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ning waves" as solutions. The &g are slightly in-
convenient because the &l-, and ~ p modes are still
coupled in (20). It is possible to make a transfor-
mation to "standing wave" modes described by seal
Cg with the same frequency +g so that E may be ex-
pressed as in (20) but with the b,r replaced by Cr. '6

The problem is now explicitly reduced to a set of
N decoupled harmonic oscillators. We obtain for
the magnetization (since g", , 8', =gf I &„,I'=fr. c„'-.)
by (19)

( )
1 g f ~ Ct., (Os dCg)~ dC.„)

2fV;, f e-'s(g„dC~)(g»dC-„)
(21)

We are only interested in the low-temperature re-
sults, so large amplitudes and velocities should
appear with vanishingly small probability. There-
fore, we can safely extend the upper limits of the
integrals to ~. With ~i., replaced by Cl-, we insert
(20) into (21), cancel common factors in the nu-

merator and denominator, evaluate standard in-
tegrals, and replace the sum over the BZ by an
integral. We are only interested in low tempera-
tures and so only large wavelength (small Ik I )
modes should be of importance. Finally, at low
temperatures the shape of the BZ should not be
important so we can use as an upper limit for our
integral k„defined by mk2„= (2w/a) where a is the
nearest-neighbor distance. We thus obtain for our
two-dimensional systems:

1 p 1(m)=S 1 ———,
( ),
k„

2 (2a, (O) +a/S)
Note that if no anisotropies or fields are present
[az(0) =8 = 0j then (22) diverges and our spin-wave
approximation is inappropriate. This fact was
known before Mermin and Wagner proved the mag-
netization must vanish for this case.
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The effect of correlation on the antiferromagnetic and paramagnetic phases of Hubbard's
model of a half-filled narrow band are investigated using second-order perturbation theory.
Employing the gap of the antiferromagnetic state as a variational parameter, it is shown that
the increase of the bandwidth/potential-energy ratio leads to a phase transition into the para-
magnetic state nearly where Mott has estimated it to occur. The convergence of the perturba. —
tion expansion is shown to be excellent at the transition.

I. INTRODUCTION

In a recent paper' the authors discussed the
mathematical methods they believed necessary for

the treatment of the paramagnetic and antiferro-
magnetic ranges of the Hubbard Hamiltonian in a
half-filled narrow band. They argued that a t-
matrix expansion would be required in the investi-
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II. HARTREE APPROXIMATION

As a first approximation, one may be tempted
to neglect the effects of correlation. This is the
Hartree approximation in which each particle is
in a stationary eigenstate. This sets a variational
upper bound to the system's energy.

Following Day3 we add and subtract a single-
particle potential V„,to the Hamiltonian equation
(l. 1),

H=HO+Hg,

HO=+ Q(T((+ Vv, )C„C
Q e

H, =I+(((,n( -QQ V((,C(iiC(, .
g Q e

(2. 1)

(2. 2)

(2 2)

gation of the short-range correlation effects. A

cursory examination of our results seemed to bear
out our guess that a reaction-matrix expansion
would converge faster than a bare interaction one.
For the special case which we computed, i. e. , a
simple cubic lattice in the tight-binding limit, a
closer scrutiny revealed that quite the opposite
was true at the paramagnet-antiferromagnet tran-
sition. This obliged us to revert to ordinary sec-
ond-order perturbation theory.

In this paper we treat two possible physical
states of the half-filled narrow energy band using
the Hubbard Hamiltonian,

H = Q Q T„Ct,c„+I+ n„(((
ff e

Yhese are the paramagnetic and antiferromagnetic
states. The ground state of the system is decided
by the minimization of the total energy with the
antiferromagnetic gap as a variational parameter.
%'hen the gap so determined is zero, the paramag-
netic state is stable. We first examine the Hub-
bard Hamiltonian on a simple cubic lattice within
the Hartree approximation. We then consider the
effects of short-range electron correlation using
a second-order perturbation calculation restricted
to the tight-binding limit. There follows a dis-
cussion of the convergence of the expansion and a
comparative analysis of the t-matrix approxima-
tion.

