contain an arbitrary normal-
izing factor. The structure near 150 cm is instrumen-
tal in origin.

2A„, -As = 4 (ur)
) ~( )),i, . (68)

der o. The imaginary parts typically agreed to
better than No, with a maximum discrepancy under
3/p. Thus, in spite of the large coupling constant
in lead, the weak coupling approximation (63) ap-
pears quite good. However, the approximations of
Sec. 0 are not so good for Pb because of the neglect
of the dispersive effects contained in &(~).

Finally, the conductivity was used to calculate
the surface impedance from Eq. (3). The results
are shown in Fig. 7, and agree to within 1% with
the Dingle expansion of the approximate theory
based on (63). The structure at the phonon fre-
quencies ro, and (d& is more dramatic than the struc-
ture predicted by the simple theory in Sec. III.
This is partly because of the inclusion of dispersive
effects, and partly because of the use of ao (and a
coupling constant &0= 1.5) in place of a„(with a
coupling constant &„=0. 9).

The results presented here serve to justify the
approximate theory in the weak coupling limit. In
particular, the Dingle expansion has been found
adequate even for strong coupling. The leading
term for strong coupling must be modified from
Eq. (44) to read

where 4» and 4& are weakly varying functions of
~ which approach the classical value 1 at high fre-
quencies.

This theory incorporates several improvements
over the JR theory. The use of correct matrix ele-
ments has altered some factors in the density of
states e„E, which is discussed in the Appendix.
Coherence factors have been included in the super-
conducting case and have lead to a simpler equation
than was found by JR. An estimate of the over-all
magnitude of the effect is available.

In Secs. IV and V the strong coupling theory of
normal metals is analyzed using the theory of Hol-
stein. ' The results justify the use of (69) for the
normal state, with the inclusion of a correction
factor ii+7(m)] ~, where T. is given in Eq. (59).
This modified version should be valid to nearly 1S
accuracy. The strong coupling theory of supercon-
ductivity as contained in Nam's formalism does
not provide similar justification for (70) unless the
electron-phonon coupling is quite weak.

For a weak coupling material, Eqs. (69) and (70)
suggest that derivative measurements of the absorp-
tion would be extremely valuable. For a normal
metal, Eq. (69) shows that the second derivative of
the absorption will contain a term proportional to
an't, F(&u) in addition to a more slowly varying back-
ground. For a truly weak coupling material, the
absorption in the superconducting state will not dif-
fer much from that in the normal state; however,
there is a new term. in the first derivative propor-
tional to a„F, premultiplied by the small fa".tor

If these derivatives could be measured with pre-
cision, a very powerful spectroscopic tool would
be available. In a sense this is the content of the
JR experiment: The ratio of superconducting to
normal absorption is roughly equivalent to a first
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derivative measurement. 6 The derivative is re-
placed by the finite difference 24.

Improved experimental techniques would open up
the possibility of detailed experimental investigation
of the coupled electron-phonon system in a range
of materials previously inaccessible to experiment.
These include some of the most interesting super-
conductors presently known, such as the semicon-
ductors SrTio~, SnTe, and GeTe (the present theory
should be applicable to these materials only for high
carrier densities}, layer compounds such as TaSez
and NbSe&, and P-tungsten structure materials. In
these last materials, particularly the high T, corn-
pounds like Nb&Sn, it is not clear how badly the weak
coupling limit is violated; this depends on whether
low-lying phonon modes are found and how impor-
tant they are. Furthermore, if anomalous peaks
in the electronic density of states exist, of width

comparable to the phonon frequencies, then strong
coupling of another kind arises (associated with the
new parameter 2d/Es, where Es is the width of
the peak}. In this case the assumption of Eqs. (25)
and (26) breaks down; the Drude absorption in such
a material should be quite anomalous.

