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The propagation of the plasma modes in the presence of a static magnetic field and in an
electron liquid is studied in terms of the Landau Fermi-liquid theory for a system with an
anisotropic Fermi surface. Two types of anisotropy are studied: (a) Weak anisotropy; the
resonant frequency of the normal modes is calculated in the long-wavelength limit, q 0, for
a system with a nearly spherical Fermi surface. It is found that the deviation from the iso-
tropic case is of the linear order of the anisotropy. Application to the alkali metals is briefly
discussed. Effects of weak anisotropy of the Landau F function is also studied. (b) Strong
anisotropy; the dispersion relations of the modes propagating parallel to the magnetic field
near the cyclotron frequency u, and its harmonics en~, are calculated for a system with a
simplified Fermi surface which satisfies the Gor'kov-Dzyaloshinskii condition. It is found
that, except for the m =1 modes, all higher-m modes have large finite (or infinite) cutoff
wave vectors even in the weak coupling limit; while in the isotropic case, all cutoff wave
vectors approach zero in the same limit. It is suggested that this simplified model may
be re1evant to the noble metals.

I. INTRODUCTION

In recent years, the study' ' of Fermi-liquid ef-
fects on the conduction electrons in metals has been
primarily concentrated on the investigation of the
plasma modes propagating in a static magnetic field
in an isotropic system. In this paper we would like
to extend the same kind of analysis to an anisotxopic
system. There are two types of anisotropy which
are of practical interest and we will confine our-
Selves to these two cases in the following.

(i) Weak anisotropy: All previous experiments
were concerned with the measurements in the alkali
metals and the experimental results were compared
with the theoretical predictions of an isotropic case.
However, the de Haas-van Alphan effectse' show
that the Fermi surface of the alkali metals is slight-
ly different from a perfect sphere. We expect this
small nonsphericity to affect the resonant frequency
of the magnetoplasma modes, and by a careful
study of the experimental results, one might be able
to determine the anisotropy of the Fermi surface
of the alkali metals through this kind of experiment.

In an isotropic case, the Landau F function
E(k, k ) depends only on the angle between k and k .
But in real metals because of the presence of the
crystal potential, F(k, k ) will also have a depen-
dence on the absolute directions of k and k . This
dependence will be small in the alkali metals and
can be considered as a small perturbation to the
isotropic case. In this way we can also study the
effect of anisotropic E function on the resonant fre-
quency of the plasma modes.

(ii) Strong anisotropy: It is known that4 in an
isotropic system all the plasma modes propagating
parallel to a static magnetic field near the cyclotron

frequency have a cutoff wave vector. This cutoff
wave vector decreases with decreasing Fermi-
liquid interaction and goes to zero in the limit of
vanishing Fermi-liquid interaction. Ther efore
these modes would be very difficult to be detected
in the weak coupling limit. In an earlier paper
we pointed out that for certain suitable materials,
high anisotropy would favor the existence of zero
sound in the absence of a magnetic field. We be-
lieve that the same features responsible for allow-
ing the propagation of zero sound in weakly interac-
ting Fermi liquids in the absence of a magnetic
field can materially alter the conditions for the
propagation of modes in a magnetic field. In par-
ticular, we expect a finite (or even infinite) cutoff
wave vector even in the weak coupling limit. Since
the detection of the field-dependent modes is with-
in the range of present experimental technique,
while field-free zero sound has yet to be observed,
it may be easier to study the effects of high anisot-
ropy through these field-dependent modes. The
analysis is very complicatd and difficult for a
highly anisotropic case. In this paper we, there-
fore, use a simplified model of the Fermi surface
to avoid the mathematical complexity. This model
has its practical interest since it has several prop-
erties which may be relevant to the noble metals.

To study the propagation properties of the plas-
ma modes, we make use of the collisionless kinetic
equation for a charged Fermi-liquid system in the
presence of a uniform static magnetic field"
H(&ov» 1):
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Here v is the quasiparticle velocity and we have
written the deviation from the equilibrium distribu-
tion as

sphere is equal to those inside the Fermi surface,
z. e. ,

0

) l(PT r-et)
BE' (2)

2,q [e(k) —c„]=n =
t dk - kF3

where q is the wave vector and ~ the angular fre-
quency of the disturbance, and k specifies a mo-
mentum state of a quasiparticle. The angular
brackets represent an average over the Fermi
surface":

where

0, x&0
n(&) =

We rewrite (6) as

(6)

f dS
4m v

(u, ,/m, —(u, ,/m, (q-0)

is identical to zero in an isotropic system. This
is a characteristic of an isotropic system. In a
weakly anisotropic system, we expect that (5) will
be different from zero and the magnitude of it will
depend on the degree of anisotropy of the system.
Therefore, by measuring the resonant frequency
of the plasma modes with the same l but different
m, one may be able to determine the degree of
anisotropy of a nearly isotropic system from (5).
Since we are only interested in the long-wavelength
limit, we shall set q = 0 in the following analysis.