All calculations are at the absolute zero of tem-
perature. We shall use the Goldstone diagram
technique as reviewed in Day's paper. ~' We have
also normalized the interatomic distance to 1.

((= (((X+ 1'+ Z) . (2. 5)

The unperturbed Hamiltonian Ho is then diagonal-
ized by the following canonical transformation:

C;, =+4(„(R()(((
k

~-(late((i f(((~ ~ H eif Ri ) (2. 6)
where

1/2

S"„(&(i—&( -)+=+(i 'w &us)L~ +(&1-&(~) ]
s/a

S(-, (e(-, —c('~)

(2. 7)

(2. 8)

Sg2IA 6 Q t' g
( )2]((g

k&kg + ~ k k+n'
(2. 12)

This self-consistency condition has two solutions.
The trivial one 6= 0 is for the paramagnetic state.
A lower-energy one, when it exists, for Q40 cor-
responds to the antiferromagnetic state.

In order to get an idea about the stability of the
antiferromagnetic state we have focused our at-

coskg + cosky+ coskz (2. ~)
1 coskg + cosk y+ coskz I

g~ T e(L(((( R()- (2. 10)

The summation over k extends throughout the first
Brillouin zone. The eigenvalues are

E1= -'((~1+~1-) -S~l.&'+ (~~-~1-)'1'"l. (2»)
The next step towards the Hartree approximation

is to add to the zero-order energy those terms
corresponding to the first-order Goldstone dia-
grams of Fig. 1. The diagram rules for an S
band are summarized in Appendix A. The end re-
sult is

E„=Q P E.„+I Q +4&-„,,(R()4„(R()
e k&kg kg', ka&kp

&& C'g (R()O(...(R()
——.'n g Pe-„,,(R,)e;,,(R,)e™~(

1

+-,'~ Q Pe„-(R()C-„(R,)e"'"(, (2. 12)
ka&kE

where k~ is on the Fermi surface. The require-
ment that E„be an extremum with respect to the
variational parameter b, yields the Matsubara self-
consistency relation

One chooses this potential to achieve magnetic po-
larization on the band and/or faster convergence
of the perturbation expansion of the energy. Wish-
ing to examine the antiferromagnetically polarized
state of a simple cubic lattice we set

~a~=~ ~«' (2.4)

wher e

k

k

k2

FIG. 1. First-order Goldstone
diagrams.
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tention on the critica, l hopping strength at the onset
of antiferromagnetism. At the transition, the en-
ergy gap 6 i.s zero and the self-consistency condi-
tion is reduced to

of the Hubbard model including short-range cor-
relation effects to second order in the interaction.
This should settle the uneasiness about the long-
range magnetic behavior of the model.

2' 'Q (2. l4) III. SECOND-ORDER PERTURBATION THEORY

We have computed a special case with first- and
second-nearest-neighbor hopping only. Dropping
the constant energy contribution of T« the band
energy becomes

8„=—2T, (cosk„+ cosk, + cosk, )

—4T2(cosk„cosk, + cosk„cosk, + cosk, cosk, ) .
(2. 15)

The resulting phase diagram is shown in Fig. 2.
We have used the dimensionless parameter

C = 4T, /f

as a measure of hopping strength.
There emerges the conclusion that antiferromag-

netism is favorable at narrow bandwidths. The
Hubbard Hamiltonian is then consistent, with the ob-
served antiferromagnetism of narrow bands such
as in the transition-metal oxides. 7 However at
smaller second-to-first-nearest -neighbor hopping
ratios that mould be expected of narrow bands, the
critical hopping strength for onset of paramag-
netism seems preposterously large. It even goes
to infinity as Tz/T, goes to zero, implying that
the tight-binding limit of Hubbard's Hamiltonian
would be exclusively antiferromagnetic at zero
temperature for the half-filled band. 6"9 Of course
this would have little experimental implication,
since the limit of large bandwidths is only a philo-
sophical extension of a model, incomplete at that,
of a narrow-band crystal. But th1s same model
when viewed as a theoretical entity does warrant
a thorough investigation. One has to consider the
effect of short-range correlation on the energy in
order to determine conclusively the behavi. or of the
band.

