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A modified Bloch equation for the conduction-electron magnetization density is developed
starting from the Landau-Silin kinetic equation, and a boundary condition describing surface
relaxation is formulated. These basic results include the effects of the drift magnetization
current density and predict relaxation of the magnetization density to the instantaneous local
value of the applied microwave field. The conditions of validity of this and previous theories
are critically discussed, and it is shown that in the collision-dominated regime, for example,
the modified Bloch equation is valid only under classical-skin-effect conditions. A way of ob-
taining useful results for anomalous-skin-effect conditions is then outlined. Formulas for the
surface impedance and for the amplitude of the microwave field transmitted through a thin me-
tallic slab are derived.

I. INTRODUCTION

The observation of spin-wave excitations in so-
dium and potassium metals by Schultz and Dunifer'
has stimulated considerable theoretical interest '

in conduction-electron spin resonance (CESR}.
Many, but not all, of the interesting features of the
data' are explained by Platzman and %olff's adap-
tation of the Landau-Silin Fermi-liquid theory.
Also, a conventional theoretical interpretation of cer-
tain anomalous features of the CESR experiments of
Walsh, Rupp, and Schmidt onpotassium is lacking,
although Overhauser and de Graaf' have suggested
that the anomalous behavior may be due to charge
density waves. '7hus, it appears that, while cur-
rent theories of CESR have had their successes,
they merit closer examination, particularly in the
limit of low temperatures and very pure metals.

The origin of many of our present ideas concern-
ing CESR is Dyson's famous paper. In it, he
points out that each electron spin diffuses into and
out of the skin depth many times before it relaxes,

and argues that this is the reason such narrow lines
are observed in CESR. He also puts forward a
quantitative theory of the surface impedance. In
another important development, Azbel', Gerasi-
menko, and Lifshitz' showed that electron spins
could be excited by a microwave field in the
skin depth on one side of a thin metallic slab, and
could then, after diffusing across the slab, emit
radiation out the far side. A comprehensive review
of both theoretical and experimental developments
has been given by %alsh.

In this paper, a theory of CESR is developed
which has as its basis the Landau-Silin theory of
a Fermi liquid. It is shown that, in a linear theory,
long-wavelength oscillations of the magnetization
density are governed by a modified Bloch equation
similar to that suggested by Torrey. ' Relaxation
of the conduction-electron spins at a surface is
described by an appropriate boundary condition on
the magnetization density, and solutions of the
modified Bloch equation consistent with the bound-
ary condition are obtained for cases of practical
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interest. This paper presents extensions of pre-
vious theories of CESR in several respects, as
will now be discussed.

To describe situations where the diffusion of the
spin-magnetic moments is important, Torrey has
developed a modification of the Bloch equation. '
He pointed out that the magnetization current den-
sity is a sum of two terms, a drift current propor-
tional to the force on a magnetic moment in an in-
homogeneous magnetic field (i. e. , proportional to
the magnetic field gradient) and a diffusion current
proportional to the gradient of the magnetization den-
sity. In contrast to the problem considered by Torrey,
the drift currents ean be quite large in metals due to
the fact that the skin effect gives rise to large
magnetic field gradients, and a theory of CESR
should therefore include them.

It was Kaplan' who recognized the relation of

Torrey' s equation to the C ESR problem; unf ortu-
nately, however, Kaplan did not include the drift
currents in his analysis. Since Dyson's initial
equation for the magnetization density and Kaplan's
version of the modified Bloch equation can be
shown to be equivalent, ' it is clear that drift cur-
rents are neglected in Dyson's work, and in the
work of subsequent authors ""making use of
Dyson's initial equation. The drift currents appear
naturally in the formulation of the problem used in
this paper.

Due to the work of Platzman and Wonf, it is
now known that the spin oscillations of a Fermi
liquid are qualitatively different according as the
parameter

P = I(&0- &1)~OTO/(1+&0) I

{where 70 is the orbital collision time of the elec-
trons, 0 is the resonance frequency, and the B„'s
are the Landau Fermi-liquid parameters) is greater
or less than unity. If To is sufficiently long that
P»1, we are said to be in a collisionless regime
and propagating spin-wave modes exist. On the
other hand, if P «1, we are by definition in the col-
lision-dominated regime, and the spin density has
a diffusive behavior. This behavior is accounted
for in the modified Bloch equation by allowing the
diffusion constant to be a frequency-dependent com-
plex number; in the collision-dominated regime the
diffusion constant is purely real, whereas in the
collisionless regime the diffusion constant is a
pure imaginary number.

The assumption that the diffusion current is pro-
portional to the gradient of the magnetization den-
sity is valid only if the magnetization density is
slowly varying spatially. Otherwise higher- order
spatial derivatives of the magnetization density will
also play a part in determining the diffusion cur-
rent. The question of when it is necessary to take
into account higher-order contributions to the mag-

U(1+a,)

"ol(&0-»)(&0-&z)I'" ' {1.3)

Since, in simple metals, the B„'s have magnitudes
much smaller than unity, ' condition (1.3) is more
restrictive than the condtion that & be greater than
the cyclotron radius. Conditions {1.2) and {1.3)
are also the conditions which must be satisfied for
the modified Bloch equation to be valid.

In a paper concerning the interpretation of CESR
experiments Lampe and Platzman' calculated
quantities such as the surface impedance and the
amplitude of the microwave field transmitted through
a thin metallic slab. The amplitudes of the exper-
imentally measurable quantities were expressed in
terms of the surface impedance, which, if the skin
effect is anomalous, should be taken to be the anom-
alous-skin-effect surface impedance. A major
limitation of the Lampe-Platzman theory is the as-
sumption that the diffusive motion of the magnetiza-
tion density can be calculated assuming a diffusion
current proportional to the gradient of the magneti-
zation density. As has just been pointed out, this
assumption limits the validity of the theory to the
classical-skin-effect regime [see Eq. (l. 2)].