Since both the anisotropies of the Fermi surface
and E(k, k ) are probably very small in the alkali
metals, we shall discuss the effects of these two
anisotropies separately, i. e. , we assume only one
kind of anisotropy at a time.

Ee~mi su~face. Suppose we have a Fermi sur-
face

e(k) =a~, (6)

which is slightly different from a sphere. We de-
fine a "Fermi sphere" with radius k~ by requiring
that the number of electronic states n inside the

v(k) =(i+E) gk)
~I

= gk)+, E(k, k') v{k'), (4)
g ez 4v'v k

where E(k, k') is the spin-independent part of the
Landau E function. The quantity k0=4ve'g(e~) is
the square of the Fermi- Thomas screening wave
vector, and II and J. refer to the direction of q.

II. WEAK ANISOTROPY

It is known" that in an isotropic electron liquid,
the resonant frequency of the lm mode of a mag-
netoplasma wave is shifted from its free-electron
value &o, =m&u, to m(1+A, )&u, in the long-wave-
length limit (q -0), where &u, is the cyclotron fre-
quency and A, is a Fermi-liouid parameter. '
Therefore, the quantity

( )g eg(k) =0, ~k~ =k~. (io)

In the presence of a magnetic field H (ilg), it is
convenient to define a "phase variable" n, along
with the energy e and k„ to describe the quasi-
particle motion on its orbit, i. e. ,

—(vxH) ~ v- = (g (g )— ~ —~ (y ) T

where T is the time interval spent by the quasipar-
ticle on its orbit. In an anisotropic system, the
cyclotron frequency co, is a function of 4, and z is
not identical to the azimuthal angle Q of k on the
Fermi surface unless the Fermi surface has a
cylindrical symmetry around the direction of H.
The components of the velocity v will also have
components outside the l =1 subspace when we ex-
pand them in terms of the spherical harmonics.

We will show that to leading order in X, the ef-
fects of anisotropy on the resonant frequencies will
be of the linear order in X. The contribution comes
from the dependence of ~, on k„ the effects of the
anisotropy of v and ne Q being of the second or
higher orders in X.

To see this we write

(o.(0, ) = (u', + 5(o, (k, ) (i2)

= i + s(8, y),
B

where ~, is the cyclotron frequency when X = 0 and
(8, Q) are the spherical angles on the Fermi surface.
From the form of the Fermi surface (9), we see
that the magnitude of k on the Fermi surface is a
function of (8, Q) and to linear order in X, we have

k =k(8, g) =k [1+Ra(8, Q)], (i4)
where a(8, Q) depends on the form of e,(k). We ex-

~(k) = u'/2m++ X~,(k),

where the effective mass m* = k~2/2&~ and X is a
dimensionless quantity which measures the degree
of anisotropy [i.e. , e,(k) is of the order of ez when
Ikl =k~]. For weak anisotropy X is very small.
To the lowest order in X, (7) requires
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pand &o, (k, ) according to (14),

&u, (k, ) = ur, (kcos8) = co, (kr cos8)

(Xk~ cos8 a(8, g)). (15)
Q&-g k =0& coco

Since s&o, /sk, =0 when X =0, so that to linear order
in X we have &o, (k, ) = ~, (kz cos8), i. e. , ~, is a
constant for constant 8. Therefore, we can re-
write (12) as

(u, (8) =uo+5ur, (8) .
With the aid of (11), (13), and (16), the kinetic equa-
tion (1) has the form

1+ '0 +s(8, $) —v+ o v (vv)= o v,
1 &(o,(8) 8 — ko

z rd 8 Q (d(d~ ~0

where we have neglected the term s 5&@,/&uo, it being
a higher-order term.

Equation (17) is to be solved in the space spanned

by all Y, . Vfe neglect the anisotropy of v and

E(k, k ), and then the last term on the left-hand
side of (17) acts only in the f = 1 subspace (the ne-
glect of the anisotropies will introduce only higher-
order corrections). In a weakly anisotropic case
we consider (5&v,/&so+ s) as a small perturbation.
Then Y, (l 0 1) is an eigenfunction of the "unper-
turbed" system with eigenfrequency m(1+A, )&o', .
By using the perturbation method discussed in Ref.
2, we find

+)m=m'yr (Oc+y, le 5(d, 8 +(g), s 8, —. Lmi 8

=my, (o,+my, (lm 5(o,(8) lm),

original form, E being the induced electrical field.
Equation (19) has a solution

v=i eZ [Y, (8, $) J E v(8, $ ) Y, (8, $ ) dQ /
lcm

(&o —m y, ~,)]. (20)

From this we obtain the components of the conduc-
tivity tensor

v„„cc2 y, f v"Y, dQ 5 v" Y*, dQ/(&o —m y, &u,).