We then propose to study the tight-binding limit

Restricting the second-ox'der perturbation cal-
culation to only nearest-neighbor hopping has the
advantage of simplifying the zero-order states.
The eigenstates and eigenvalues are

(R) g 1/Re/%'K(g qg e/t'II)

& g (n2+ 4e 2)l/2

2S- ~-
~k ~& l ' 8 8 1/2[b, +4ff, ]

2S e-
[n2+4~ 2]1/2)~

e"„=-2T(cosk„+ cosk, + cosk, ),

For the half-filled band, the Fermi surface is de-
fined by

and the energy gap at this surface is h.
The Goldstone diagram contributing the correla-

t1on effects to second-01der 1n the 1nte1'act1on 18
shown in Fig. 3. Following the diagrammatic
rules,

Z, =Z„-I' Q ~& pe-„,(H, )4-„,.(R,)
kgfra&kp k~gk~a&kp

(H, )4;„(8))
x '

—
'

— . (s. 8) .
gw

2

This energy is minimized with respect to the varia-
tional parameter d. The results are summarized
in Figs. 4-6. We are again using the dimension-
less parameter C = 4T/I as a measure of bandwidth.
One observes a transition from an antiferromagnet
(no 0) to a paramagnetic (n = 0) at

Cca= l. 1+0.2.

This transition is apparently of first-order because
of the collapse in the energy gap. The uncertainty
in the critical value is due to a numerical inac-
curacy in energy of

n(Z/~T) =+ 0. 005/C '. (S. lo)

io

FIG. 2. Antiferromagnetic-paramagnetic phase diagram
in the Hartree approximation. Hopping strength C = 4T~/I
as a function of second-to-first-nearest-neighbor hopping
ratio.

This also plays a role on the determination of the
order of the transition. Because of the small en-
ex'gy diffex'ence involved neal the transition the
energy minimum, thus the gap, cannot be deter-
mined conclusively. As the energy uncertainty is
of the order of the thermal energy the question
really becomes academic since one would indeed
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"2 ""2

FIG. 3. Goldstone dia-
gram representing short-
range correlation effects
to second order.

Z

.05

A = 4. 5 bohr. (3.11)

On the basis of Slater's" solution of the hydrogen
1$ integrals, we can evaluate the intra-atomic
interaction strength at

I= 1.25 Hy (3. 12)

and the hopping integral, as a function of inter-

I I 1 i I

have to go to absolute zero to determine the order
of the transition experimentally.

There are three effects of electron correlation
to second-order perturbation theory: (a) There is
an appreciable energy lowering. This was expected
since the Hartree approximation only sets an upper
bound to the energy. (b) There is a large decrease
of the energy gap in the antiferromagnetic state.
It is apparently worthwhile to exchange some lo&g-
range order for some short-range order. (c) There
is also the occurrence of an antiferromagnetic-
paramagnetic phase transition contrary to expecta-
tions based on the Hartree approximation. In fact
the critical bandwidth/potential-energy ratio is
smaller than even the most optimistic Hartree
prediction for large second-nearest-neighbor hop-
ping strength.

It might be informative to compare our transi-
tion with the estimate of Mott. ' He argued that
in a hydrogen lattice the transition occurs at an
interatomic distance of

I

O

O

W

0
l.5

C

FIG. 5. Energy difference per electron in units of &

between the paramagnetic and variational states to second
order. The bandwidth/potential-energy ratio is 3C.

atomic distance A, as

7= —f dr a(r)(- V 2/r„—-2/r, „)b(r)

=e (3+38+ ~A ) Hy, (3. 13)

where a(r), b(r) are 1S hydrogen orbitals centered
on nearest-neighbor atoms. Our estimate of the
interatomic distance at the transition is then

R=4. 1+0.2 bohr, (3. 14)

which is close to the estimate of Mott.
One must now investigate the reliability of the

second-order energy correction in order to assess
the credibility of the above conclusions.

IV. CONVERGENCE OF PERTURBATION EXPANSION
I

The criterion for the convergence of the bare-
interaction perturbation expansion is that adopted
by Day. ' On addition of an interaction line to an
existing diagram one gets a higher-order diagram.
If the energy contribution of this new diagram is
much smaller than that of the original one, then
convergence is to be expected.