This limitation can be overcome by noting that
the oscillating magnetization density in a metal is
a sum of two different modes of motion, the rela-
tively long-wavelength spin-wave modes, and the
short-wavelength skin-effect modes. The spatial
variation of the long-wavelength spin-wave modes
can be determined by the modified Bloch equation,
and this allows the position and shape of the ob-
served resonance lines to be calculated. However,
because the short-wavelength skin-effect modes
cannot, under anomalous-skin-effect conditions,
be calculated using the modified Bloch equation
[see conditions (l. 2) and (1.3)], it turns out that
the final formulas for the experimentally measur-
able quantities contain a factor of unknown magni-
tude. The relevant calculations are discussed in
Sec. V.

At low temperatures in very pure metals, the
bulk relaxation time becomes sufficiently long that
collisions with the metallic surfaces can become
the dominant relaxation mechanism for the conduc-
tion-electron spins. The experiments of Schultz

netization current density is discussed briefly in

Sec. VI. It is found that, in the collision-dominated
regime, the condition for higher-order corrections
to be negligible is

X»vTO

where & is a wavelength characteristic of the spatial
variation of the magnetization density and v is the
Fermi velocity. Note that v&0 is the electron mean
free path. In the collisionless regime, the corre-
sponding condition is
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and Latham" are an excellent example of this phe-
nomenon. A theory of surface relaxation is pre-
sented in Sec. IV. There, a boundary condition is
formulated which states essentially that the effec-
tive flux of magnetization out of the surface of the
metal due to surface relaxation is 2PE times the
number of particles striking the surface per unit
time (P is 'he Bohr magneton and e is the probabil-
ity that an electron's spin flips when it hits the
surface).

Surface relaxation has been discussed previous-
ly by Dyson, but our analysis differs from Dyson's
in some important points. First, our discussion
is carried out within the framework of Fermi-
liquid theory. Second, by noting that is the instan-
taneous local quasiparticle energy which is con-
served in the collision of a quasiparticle with the
surface, a boundary conditiof: i;l found which has
the property of giving zero flux of magnetization
out of the surface when the magnetizat .n density
at the surface is in instantaneous local '.librium.
Third, it is shown that, in the limit as .he probabil-
ity of a spin flip c tends to unity, the magnetization
density at the surface is maintained in thermal
equilibrium; this leads to an infinitely broad res-
onance line.

This third statement can be understood by corn-
puting the z component of the magnetization density
M, at the surface for the case where the applied
magnetic field is zero. Note that M, = P[n„n„-
+n,„n„j,whe-re n, &

is the density of spin-up elec-
trons incident on the surface, whereas n,„is the
density of spin-up electrons having just been re-
flected from the surface; if e = 1, n f„=n,&

and
n,„=n,&, giving M, =O at the surface.

The results of this paper, which combines a
discussion of so-called Fermi-liquid theory effects
with a theory of surface relaxation, will allow the
interpretation of experiments carried out under a
wide range of experimental conditions. In particu-
lar, it is now possible to analyze experiments car-
ried out at low temperatures, on simple metals of
sufficiently high purity that spin waves exist and
surface relaxation is important. '

II. TORREY'S MODIFIED BLOCH EQUATION

To analyze CESR experiments, Maxwell's equa-
tj.ons must be solved, and Kaplan' suggested using
the equation of motion

~M--M
8$
——= yM& H ——+DV'M

T (2. 1)

as the constitutive relation between M and H. This
approach, which is equivalent to that of Dyson, of
Lampe and Platzman, ' and even of Platzman and
%'olff if the diffusion constant D is interpreted
properly, has the advantage of allowing a relatively
elementary mathematical analysis of the problem. "

pn~=Dp(c ) (2. 5)

where n~ is n, in zero magnetic field. Equation
(2. 5), valid for a degenerate electron fluid, is the
analog of the Einstein relation p, =D/kT which is
valid in the nondegenerate case considered by
Torrey.

The current density A, of the z component of the
magnetization density can now be calculated, with
the result

Ag= p Q~ oj~= —DV(M, ){H,)—(2. 6)

where l(=2p p(e) is the Pauli susceptibility. The
rate of change of the magnetization density due to
this flux is, by the continuity equation,

sf I&lux= —v Ae=Dv (M~ le,)—(2. 7)

Similar expressions hold for M„and M, . Thus the
Bloch equation should be written

~M M-yH
~t =yMxH +DV'(M-gH) .

Ts
(2. 6)

An important property of Eq. (2. 8) not possessed
by Eq. (2. 1) is that for fields varying sufficiently

However, arguments given by Torrey suggest that
certain corrections should be made to Eq. (2. 1).
These arguments can easily be adapted to the case
of a degenerate electron fluid, a.nd will be presented
here since they provide a very simple understanding
of one of the basic equations of this paper [Eq. (2. 8) j.

Let n, be the number of electrons in the spin
state &r(o = + 1 refers to the spin quantum number).
The current densities of the two types of particles
are ea.ch written as the sum of a drift current and
a diffusion current, i. e. ,

3e bravo Dna (2. 2)

Here, v, is the drift velocity of particles in the state
It was Onsager who originally pointed out the

desirability of including the drift currents in this
expression. The drift velocity is taken to be pro-
portional to the force f, on particles of type o' in an
inhomogeneous magnetic field; thus

v.=uf. = p&V(&,) . (2. 3)

The coefficient of proportionability p, is called tive

mobility and I, is the z component of the magnetic
field.