In all the materials mentioned so far, except
lead, an additional complication arises from the
presence of optical phonons which in principle give
rise to a direct absorption. This problem has been
recently considered by Ipatova, Maradudin, and
Mills, who find the effect is quite small. This can
be seen physically as follows. The light couples
to phonons of the proper symmetry by the direct
electromagnetic coupling of the radiation field to the
charged ions. If the phonons are not coupled to
electrons (which is not a bad approximation for in-
frared-active phonon modes), the resulting conduc-
tivity obeys the f-sum rule [Eq. (10)] with the ionic-
plasma frequency replacing the electronic-plasma
frequency. Then assuming equal numbers of car-
riers and ions, the conductivity for direct phonon
absorption is smaller than that for electronic ab-
sorption by th~ electron-to-ion mass ratio. Thus,
the phonon-assisted electronic absorption should be
much stronger than the direct phonon absorption.

In all these cases, infrared experiments should
be extremely interesting, and should help to resolve
important questions about the mechanisms for
superconductivity in these materials.
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APPENDIX: WEIGHTED DENSITIES OF STATES

In problems where electrons in metals are probed
at frequencies ~ which are commensurate with a
Bose-type excitation of the system (i. e. , phonons,
magnons), the response function of the metal gen-
erally shows structure which reflects the density
of states of the Bose excitations that are coupled
to the electrons. This structure is directly evident
in tunneling experiments, and promises to be evi-
dent in optical experiments as sources and detectors
in the infrared are improved. For analysis of such
experiments it is convenient to have a theory for-
mulated in terms of the density of states. Usually
this amounts to a boundary condition on the order
in which integrations are to be performed.

First, we define an ordinary density of states.
In a quasiparticle picture, this is

F(u)) =
Zg 5((o —-(g~), (Al}

where the sum runs over the first Brillouin zone,
and &o& is the energy of the quasiparticle (phonon,
magnon} of wave vector q. The picture can be given
broader validity by using a spectral-weight function
B(q, ~) in place of the 6 function. The weighted
density of states appears somewhat different. The
outstanding example is

aoF((o)=- [N(0)/2K] ((~ Mtt,
~

5(o) —(of~. ))), (A2)

where M„-g. is the matrix element for scattering an
electron from k to k' by emission of a phonon of en-
ergy Ru&„- „;, and N(0) is the density of states at the
Fermi surface. The angular brackets indicate that
both k and k' are to be averaged over the Fermi
surface, in the manner of Eq. (26). As in the
ordinary density of states, the 5 function can be re-
placed by the spectral-weight function, and phonons
can be interchanged with magnons. The remaining
discussion mill be limited to phonons.

The particular weighted density of states (A2) is
the one that is measured in superconducting tunnel-
ing. It is known empirically that in the strong cou-
pling superconductors a+ resembles quite closely
E, which is the ordinary phonon density of states.
Van Hove singularities are unaltered in going from
(Al) to (A2). The reason for the resemblance is
that the Fermi surface is large. Almost any given
phonon will couple some set of states on the Fermi
surface to some other set of states, and usually
several such sets of states can be found, some of
them normal or H transitions and some of them
umklapps or U's. In general, there will be selec-
tion rules on some phonons (at symmetry points,
or alternately the partially valid rule that electrons
do not couple to traasverse phonons by N processes).
However, for a large Fermi surface the effects of
these selection rules cannot be seen, except at
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small v where transverse phonons are almost rig-
orously excluded from coupling. 3 Furthermore,
if the Fermi surface is large, the relative weights
of peaks in F should roughly be preserved in aoE.
These conclusions should be valid for weak coupling
superconductors as well as strong coupling ones.
However, for monovalent metals the Fermi surface
is small enough that the transverse-phonon peaks
are likely to couple less strongly that the longitudin-
al, and the relative weights in ao will be distorted.

We now introduce a series of functions

~lE(~) -=[N(0)/2g] &&I Mff I

' P((cos8)5((o —(cr ))),
(A3)

a[,E((u) =- [N(0)/41vg] ((I M;o. I

' (v —v')'5((o —vg) ))

where n is the density of conduction electrons, N

is the Bose occupation function, and P = (I &T)

Various moments of the weighted densities of
state have direct uses or interpretations. Of these
the most important are the dimensionless moments

X, which play the role of dimensionless coupling
constants:

X, =2 ~ a)E((g), (A8)

The l = 0 constant A.p, better known as X, is the im-
portant coupling constant of superconductivity and
is also the mass-enhancement parameter which oc-
curs in low-temperature specific heat, cyclotron
resonance, and the temperature dependence of
de Hass —van Alphen signals:

(A4) m*™,(1+&), (A V)

where P, (cos8) is the Legendre polynomial of the
cosine of the angle between 5 and k', and n~ is the
Fermi velocity.