It is possible to estimate the energy ratio of the
new to the old diagrams. Consider a typical dia-
gram as in Fig. 7 where the hatched areas repre-
sent the lower and upper parts of the original dia-

E/NT

tLI-
I I I I t I I I I

I'M

.5 I. I.5 0
0 l.5

FIG. 4. Energy per electron in units of T in the para-
magnetic Hartree (dotted line), antiferromagnetic Matsu-
bara (dot-dashed line), and variational second-order
approxima, tions (solid line). The bandwidth/potential-
energy ratio is 3C.

FIG. 6. Energy gap in units of the interaction strength
for the antiferromagnetic Matsubara (dashed line) and

variational second-order approximations (solid line). The
bandwidth/potential-energy ra.tio is 3C.



PARAMAGNETIC AND ANTIFERROMAGNETIC PHASES. . .

kz k~ k

k~ k, k~

FIG. 7. Diagram used to
calculate the effect of inserting
an additional interaction to an

existing diagram ~

glam, linked by the k1, kg, ks paxtlcle lines. One
can typically add a bare interaction between two
existing particle lines or a bubble interaction to a
particle line. In the first case one encounters an
additional factor of absolute value

(g=f g PC„",,(R))4-„. ,(R))4p, ,(R,)el, ,(R,)/e
1 2 (4. 1)

and in the second,

4=f Z Q k,.(Rg)C'k. .(R))@k, ,(R))cl...(R,)/e.
Ti4&kE

(4. 2)
Therefore

contribution of higher-order diagram
contribution of original diagram

(4. 3)

g, interaction between existing particle lines
I

~

~

~

~

~

~

~

~ ~ k ~

$2 bubble interaction. (4 4)

A. Paramagnetic State

These factors can be appxoximated in the para-
magnetic half-filled band by taking an average
valuey

$|=f(1/8& iv 'Z 45(k, +k2-k| -k', +6)
IP G

= -'I (1/e&, (4. 5)

(,= —,'1/e&=~„, {4.6)

mhere 6 is a reciprocal-lattice vector. The factors
of ~ originate from the restriction of any particle
type to half the Brillouin zone. As each energy
denominator e contains at least four contributions,
we estimate that

However since

(G/e) k,k, &=(f/e) q„--&, (4. 10)

we find

h = fZ P;;.(R&)C;;,{R;)4-„,;,(R,R,)/e, (4. 11)

where p,„(R,R3) and 4"„,(R,)ck,(Rz) are the.
reaction-matrix-corrected and unperturbed pair
wave functions, respectively. Averaging,

[&(Z,~-„i,(R,)C-„. ,(R,.)P,;,(R,R,)&/4C. (4. 12)

Since the pair wave function on the same site is
reduced by correlation effects it follows the reac-
tion-matrix convergence ratio $ is smaller than
the one given by second-order perturbation theory.

For comparison purposes we have plotted the
convergence parameters in Fig. 8. The pair wave
function used in Eg. (4. 12) was calculated on the
energy shell as in Eq. (B8). We have adjusted
the proportionality constant implicit in Eqs. (4. 8)
and (4. 12) so that the value of t' for the reaction-
matrix expansion in the limit I- ~ agrees with
Day's estimate of 1. Our own estimate seems to
overemphasize the size of the convergence ratio.
It would appear a reaction-matrix expansion con-
verges faster than a bare-interaction one. Where-
as the reaction matrix would converge for C&0. 4,
the bare interaction would do so only for C &0.6.
We have taken as a rule of thumb that convexgence
occurs for $ (0.3. This is consistent with "he
occurrence of bound electron-hole pairs for
C ~0. 3. ' In this range convergence is not ex-
pected. The preceding conclusion is misleading
as it would lead one to believe that a reaction-ma-
trix expansion is preferable. It turns out that the
special problem we have treated lends itself to a
treatment based on the theorem of Appendix C.
All odd orders in the bare-interaction pertux'bation
expansion are absent. One mould then have to go
to fourth order to find the next energy correction

(1/e&& 1/8r

thex'efore

(4. V)

(4. 8)

One can then expect convergence for C&1 on the
basis of this rough estimate alone.