In thermal equilibri im the total current density
j, must vanish. Since, for noninteracting electrons
in thermal equilibrium,

Vn, = p(e)V(a PH, ) (2. 4)

where p(e) is the number of electron states per unit
volume per unit energy, the mobility must be relat-
ed to the diffusion constant (to lowest order in the
magnetic field) by the relation
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2D/~, 5'» 1 at 4. 2 'K (2. 11)

Thus, at 4. 2 'K, it is necessary to revise current
theories to include drift currents.

III. DERIVATION OF MODIFIED BLOCH EQUATION
STARTING KITH LA NDAU-SILIN KINETIC EQUATION

In a series of papers, ' Landau developed a

slowly the time derivative BM/st can be neglected,
M(r, f)=yH(r, f) is a solution. Alternatively, one
can say that the magnetization density relaxes to-
wards the instantaneous local value of the magnetic
field.

Equation (2. 8) has also previously been obtained

by Brinkman and Englesberg' starting from the
Landau Fermi-liquid kinetic equation and assuming
that no uniform external magnetic field is present.
In Sec. III, the extension of Eq. (2. 8) to the case
where a uniform external field is present is derived
starting from the Landau-Silin kinetic equation.

A question which arises now is whether the ad-
ditional term in the modified Bloch equation (2. 8}
relative to Eq. {2.1) is sufficiently small that it
can be dropped, so that previous theories of CESH
are immediately applicable, or whether this addi-
tional term is sufficiently large that it must be re-
tained. The total magnetic field in the metal is
H(1 f) = Ho+ H)(r, t)& where Ho is a strong static
uniform field and H, (r, t) is the microwave field;
similarly, M(r, f) = Mo+ M, (r, t). The microwave
field exerts a torque on the magnetization density
of magnitude Mp~H, . It is evident from Eq. (2. 8)
that the term —(D/y)V (){H,) also acts as an effective
torque; since it is due to drift currents, it mill be
called the drift torque. To compare the magnitudes
of these two torques note that the microwave field
in the metal varies significantly in a distance the
order of the skin depth 5. Thus

D V'(yH, ) 2D

ygox g, +05

where &p= —&Hp and Mp = gQp have been used. If
2D/~05 &I, the drift torque due to the skin-effect
field is greater than the torque M~H, and cannot
be ignored.

Now consider CESR in lithium at room temper-
ature, the relevant parameters for which are (see
Lewis and Carver' ) D= 3v'~p= 50 cm sec ',
~p=5&10' sec ', and 5=1.5&10 ' cm, which gives

2D/~05'=10 ' at 2f3 'K (2. 10)

Thus, for lithium at room temperature, the drift
torque is small enough that it can be neglected.

At liquid-helium temperatures the situation is
different. Since, at 4. 2 'K, in relatively pure crys-
tals the orbital relaxation time 7'p will be several
orders of magnitude longer than at 273 'K, it is
easily seen by comparison with Eq. (2. 10) that

(3. 1)

The magnetization density can be found from o by

M(r, f) = (2m)~P f d'P a(p, r, t) (3. 2)

while the energy 6&2 is given by

5&2(p, r, t) = —PH, (r, f)

+(2v) f d p'g(p, p')5o(p', r f) (3 3)

For p and p' on the Fermi surface, the interaction
g(p, p'} is given by

2$(p, p') v (2f + 1)B,v
(2 )3 Fj

4 2 P,(cos e) (3.4)

where the P, 's are Legendre polynomials, ~ is the
angle between p and p', and the B„'s are called the
Landau Fermi-liquid parameters. In (3.4), a de-
parture from Silin's notation has been made in
favor of that of Platzman and Wolff. It should be
noted that Eq. (3. 1) is a linearized version of the
original kinetic equation.

Nom define the z axis of a coordinate system
to be along Hp, and also define the unit vectors
e„{o.'= 0, + I) by Z, = e, and 7„=(e,+fe,)/M2 Thus.

Ger = 5» 50

semiphenomenological theory of a degenerate Fermi
liquid. The extension of the theory to the case of a
charged Fermi liquid is due to Silin. ' Of partic-
ular interest here is the fact that Silin showed how

this theory could be used to discuss the spin-de-
pendent oscillations of an electron fluid in a static
uniform magnetic field. Platzman and Wolff and

Ying and Quinn have further extended the analysis
of the kinetic equation with particular reference to
the interpretation of CESR experiments. It should

also be remarked that the problem of spin oscilla-
tions in liquid He is somewhat similar to the prob-
lem discussed here, and has been treated by
Leggett, ' who was particularly interested in develop-
ing a nonlinear macroscopic equation.

In his book, Nozieres gives micoscopic deri-
vation of the kinetic equation in the case that there
is no uniform static field present. A recent paper
by Van Zandt ' derives the kinetic equation in the
case where a uniform magnetic field is present.

To follow the development of this section, a
familiarity with the paper of Silin (whose notation
is followed here) is necessary. Our starting point
is Eq. (5) of Silin s paper for the spin distribution
function o(p, r, t), namely,

80 9 e - 8 2P—+ v ~ —+—{vx Ho) ~ —+ Hox~t ~r e ~p 1+Bp
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where 5o»-5o, = ({)o,+i5a,)/v 2 .The components
of Eq. (3. 1) can now be written

9gg ' 8
cgy 0 e= e+ v. —+ cu —-ia00 5& =J (36)

where

2e = —BHfe +Bpgpe+BggIe (s. is)

When Eqs. (3. 10), (3. 12), and (3. 13) are sub-
stituted into (3. 9), and (3. 9) is multiplied by v and
averaged over all directions of momentum, the re-
sult can be solved for g, „(the components y= 0,
+1 of the vector g, ); the result is

5V =Do (3. 7)

is the departure of the distributionfunction from
its instantaneous local equilibrium value,
Qp = Ko/(1 +Bp) (op —2PHp ~+ —eHO/m*c, m ~ =P/v,
and {t) is the angle shown in Fig. 1. Now introduce
the functions g (p, r, t) defined for p on the Fermi
surface by

where

—i(1 +Bo)
~+ oA,(1+B,)+y~,(1+B,)+ i/~p

i+B, (3. 14)