The l = 0 case is just the function defined above
in (A2). The l ~ 0 functions are distorted versions of
F, with Van Hove singularities still present, but
shapes which are highly dependent on the matrix
elements and the Legendre polynomials. The func-
tion a„F is the density of states which occurs in
transport properties such as the optical conductiv-
ity. It is weighted not only by the electron-phonon
coupling M„~. but also by the electron-field coupling
v~ . The weighting factor is positive, so a„F should
be less distorted than a,F(f & 0), but more distorted
than +oF. For spherical Fermi surfaces,
= ao —+„and we see the familiar (1 —cos8) which
weights the scattering processes in favor of large
angles. For very small frequencies where only
longitudinal phonons coupling by N processes con-
tribute, o'ooE scales as ur, but a„F scales as &u'.

At higher frequencies a„F can be expected to be
quite similar in shape to aoE, except that the trans-
verse peak will be more heavily weighted than the
longitudinal peak. The reason for this is that the
umklapps tend to come from large angles where

+Q whereas normal processes came fromCr-

smaller angles where e„&otp. The transverse peak
arises mainly from U's, and is largely unaltered
in going from ep to at, , whereas the longitudinal
peak arises from both N's and U's, and only the
U' s survive strongly in a„.

The function u„F is directly related not only to
the optical conductivity, but also to the dc conduc-
tivity as a function of temperature. The standard
expressions ' for the resistivity can be written in
the form

p(T) = o d(o(u at E((u) N((a)) [N(ur)+1], (A5)
Ple p

where mo is the unrenormalized (band-structure)
mass. The l ) 0 constants are of importance in
Fermi-liquid theory, where they play the role of
the phonon contributions to the Fermi-liquid param-
eters. For example, Rice has discussed param-
eters g&" which are related to X, by

/(1+ Xo) ~ (A8)

It also is useful to define an analogous parameter
for e„F,

At~ = 2 Rt~E ((d) ~

Beg 2 (A9)

This parameter measures the renormalization of
the optical mass at low frequencies, as is discussed
in Sec. IV. It is also related to the high-tempera-
ture resistivity within the harmonic approximations
of Eq. (5) by

p= (ne r~/m)

PE/r p
——2vkt, heT.

(Al0)

(All)

These relations have been exploited recently by
several authors3~ to estimate Fermi-liquid param-
eters.

Higher moments of these functions are also of
some use. A convenient notation for these moments
is

&(d )~=(2/A. ~) f d(d(d Q&F((0). (A12)

An example of the occurrence of such moments is
the high-frequency limit of the phonon-induced opti-
cal conductivity [Eq. (30)] which scales as the first
moment of a„E/&d.

The second moments are useful because they are
independent of the phonon spectrum, as was pointed
out by McMillan

(-,'&, ) &co), =—f d(os) a,F ((o)

=[N(0)/2M] « I&k'I «I»I' P (cos8)&) .
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Here VV is the gradient of the effective screened
electron-ion potential. In simple metals the average
on the right-hand side of (A12} can be readily com-
puted using a pseudopotential and a single orthogo-

nalized plane-wave band structure. The results are
in good agreement with the empirically determined
moments for l=0.
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A remeasurement of the temperature dependence of the conduction-electron spin relaxa-
tion time in sodium is reported. These experiments were made using high-purity bulk sodium.
They agree with previous data using dispersions of small particles but extend the results to
much lower temperatures.

I. INTRODUCTION

The first measurements of the temperature de-
pendence of the electron spin relaxation time T, in

sodium metal were made by Feher and Kip. ' They
concluded from their data that T, was proportional
to 1/T over the entire temperature range from 300
to 4 'K. At that time, theoretical calculations of