As mentioned in the Introduction, the possibility
of a faster converging reaction-matrix expansion
must be considered. Interpreting the additional
interactions in Fig. V as a reaction matrix 0 and
referring to Appendix 8, it can be deduced that

Q5=k Q Zll(k, +kg-k| —kg+G)(k'ik'g —kk3).
(4. 9)

0—
0 l.5

FIG. 8. Convergence parameter for the bare inter-
action (dashed line) and reaction-matrix expansions
(solid line) .
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to the paramagnetic state. It would be smaller
by a factor $ than the second-order correction.
At the phase transition, one mould expect the en-
ergy correction to- be

(Zm —E„)/NT - 0. 003, (4. 13)

which is outside the reach of our numerical ac-
curacy and also much less than the energy differ-
ences involved near the transition. This would

give the bare-interaction expansion an edge over
the reaction-matrix one, at least in the paramag-
netic state.

The conclusion to be drawn from the conver-
gence analysis is that a second-order approxima-
tion is excellent in the tight-binding limit for
C ~0. 5 and is probably very good for small values
of second-nearest-neighbor hopping.

V. DISCUSSION

The Hartree approximation yielded the basic in-
formation as to the antiferromagnetic ground-state
tendencies of the Hubbard Hamiltonian. However
its forecast of the onset of the antiferromagnetic
phase is off by a large amount especially near the
tight-binding limit of the Hamiltonian. This
stresses the importance of short-range correlation
effects in systems with strong short-range forces.

One may nom ponder the special conditions op-

B. Antiferroma3, netic State

'/he convergence parameter $ as defined in Eqs.
(4. 1) and (4. 2) is sensitive to the nature of the
particles involved, i. e. , electrons or holes, in
the antiferromagnetic phase. At worst one can
estimate that for the half-filled band

(4. 14)

It is the energy gap at the Fermi surface which
has this drastic effect of setting a lower bound to
the energy denominator. On the average the en-
ergy difference between an electron in the upper
baIf of the antiferromagnetically split band and a
hole in the lower half is of the order of I. Long-
range order is so natural to the system that a
bare-interaction expansion is convergent on our
variational antiferromagnetic state. This con-
vergence parameter eventually merges with the
paramagnetic one for a small enough gap.

The theorem invoked for the disappearance of
odd-order contributions to the paramagnetic en-
ergy cannot be called upon here. But it can be
argued that close to the transition, when the gap
h is smaller, near cancellation of odd-order terms
is probable. It is estimated the energy correc-
tion from left-over diagrams to third order mould

be smaller than our numerical uncertainty.

C. Conclusion

crating in this treatment of the half-filled Hubbard
band. The symmetry of the unperturbed tight-bind-
ing band energies leads to the disappearance of
odd-order perturbation terms. This favors a con-
vergent ordinary perturbation expansion over a
reaction-matrix one. From the discussion in Ap-
pendix B, it turns out that even under these special
conditions the t-matrix approximation would have
been almost as good. Under normal conditions
the latter approximation would, in fact, be prefer-
able as it would converge faster and also at smaller
bandwidth. It must also be considered that, this
being a high-density system, an expansion on the
paramagnetic state is divergent for large enough
interaction strength. It was then a happy outcome
that the paramagnetic state became unstable in
favor of an antiferromagnetic state before the in-
teraction could have drastic effects on convergence.
Had it not been so we could still have concluded the
occurrence of a transition but its exact whereabouts
would have been unknown. Now what of a partially
filled band? For smaller electron or hole occu-
pancies, the t-matrix approximation would be in-
dicated as it i.s the first term in an expansion in
the density. It would then seem that this approxi-
mation should be preferred for a phase study of
the Hubbard Hamiltonian as a function of occupancy.
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APPENDIX A: GOLDSTONE DIAGRAM RULES FOR
HUBBARD HAMILTONIAN

The following rules are a version of those pre-
sented by Day. They have been adapted to Hubbard's

Hamiltonian [Eqs. (2. 1)-(2.11)].
(a) An upward directed line represents an occu-

pied state (electron) above the Fermi sea. A down-

ward directed line represents an unoccupied state
(hole) in the Fermi sea.