(s. 8)

a a a
a —+i-

8X 8y ' 0 ~Z
{3.15)

and assume that all quantities have the time depen-
dence e '"'. Equation (3. 6) finally reduces to 1 1+Bj

~0 ~0
(3. 16)

a—i~ +;~ ~ —+ & ——i&A ge ' g~ c gy 0 e

(s. 9)

where

and

ge =g e+ &&3e

(g,) =(4w) ' f dO~ g, (p, r, i)

(s. io)

{3.11)

ge =gpe + V ' gle (s. 12)

where gp and g, are independent of the momentum
direction. From this assumption, it follows that

is an angular average of g over all directions of
momentum. The collision integral J has been re-
placed by the simple relaxation-time approximation
on the right-hand side of Eq. (3.9). Evidently 20

is a characteristic momentum reorientation time
of the conduction electrons, whereas 7, is a char-
acteristic spin reorientation time.

Equation (3. 8) will be assumed to have a solu-
tion of the form

1—i~5M, =i«o05M, ——5M, ——~ A, (3 17)

where r, = r', /(1 B+)05M = 5M —)tHq (X is the
static susceptibility of the interacting Fermi liquid)
and

d p3A = p (2 )3 v5&e (3.18)

Furthermore, the components of A, namely, A „,
are given by

A.„=—D.„s„~m. ,

where

(s. 19)

All that is needed now is an equation which
determines gp, since g, „can then be found using
(3. 14). Note, however [see Eqs. (3.2), (3.8), and
(3. 12) ], that a knowledge of go, (r, i) is equivalent
to a knowledge of {)M,(r, t) and vice versa We.
prefer to work with 5M {r,t) from here on, since
the equation which determines it is a modified Bloch
equation similar to Eq. (2. 8) and can thus be readily
interpreted.

The equation determining 6M is found by multi-
plying Eq. (3. 8) by P and integrating over all mo-
menta. After some manipulation, one finds

i(1+Bo)(1+B,) —,
'

v
D ~+ Q, (o1fB,)++ y~,(1 B+,) + i/r, (S. 20

FIG. 1. Definition of the angles 8 and (t).

Note that n ~ A gives the flux of the &th component
of M through a surface in the direction of the nor-
mal n to that surface. Combining (3. 17) and (3. 19)
gives

Me g

yM
'5Me—S &(00
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82
+ &~~ p+Deq 8 ~+~ 2 m~

Z X

Do(( Dofg l(1 +Bo)(1+Bj ) 3 v2„--~ (3. 22a)

D = o[D, +D ]

=i(1+Bo)(1+BE)35 M(g[N(g K,] ~ (3 22a)

where, since the time dependence e '"' is assumed,
(s/sf} = —i &u .Also,

n, (p) = (1 —e) n, (p') + en, (p") (4. 2)

This result is not quite as obvious as it appears at
first, but can be deduced from a detailed consider-
ation of the fluxes incident on and emerging from
the surface. Because the quasiparticle energy is
conserved in a collision with the wall [e.g. , see
Eq. (4. 1)], the local instantaneous thermal-equi-
librium values of all three quasiparticle distribu-
tion functions appearing in (4. 2) are equal. Thus

is changed to p by reflection. Thus the density of

quasiparticles emerging with momentum p and spin
up is just

where ~, = ~+ &Go(1+B,) +i/ro and u, = (1+B,)~,.
Equation (3.21) is the equation appropriate to

the macroscopic description of the motion of small
departures of the magnetization density from ther-
mal equilibrium. Note that, apart from the anisot-
ropy and frequency dependence of the diffusion con-
stant, this equation has the same form as that
proposed by Torrey [i.e. , Eq. (2. 8)]. As pointed
out in the introduction, and as will be discussed in
more detail in Sec. VI, Eq. (3.21) is valid only
for relatively long-wavelength disturbances.

IV. BOUNDARY CONDITION

gy+ 6E'yt = 6yi + Q&g, , (4. 1)

Here, 5e&, is the additional energy of a quasiparti-
cle with spin up due to interaction with the magnetic
field and other particles. Similarly, a quasiparti-
cle with momentum p" and spin down has a proba-
bility e of undergoing a spin flip when its momentum

The modified Hloch equation (3. 21) for the mag-
netization density in a metallic body does not have
a unique solution unless some boundary condition
on the magnetization density at the surface is spec-
ified. The derivation of the boundary condition
presented here is based on the assumption that a
quasiparticle has a probability e of having its spin
flipped on being reflected from the surface of a
metal. This is similar to Dyson's fundamental as-
sumption. Our method of deriving the boundary
condition is, however, somewhat different from
that of Dyson, as is our final result.

The reflection of a quasiparticle from a smooth
surface is interesting because it is not necessarily
specular. Consider an electron with a momentum
p' which, when reflected from the metallic surface
z =0 (see Fig. 2), has a probability 1 —e of emerg-
ing with some momentum p and its spin still up.
Due to the translational invariance of the problem
in the xy plane, the momenta P, and P, are equal to
P'„and P'„, respectively. On the other hand, P, is
not necessarily equal to —P,', but is determined by
the condition that the quasiparticle energy is con-
served, i. e. ,

$7, (p) —8n, (p') = e[5n, (p"}—6n, (p') ] (4. 3)

where $7,(p) is the departure of the distribution
function f rom its local thermal-equilibrium value
(all formulas here refer to a given point at the sur-
face of the metal). Note that the theory will still
be correct to terms linear in the applied field if
we now put —P, =P', =P", .

Equations similar to (4. 2) and (4. 3) can be
found involving n, (p). Thus, one can establish the
result

d p
3

n ~ P
~ ( }, v&&,(p)

d3
= n ~ 2EP 3 v5V, (p)

(-)
(4. 4)

where 5&,= 5n, —5n „n is the unit outward normal
and f~ &d P means an integral over the region of

space for which P, &0. The term on the left-hand
side is just the apparent flux of magnetization
across the surface due to surface relaxation. Since
50,=On, —5n„ the quantity on the right-hand side
is 2PE times the number of spin-up particles hitting
the surface minus a similar term for spin-down
particles {or rather the departures of these quanti-
ties from their local equilibrium values).

There are important differences between the
reasoning of previous paragraphs and the arguments
of Dyson. 6 First, we have an additional factor of
2 on the right-hand side of Eq. (4. 4). This is be-
cause we define E to be the probability of a spin
flip (the accompanying change in moment being 28)
whereas Dyson defines e to be "the probability of
spin disorientation" (the accompanying change in
moment thus being only 8). Second, the require-
ment of the conservation of the instantaneous local
quasiparticle energy leads to an expression [Eq.
(4. 4)) involving the total (both drift and diffusion
contributions) flux of magnetization across the sur-
face, rather than an expression involving simply the
diffusive contribution to the flux; the boundary con-
dition is thus such that relaxation takes place to-
wards instantaneous local equilibrium in the ap-
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insofar as the magnitude of e is concerned. Thds,
while the previous considerations concerning srr~ooth

surfaces were useful in establishing the correct
form of the boundary condition, it is now possible
to assert that the final results, Eqs. (4. 4) and (4 5),
can be used for both rough and smooth surfaces.

V. APPLICATION TO CESR

FIG. 2. Scattering of a quasiparticle by the metallic
surface,

plied magnetic field. Finally, on the right-hand
side of (4. 4) we have a more sophisticated method
of counting the number of particles hitting the sur-
face per unit time, and this will be seen to lead to
a profound difference between our result and that
of C'yson for the limit &-1.

We shall assume that expressions similar to
(4. 4) hold for the fluxes of the x and y components
of the magnetization also. Then, by computing the
right-hand side of (4. 4) using the results of Sec. III
one finally arrives at the expression

e(1+80)v
2(i —e) (4. 5)

Notice that in the limit as the probability of a spin
flip at the boundary approaches unity, the magnetiza-
tion density at the boundary is maintained in instan-
taneous thermal equilibrium, i. e. , 6M =0, as one
expects. This property is not possessed by Dyson's
boundary condition, which lacks the factor [I —e j

'
on the right-hand side of {4.5); our more sophisti-
cated way of counting the number of quasiparticles
hitting the surface gives rise to this difference in
boundary conditions.

Some final comments on the effect of surface
roughness are in order. While Eq. (4. 3) is a very
detailed statement which is valid only for the reflec-
tion of electrons from a smooth surface, Eq. (4. 4),
being an average over momentum directions of Eq.
(4. 3), contains much less detailed information. In
fact, there is nothing in the physical interpretation
of Eq. (4. 4) (which balances the magnetization flux
out of a surface against 2PE times the total number
of particles striking the surface) which leads one to
believe that this final form for the boundary condi-
tion is dependent on the surface properties, except

To obtain formulas relevant to the interprefa-
tion of experiments, consider an electromagnetic
wave of time dependence e '"' traveling in positive
z' direction through a metallic slab bounded by
planes z' = + Q. The static external field Hp is
along the z axis. This geometry is sketched in

Fig. 3.
Below, it will be shown that the magnetization

density induced in the metal by a microwave fie)d
can be written as a sum of two terms, i. e. ,
6M 6Mggf g + 6MI~ The skin-effect term 6M,„„is
rapidly varying spatially, existing only in the sb:in

depth, while the spin-wave contribution 5M, is
relatively slowly varying. 6M,„„is a nonresonPnt
function of the magnetic field" and can therefor@
be neglected if one is only interested in computing
the resonant parts of the fields. The amplitude of
5M, , on the other hand, exhibits resonant behav-
ior. The problem is to find solutions of Maxwe. 'll s
equations with B given by B=H+4v5M„„and thus
to obtain formulas for the surface impedance Z and

for the amplitude of the transmitted field H~. 8«h
formulas have been previously obtained by LamP
and Platzman, ' and later by Walker. " These
formulas are

Z —Zo M&{ —gL) ' Hfn (5. 1)
Z, /H„f'

Hr = —cZOM, ~q(2L) (5. 2)

FIG. 3. Typical experimental geometry.

where e is the velocity of light, &p is the surfac@
impedance for M=O, and M,„,is the component of

M, in the plane of the surface. In conclusion, note
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where

D = D, cos25+ D, sin 6, (5.4)

that it is necessary to calculate the amplitude of the
magnetization density at the surfaces z'= + 2L.

The magnetization density is determined by
finding the solution of the modified Bloch equation
(3. 21) which is consistent with the boundary condi-
tion (4. 5). Since it will be assumed that all fields
depend only on the coordinate z' =z cos4-x sin4
(see Fig. 3), Eq. (3. 21) becomes

&5M . — 5M
(5. 3)

where

ki= {Dr.) [&(~- ~0)&.—1], z'=fxo~o/D .
(5. 8)

H(z') is assumed to be a given function of z'
which has been obtained by solving Maxwell's equa-
tions in the absence of M; i.e. , H(z') is the ordi-
nary-skin-effect magnetic field. Equation (5. 7) is
thus an inhomogeneous differential equation, its
most general solution being the sum of a particular
solution and a linear combination of solutions of the
corresponding homogeneous equation. A particular
solution of Eq. {5.7) is

{5.5)

whereas the boundary condition, Eq. (4. 5), can be
written

d +C 5M (z ) ~ y/2z=0
Z

2 g~

M gf (z') =k dz" sink, (z' —z")
1 p

with

C =[z(1+Bo)v/2(1- z)D ] (5. 8)

iD d1+— "2 H z")
(dp dz (5. 9)

Only the component M of M is considered in this
section, since it is the only one which is resonant
when cu = ~p, and the notation M = M, D = D, and
H, =H is used.