(b) With every horizontal dashed interaction line
between opposite-spin particles there is an as-
sociated factor

IZ, C f., (R;) C-„, (R;)4-„,(R,)C„-,(R ), (A1)

where O-, (R) is a zero-order eigenfunction. k„k2
and k'„k2 are the incoming and scattered particle
momenta, respectively.

(c) With every intera, ction line between a particle
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of spin o and the one-body potential, there is an

associated factor

Z e„-*, (R,)v...e„;(R,). (A

The essence of the reaction-matrix expansion
is to replace the bare interaction by an effective G

interaction in which all possible electron pair scat-
tering above the Fermi sea is taken into account.
This G matrix is defined as

~(QIe)~+ ~(QIe)~(QIe)~ ", (al)

where v is the bare interaction in the momentum
representation. The Q operator limits the scat-
tered particles above the Fermi surface.

Following Day3 we define the state vector for two
such particles in momentum space,

Ie„-; &= Ie; ef, &
—(QIe)c Ie„- e„- &

from which

(a2)

k and k' are the incoming and outgoing momenta,
respectively.

(d) The energy denominator e associated with
every one but the last interaction is equal to the
sum of the electron energies minus the hole energies.

(e) The sign of the contribution of any diagram
is given by

( l)1l+l +@+M

where h is the number of hole lines, / is the number
of closed loops, e is the number of energy denomina-
tors, and n is the number of one-body interactions.

APPENDIX 8: REACTION MATRIX

the energy is

z, =Z Z z„-+ Z &e„-,e„-, &
lr&kp k~k 2& lr,

=Z Z ~-+ 2 (e- c- I~
k & kp kgk2& kp

4-- ).
krk2

For the case of the Hubbard Hamiltonian this ex-
pression in configuration space becomes

E, =P P E-+I P Z e-, (Rg) c'- (R()
k&kp kil2&kp ' 2

X @ (~tRf)~

where, from Eq. (a4),

y--(R, R,) =e- (R,)c- (Qkg+

4; (R)e; (R )
leak'2 l p

e,'i, (R,)e„-' (R,)g„-„- (R,R,)

E„+g g 8
k'2 kg

Cc@—- 1.4+ 0, 2 . (ao)

For the sake of completeness we have computed
the t-matrix energy for the paramagnetic state,
in the tight-binding limit. In Fig. 10 we compare
the results to the variational second-order calcula-
tion of Sec. III. The t-matrix energy is seen to be
larger although it rapidly converges to the second-
order value near C = 1. The energy difference,
though small, would be sufficient to shift the phase
transition to a larger value of the bandwidth,

v I („- „- ) =G Ie„-,e-„) .

The re fore

(a3)
Although this does not appear too significant a dif-
ference it is nevertheless soothing to know the
second-order approximation is ever so slightly
better.

In the reaction-matrix expansion, diagram rule (b)
is then modified accordingly: %'ith every horizontal
G-matrix interaction between opposite-spin par-
ticles there is an associated factor

&e-.e-, I G
I
e- c. &.k2 k) tr2

(a5)

k + k k' k' k+k
I ~ 2 I I 2 I

+k2

FIG. 9. GoMstone diagrams contributing to the t-matrix
approximation.

In the t-matrix approximation one is interested
in the first-order term of the G-matrix expansion.
The Goldstone diagram series in the bare interac-
tion representing this approximation is shown in
Fig. 9. ' For such a calculation on the energy shell,

APPENDIX C: SPECIAL THEOREM

The following theorem and corollary on the Gold-
stone diagrams apply to a translationally invariant
state of the simple cubic lattice in the tight-binding
limit.

Theorem. Under the above restrictions, all
Goldstone diagrams5 containing at least one closed
loop with an odd number (w l) of particle lines van-
ish.

I'roof. Consider such a loop consisting of n elec-
tron and m hole lines and n+ m = odd vertices.