Since the time dependence e '"' is assumed,
Eq. (5. 2) can be written

dM 2 2 SD
,2+ k1M=K 1+— g2 H )dz' p dz

as can be seen by substituting (5. 9) into (5.7). Note
that since H(z") is nonzero only within a skin depth
of the surface z"=- zL (assuming that the exciting
field is an incident only on this surface), the same
is true for M„„(z'). To Eq. {5.9) must be added
solutions of the homogeneous equation proportional
to cosk1z and sink1z to obtain the complete solution
which satisfies the boundary condition (5. 5). The
correct complete solution is finally found to be

1/2L C
f'1/2L

M(z') = M,„„(z')+ —'z H(z") dz" +—
„-1/ 2L 1 -1/2L

sink1 2L+z" H z")dz"

cosk1z sink, z'
X +

41 sinw —C cosw k, cosw+C sinw
(5. 10)

where w = 2k1L. The second of the two terms is
obviously what we have called M,„above; since
solutions of the homogeneous equation exist in the
absence of an exciting field, they are the so-called
collective modes of the system. Notice that if the
parameter P [see Eq. (1. 1)] is much greater than
unity, so that the collionless regime is obtained,
the diffusion constant D [Eqs. (5. 4) and (3. 22)] will
be a pure imaginary number. Now, if the sign of

—p is the same as the sign of the imaginary part
of D, k, [Eq. (5. 8)] will be almost purely real for
I( —p)v', )»1 and the spin-wave modes are only

weakly damped as they propagate into the metal.
The relation

1 1
X

k1tanw —C k, cotw+ C
(5. 12)

Hz—-—c'Zog(1+C5')
{ „

where H „is the amplitude of the component H. of
the field incident on the surface z' = —&L, is useful
in evaluating the amplitude of M, (+ z L) in terms of
the surface impedance Zo. Making use of (5. 11)
and (5. 10), Eqs. (5. 1) and (5. 2) become

2
Z —Zo c gZO(l + C5') z, ' H„

Zp 2D

f, , dz' H(z') = (ic'/2v(u)Zoo, .H„{5.11)
1 1

X +
k, tanw —C k, cotw+ C (5. 13)
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where 5' is an effective skin depth defined by

(5. i4)

these terms. For simplicity, consider the case
e=o, i.e. , no surface relaxation. Previous work
has concentrated on solving Eq. (2. 1) with the
boundary condition

It is of interest to consider the limit tkyL ) « i.
In this case

dM (z')
dz

s' &+1 /2L (5. 17)

2iD/L

kg tanK —C ~ —+p+ & ITzetf

or some equivalent problem. In this paper, Eq.
(5. 3) is used, with the boundary condition (for z = 0)

where
—,[M(z') —XH(z')] g..„(,1.=0dz' (5. 18)

1 1 z(I +Bo)v
Tz„, r, (1 —z)L

is the effective resonance linewidth due to the com-
bined effects of bulk relaxation and surface relaxa-
tion. This differs from the result of Dyson by pre-
dicting an infinitely broad line in the limit as the
probability of a spin flip e tends to unity and can be
understood, as stated above, by noting that the
magnetization at the surface cannot be excited from
its thermal-equilibrium value when & is unity.

Furthermore, it is of interest to note that, ex-
cept for the factor (1+Bo)/(1 —z), Eq. (5. 16) is
just what would be predicted by a simple argument
assuming that the electrons travel ballistically with
velocity v back and forth between the two surfaces
of the slab. For, in this case, the number of col-
lisions a particle makes with the walls in time t is
tv/L, and the effective relaxation time Tg f f is just
that time such that T2„,v/L = z '. This argument is
valid even if the electrons do not travel ballistically
but are scattered from impurities, thus pursuing a
random walk from one wall to the other. This can
be seen by considering a kinetic-theory calculation
of the pressure of a classical gas; the pressure is
determined in terms of the number of particles col-
liding with the wall per unit time, and is the same
whether we consider an ideal gas in which collisions
betweenparticles are ignored or a real dilute gas in
which the particle motion is diffusive. For this ar-
gument to be valid, the electron must have time to
diffuse back and forth across the slab at least once
[i.e. , (Dv,)' & L]. In this case the number of col-
lisions of the particular particle we are considering
is the same as the number of collisions of a given
particle averaged over all particles in the gas,
which is the quantity entering the calculation of
pressure.

In the case (D7', )'~ &L, there is no simple for-
mula analogous to (5. 16) for the linewidth, and anal-
ysis requires a detailed comparison of the experi-
mental results with (5. 12) and (5. 13).

A comment on the effects of including drift-cur-
rent contributions to the magnetization current den-
sity will be made here for the purpose of comparison
with previous analyses ' 'o"' which have neglected

It turns out that by neglecting both the term
—Dy(d H/dz ) in Eq. (5. 3) [cf. Eq. (2. 1)] and the
term d(H (z'))/dz'] in Eq. (5. 18) [cf. Eq. (5. 17)] one
makes two errors which exactly cancel each other,
and the final formulas for Z and H~ obtained in this
case agree with ours. If only one of these terms
had been ignored, an error of the order of

i 1+ 2D/tuo5z I(which may be several orders of mag-
nitude at liquid-helium temperatures) would have

resulted in the magnitudes of Z and H~.
In the above analysis leading to the formulas for

the surface impedance and for the amplitude of the
transmitted field, it is remarkable that nowhere
was it necessary to make use of the explicit func-
tional dependence of the skin-effect field H (z) on z.
Only Eq. (5. 11), the relation between the integral
of the skin-effect field and the surface impedance,
was necessary. Thus, provided the behavior of
magnetization density is accurately described by
the macroscopic equation (5. 3) and the boundary
condition (5. 5), the above formulas are valid for
anomalous as well as classical- skin-ef feet condi-
tions. A similar circumstance was noted previously
by Lampe and Platzman for the case where the
motion of the magnetization density could be de-
scribed by Eq. (2. 1).

However, as mentioned in the Introduction, the
basic macroscropic equations used above are valid,
for collision-dominated conditions, only when
v7'g && X, i.e. , in the classical-skin-effect regime.
Under collisionless conditions, the inequality (1.3)
must be satisfied. While these inequalities are
generally satisfied in practice if & is taken to be a
wavelength characterizing the spin-wave modes,
they are not satisfied if the skin effect is anomalous,
and & is taken to be a wavelength characteristic of
the skin-effect modes. Because the skin-effect
modes play an important part in the determination
of formulas for H& and Z, particularly in so far
as the magnitudes of these quantities are concerned,
our above analysis is valid only under classical-
skin- eff ect conditions.

To summarize: In spite of the fact that the de-
rivation of the above formulas for H~ and Z did not
involve any assumptions concerning the spatial de-
pendence of H (z), these formulas are still valid
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M(z') =M,„„(z')+M, (z') (5. 19)

only under classical-skin-effect conditions. The
reason for this is that the basic equation of motion
for the magnetization density is valid only under
classical-skin-effect conditions.

To derive formulas valid under anomalous skin-
effect conditions, assume that the spin-wave modes
are of sufficiently long wavelength that they can still
be described by the homogeneous equation corre-
sponding to Eq. (5.7). The magnetization density in
the metal will then still have the form

sink'&z'

1 1
0& tansy- C kl cotse+C (5. 24)

Also, the surface impedance and the amplitude of the
transmitted field are given by

Z ZQ 71 Fsgffi I 6y Hgfit

Zo D tHr l

Me~=A coskyz +8 slQklz (5. 20)

M,„„(z')is that component of the magnetization den-
sity which falls off to zero within a skin depth of the
surface. It cannot be determined by Eq. (5. 7), since
it varies much too rapidly spatially for Eq. (5. 7)
to be valid, and must be considered to be unknown.

What allows us to obtain useful information in spite
of the fact that M,«, is unknown is the assumption
that it does not vary rapidly with frequency; i. e. , it
is nonresonant.

The boundary condition is still to be found by
equating the flux of magnetization across a surface
to 2Pc times the number of particles striking the
surface, or, more precisely, by Eq. (4. 4). How-

ever, only that part of the distribution function 5o

corresponding to the long-wavelength spin-wave
modes can be evaluated using the results of Sec. III.
Thus, the boundary condition must be written in the
form

—,+C M,„(z') g..rizr =0
dz (5. 21)

~
~ ~u asm c'~ 1 /2I 4 in ~

In writing (5. 21) and (5. 22) it has been assumed,
as above, that the slab is excited by a field incident
on the surface z' = —2I . Thus, to a good approxi-
mation there is no skin-effect field near the surface
z'=+ zL, and (5. 21) does not involve skin-effect
fields. On the other hand, skin-effect fields are
present near the surface z'= ——,L and, in writing
(5. 22), allowance has been made for this by includ-
ing a factor F,«, on the right- hand side; F,g f could
in principle be obtained explicitly by finding a solu-
tion of the kinetic equation valid at short wave-
lengths, but since this has not yet been done, F,„„
must be treated as an unknown, which will depend
on ~, the angle which the external field makes with
the normal to the slab.

The boundary conditions determine the constants
A and B in Eq. (5. 20), the final result for M(z')
being

M( ')-M (z')
2D k, since —C cosu

—cZ0F,„„1 1
2D k~ tanav —C k& cot@ +C

x[z (e» ego)ter](tf '' Hrq), (5 25)

An elementary application of the above results is
the determination of the magnitude of e from the
experimental results of Schultz and Latham'3 on

copper. Schultz and Latham have determined
(Tz»rr) = 4&& 10'sec ', in a slab thickness L = 0. 0038
cm. The observation of increasing relaxation rates
with decreasing I indicates that the relaxation is
almost entirely due to surface relaxation. Thus

L 1 =10
V T2eff

where v = 1.6 & 10 cm/sec zz has been used.

'&ug iq ~ v ——i urn gegg 0 N p y ~

(6. I)
Let (8, (t)) be the polar angles giving the direction
of the momentum vector p. Then g (p) can be ex-
panded in terms of the spherical harmonics I'r (ep),
i. e. ,

g.(p)=Egr I'r (8, 0) .
pffft

Note that since only one particular component,

(6. 2)

VI. VALIDITY OF MODIFIED BLOCH EQUATION

The assumption g =go, + v ~ g&, [see Eq. (3. 12)]
is only an approximation, and it turns out that it is valid
only at relatively long wavelengths. Platzman and
Wolff's work, ' mentioned above, suggests that a
criterion of validity for their analysis is»&R„
where & is the characteristic wavelength of the
disturbance, and R, =v/ur, is the cyclotron radius.
Ying and Quinn have explored the general problem
of obtaining a spin-wave dispersion relation which
is valid at all wavelengths. Here, a brief discussion
is given of how to obtain higher-order corrections
to the distribution function, and an assessment is
made of the approximations used in Sec. III.