(a) For a translationally invariant system, at
each vertex one has an associated momentum-con-
serving condition involving at least bvo lines kl
and k& of the loop

Zd u(I,'+k,' -W, —k, +G), (Cl)

where G is any reciprocal-lattice vector.
(b) There is an associated energy denominator
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E/4v
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FIG. 10. Energy per electron in units of T for the
paramagnetic second-order (dashed line) and paramagnetic
t-matrix approximations (solid line). The bandwidth/po-
tential-energy ratio is 3C.

involving the energies of at least two particles k&

and k2 of the loop

e= (+ sf, .+ay +other terms) .
f 2

(cz)

w=x (+x+j+s) (c5)

such that k+ m is within the first Brillouin zone.
The reciprocal is also true.

Let us now invert the direction of the lines in the

loop, i. e. , change holes into electrons and vice
versa, by replacing every k by a k+ p. One gets
a topologically different diagram since there are
now m electron and n hole lines. The bubble-in-
teraction loop ~+ m = 1 is the only exception since
such an inversion is illegal.

(i) At each vertex, the momentum-conserving
condition becomes

Z|i 5(k,'+ (kf +w) —(k, +w) —k. +5) . (co)

The extra factors of m get absorbed in the summa-
tion over V and thus, independently of k, and k,';
this condition is the same as (Cl).

(ii) The associated energy denominator is

e = (+ ef, ps ef, ; + other terms) (cv)

The sign coefficients of the energies have been in-
verted since the nature of the particle lines has
changed. Because of the symmetry of the hopping

The upper sign is for an electron line and the lower
for a hole line.

(c) There is also a ( —1) sign accompanying the
m hole lines of the loop.

The tight-binding energy, Eq. (3. 5), is such
that the Fermi surface of a half-filled band is given

by

=0.
Moreover, we have

(c4)

Thus if k is an electron momentum, then k+m is
a hole momentum. Here m is any of the eight
vectors

energy, Eci. (C4), this energy denominator is iden-
tical to the previous one (C2), independently of the
other terms.

(iii) There is now a ( —1)" sign accompanying the
v hole lines of the new loop.

The contribution to the energy associated with
the new diagram is that of the old diagram multi-
plied by ( —1)"' "=—1. The new contribution is
opposite in sign to the old one and the two topolog-
ically different diagrams cancel one another.

Corollary. For Hubbard's model of a narrow
band, under the restrictive conditions prevailing
in the above theorem, all Goldstone diagrams of
odd order (0 1) in the perturbation vanish.

Proof. Since there is no interaction between
like-spin particles in the Hubbard Hamiltonian, all
odd-order diagrams must have at least one loop
with an odd number (c 1) of particle lines. All
these diagrams then cancel one another in view of
the previous theorem. The only exceptions are the
first-order diagrams of Fig. 1, which violate the
said theorem.

APPENDIX D: VALIDITY OF GOLDSTONE
EXPANSION

It was shown by Kohn and Luttinger and by
Luttinger and Ward' that the Goldstone expansion
for the energy is generally incomplete for a non-

spherical Fermi surface. We will endeavor to

prove the Hubbard Hamiltonian in the tight-binding
limit is an exception when the band is half-filled.

Kohn and Luttinger's arguments were based on a
grand canonical formulation of the perturbation ex-
pansion. They took the zero-temperature limit
after letting the volume go to infinity and found a
difference between their expression for the energy
and that from the Goldstone expansion:

Z' =lim f [A, (P)+ Go (tl)+Q„(P)+NP, ]
T 0

—[&o(~o)+ flo (&o)+»o H .

Here E' is the energy difference, lU. is the chemical

potential, p0 is the chemical potential in the zero-
order approximation, N is the average number of

electrons, 00 is the thermodynamic potential of the

unperturbed system, Q~ is the contribution to the

thermodynamic potential from the Goldstone dia-
grams, and Qz is the contribution to the thermo-

dynamic potential from the anomalous diagrams.
For a half-filled Hubbard band in the tight-binding

limit, the chemical potential is

This must be so from electron-hole symmetry.
For this value of the chemical potential, the grand

canonical Hamiltonian (5t'. —yN) is identical in the

electron and hole representations thus assuring
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half-occupancy of the band. If we choose the zero-
order Hamiltonian to be the Hartree one, for which

while simultaneously removing the Hartree part
of the interaction potential, we find no change in
chemical potential as the interaction is turned on.
On the other hand, there are no anomalous diagrams.
All such diagrams would contain interaction lines
between like-spin particles which is impossible in
the Hubbard Hamiltonian. It is then easy to see
that '

z'=o

and under these conditions the Goldstone expansion
for the energy is valid. But then the Goldstone
energy is independent of any one-body potential that
may be added to the unperturbed Ha,miltonian and
subtracted from the interaction part as long as the