Assuming that all quantities are proportional to
exp[- i (q ~ r —&vf) ], Eq. (3. 9) determining g be-
comes
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is considered at a time, the subscript o' need not be
retained. Also, it follows that

+i)2 (p p)'~'(1+8
p) (qv)n' P)PI2

g = Qg, y', „—pH„
tm

(6. 3) t30~ +iqv Q I) .gp ~ =0
1+Bp m'

(6 6)

where

g, = (1+8,)g) (6.4)

Now let n and n' be unit vectors in the directions of
v and q, respectively, so that

q ~ v=qv(n, n'+n n', +n, n', )

To understand the following developments, it is suf-
ficient to note that the n .„i.e. , n, n, and n„being
the spherical harmonics F&, have nonzero matrix
elements only between spherical harmonics F, and

F),j
Multiplying Eq. (6. 1) by 7, and integrating over

angles gives what will be called the (/, m)th equation.
The (0, 0)th equation is

(4 )'" (47r)'" 1+8
+2qV 5~ dmmig1me = 0 (6. 7)

where a& = —1, ap=1, and a, =1 and the b ~ are co-
efficients depending on n' and having a magnitude
the order of unity.

Note that if gz is arbitrarily assumed to be
zero, Eq. (6. 6) can be solved forg, in terms of

gpp. When this result is substituted into (6. 5), the
results of Sec. III are obtained.

The first correction to the results of Sec. ID is
obtained by taking g~ 40, but assuming g&„=0,

To compute this correction, the (2, m)th

equations are needed, which are

1+BE . 1+BE—i )d + n)dp —nl)dn(1 +82) +'1 gpm1+Bo TQ

+
tqe r I-+ (12)1)1/2 [n g12 n+g11+n gl 1]

1 gpp PH~

r, (4)1)'" 1+8, '

The (1,m)th equations are

1+BE . 1+Bj
)d+ &)dp - n1)dn(1+81) +I~ , g1m1+Bp ~o

(6. 6)

Recall ge is assumed to be zero. The d .'s are
coefficients with magnitudes of order unity. Equa-
tion (6. 7) is solved for g2 and the result is substi-
tuted into (6. 6). It now becomes evident that results
similar to those of Sec. III will be obtained, except
that the diffusion constant should be modified by a
factor having a magnitude of the order of

1+ ()IV) f)mm'dm"m ~ ' ~ )d+2 &~p(1+82) . 1+82 u&dp(1+81), i (1+81)—m)d, (1+82)+i —m')d, (1+8,)+ . . (6. 6)
1+Bo ' '

&p 1 +BQ 7Q

If the results of Sec. III are to be valid, this factor
should be close to unity.

The most restrictive conditions are obtained by
putting m =m'=0 in Eq. (6.8). Furthermore, take
+=-1 and ~= &p. Then it is seen that the results
of Sec. III will be valid if

) „) )ng —n ) )()+B,
))1+Bo ~o

In the collision-dominated regime this reduces to
Eq. (1.2), i.e. , X»vrp, whereas in the collisionless
regime, the inequality (1.2) is obtained.
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Sharp-Line Luminescence from Os4' and Mo3' in Cs2HfC16~

A. R. Reinberg
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Sharp-line luminescence spectra have been obtained for Os (5d ) and Mo ' (4d3) in single
cubic crystals of Cs2HfC16. For Os ', luminescence from both the 'E(I'3) and T(1"5) levels
of the t configuration to all the spin-orbit split levels of the T& ground state are observed.
Luminescence spectra from the E ("8"lines) of Mo ' are reported for the first time. Sharp
vibronic lines are observed in the vicinity of 1.1 p due to coupling with odd-mode vibrations
of the nearest-neighbor complex. Excitation spectra reveal pumping due to absorption into
the 4T& and T& bands at 23. 0&10 cm ' and 19.5&&10 cm, respectively, and to the T level
at 14.0 &103 cm . The excitation bands do not correlate with the major absorption bands
observed in these crystals, suggesting that other charge states of molybdenum are simulta-
neously present in the crystals.

I. INTRODUCTION

Compared to the large amount of information
commonly available concerning the luminescent
properties of the first transition-metal series,
there is a general paucity of luminescence data for
the second and third transition-metal series of ions
as impurities in solids. Indeed, except for the no-
table work of Dorain and his co-workers, ' ' there
has been little detailed spectroscopy of any kind of
the 4d and 5d ions as impurities in solids. Much of
the prior work is concerned with the aqueous chem-
istry of complexes of these materials and hence
consists primarily of absorption spectra. In a pre-
vious publication we described the sharp-line lu-
minescence of Re'(Sd~)' in cubic single crystals of
CszZrCl6 and Cs2HfCle in the vicinity of 7000 A.
In this paper we report on the infrared luminescence
of Os (5d ) and on the observation of "R" -line
luminescence of Mo ' (4d ). ' From the lumines-
cence of Os in Cs~HfCle, we determine the ener-
gy of the lowest excited levels of the T, ground
state. This level is split by a combination of the
cubic field and the large spin-orbit coupling. The

energies of these states have been calculated by Do-
rain, Patterson, and Jordan but have not been
verified by direct experimental observation.

To our knowledge, the spectrum of the 8-line
luminescence of Mo' has not been previously re-
ported, although its excitation spectrum in glasses
has been described elsewhere.

II. EXPERIMENTAL

Although crystals of Cs~HfC16 mere grown by tech-
niques described previously, sufficient difficulty
was encountered in producing good single crystals
that a more detailed description of the process is
marranted. In addition, there may be some ques-
tion as to the charge state of the molybdenum im-
purity in similarly prepared material making the
details worthwhile reporting. For reasons which
we mere unable to ascertain, considerably more
success was had in preparing the hafnium salts over
those containing zirconium. For that reason the
data reported here were all taken with Cs2HfC16.
We believe that the results reported here are not
peculiar to the hafnium compounds although they
may not extend to such related compounds as
K2SnC16.