Fermi surface remains the same. Since this is
the case for the Hartree potential in our analysis,
we can safely conclude that the Goldstone expansion
using the noninteracting Hamiltonian to zero order
is also valid.

Supported in part by the Office of Naval Beseaxch,
Contract No. 78721 and by the Canadian National Research
Council.

t Premanent address: Department of Physics, University
of Sherbrooke, Sherbrooke, Quebec, Canada.

~Permanent addx ess: Department of Metallurgy, Me-
chanics and Materials Science and Department of Bio-
physics, Michigan State University, East Lansing, Mich.
48823.

~G. Kemeny and L. G. Caron, Bev. Mod. Phys. 40,
790 (1968).

2J. Hubbard, Proc. Boy. Soc. (London) A276, 238
(1961);A281, 401 (1964).

3B. D. Day, Bev. Mod. Phys. 39, 719 {1967).
4To first order in the perturbation one need not worry

about possible breakdown of the Goldstone expansion due
to nonsphericity of the Fermi surface. See W. Kohn and
J. M. Luttinger, Phys. Bev. 118, 41 (1960).

SFor the very special case of the half-filled Hubbard
band in the tight-binding limit, it is shown in Appendix D
that the Goldstone formalism is exact even though the

Fermi surface is nonspherical.
6T. Matsubaxa and T. Yokota, in Proceedings of the

International Conference on Theowetica/ Physics, &yoto
and Tokyo, 1953 (Science Council of Japan, Tokyo, 1954),
p. 693.

D. Adler, in solid State Physics, edited by F. Seitz,
D. Tuxnbull, and H. Ehrenreich (Academic, New York,
1968), Vol. 21.

J. Des Cloigeaux, J. Phys. Radium 20, 606 (1959);
20, 751 O.959).

BD. B. Penn, Phys. Bev. 142, 350 (1966).
~0¹F. Mott, Proc. Phys. Soc. (London) 62, 416

(1949); Can. J. Phys. 34, 1356 (1956); Nuovo Cimento
Suppl. 7, 312 {1958);Bev. Mod. Phys. 40, 677 (1968).

~~J. C. Slater, Quantum Theory of Molecules and&Bds,
(McGraw-Hill, Neer York, 1963), Vol. I.

~~G. Kemeny and L. G. Caron, Phys. Rev. 159, 768
(1967).

J. M. Luttinger and J. C. Ward, Phys. Bev. 118,
1417 (1960).

PHYSICA L REVIEW 8 VOLUM K 3, NUM BEB 9 1 MAY 1971

Supercurrent l)ensity Distribution in Joseplison junctions
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The form of the modulation of the critical dc Josephson current J~ of a tunnel junction by
an applied magnetic field & is shown to be uniquely related to the supercurxent density dis-
tribution within the junction integrated over the direction of &. This relation is used to
quantitatively determine these "current-density profiles" from I~{&) measured for Sn-oxide-
Sn junctions with barriers prepared by plasma-discharge oxidation and fox the novel light-
sensitive junctions described by Giaever, in which the tunneling barrier is formed by an
evaporated film of CdS.

I. INTRODUCTION

In the field of tunneling between metals and semi-
conductors the production of a uniform tunneling
barrier has been a long-standing problem. Such
techniques as thermal oxidation, plasma-dis char ge
oxidation, anodization or evaporation of thin in-
sulating films' all have been employed. Usually at

best only indirect evidence of the barrier perfection
has been available.

A direct means of investigating this question is
presented by the dc Josephson effect. & 7 As
Josephson has shown, a supercurrent can flow by
the tunneling mechanism for junctions between two
supereonduetors. The maximum supercurrent den-
sity that can flow at any point is proportional to the