/o/=0. (22)

Since in the isotropic case o„,= v,„=0„=o„=0, it
is easy to see that to the lowest-order approxima-
tion (22) is separated into two equations:

and

0'xx &4y p
Os~

(23)

(24)

For modes with frequency ~ near my, ~, , we
write v —my, co,= h~, . This is the effect of the
anisotropy of v and is very small in comparison
with mes, . After some algebra, we find

3
h(o, = —. my' ~c

477

y, (Iv", I'+ Iv', I')-(2/m)y, im(v", v', „*)

P1 VP

(2i)
The resonant frequencies can be obtained by set-

ting the determinant of the conductivity tensor equal
to zero, ' i. e. ,

yr = &+A. (is) f &1 (25)

8ev ——. co v=ie E v (i9)

where we have written the right-hand side as its

There is no contribution from the term s(8, P) in
the linear order corrections. Since in the expan-
sion s(8, Q) = g s (8)e'™~,we should have so(8) = 0
by noting that in one period of quasiparticle motion
on the Fermi surf ace, o, increases by 2m, and so
does Q. Therefore, the effect of &o, =&a, (k, ) will
be proportional to 5&v, (8) which is linear in X,
while the effect of n 0 Q will be at least in the sec-
ond order.

%e can also show that the corrections, due to
the fact that the velocity v has components outside
the L= 1 subspace, are of the second order in X.
By neglecting the anisotropy in ~, and n, the kinet-
ic equation (1) can be written as

for modes contained in (23); and

Lmy IV' I

lm 4 1vy
f&1 (26)

for modes contained in (24). For f 4 1, v," is, at
least, of the linear order in X and therefore the ef-
fects of the anisotropy of v are of the second order
in A.

Therefore, to lowest order in A. , the effects of
the anisotropy of the Fermi surface on the reso-
nant frequencies will be linear in X and its value
is given by (16). The measure of the anisotropy
is, by (5),

&tm(lmi &&m2/~a=y& [(fmy~ ~&,(8)
~

&my)

—(f~g~ ~~/(8)
~
&m2)]. (27)

One can calculate 5&v,(8) if c,(k) in (9) is known.
From the equation of motion, we have
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dk e——viH, (28)

where T is defined in (11) and J. here refers to the
direction of H. Note that on the quasiparticle or-
bit the component of k parallel to H is a constant
of motion, therefore we have

dk =k, d&f& =k~sin8 [1+&a(8, Q)] dQ, (29)

where the last form is obtained from (14). From
(9), we have to linear order in X

v, = V-„e(k) = e„sin8 [I+X b(8, Q)], (so)

f r(e) c dk m~c
T(0) = ~ dT = ——= [1+X(a—b)] dQ

J, eH v, eH

= To+).Ti(8), (sl)

where T 02w( m* /eHe) and

where b(0, Q) can be determined from V-„e,(k)
evaluated at Ik I

= k„. From (28)-(30) we have the
8 dependence of the period T(8) of the quasiparticle
motion

cordingly. However, the order of magnitude of

(27) will remain about the same as (36).
Experimental data" show that the deviation from

a sphere of the Fermi surface is less than one
part in 10 in potassium and sodium and a little less
than one part in 10 in rubidium. This suggests that
rubidium may be the best candidate for observing
the weak anisotropy of the Fermi surface through
the plasma-modes experiment.

Landau F function S.ince the effects of the anisot-
ropy of the Fermi surface of the alkali metals is
rather small, in the following analysis we assume
that the Fermi surface is a sphere, but F(k, k ) is
not invariant under an arbitrary rotation in k space.
In general, E(k, k ) will be invariant only under the
operations of the crystal symmetry. For a partic-
ular choice of a coordinate system S, attached to
the crystal (for example, xyz along cubic axes),
we define the operator I' as follows:

Fy(n) = fdn'E(n, n')y(n'), (37)

where 0 and 0 are the spherical angles of the
direction of k and k, respectively, and E(n, n )

can be expanded in terms of the spherical harmonics,

T,(0) = [a(8, Q) —b(8, &f&)] dQ.
eH 0

(32) E(n, n') =Z T F„,.„.y,.(n) y+...(n').
tm &'m'

(s8)

Knowing T,(0), 5+,(8) is readily calculated, i. e. ,

~.(0) = 2~/T(0) = ~', (I -»,/To) = u.'+ 6(u,(0) . (SS)

For example, if we have a Fermi surface with
cubic symmetry (as the alkali metals) of the fol-
lowing form:

k2 k 7 k2 'I

e(k) = „+X Z.2' j g y g vpl kg 15 ply

which satisfies (10). For simplicity we take the

magnetic field H along one of the crystal axes, and

therefore we can choose the direction of H as the
z axis without changing the form of (34). Following
the ana. lysis (29)—(33), we find

5~, = 3X~, sin20 .
Therefore, the measure of the anisotropy is, by

(27),

~rm, /mi —&rm /m2
0p) co~

=3~(«m, [»"0[im,&-«m, (sin 0~lm, &)

Fq( )n= fdn'E(RQ, Rn')q(n'), (s9)

where A is the rotation operator which transforms
S2 to S,. From (38) we have

E(RQ, Rn') = + Z E„,..., I',.(Rn) F*,.(Rn')
lm l'm'

=Z Z E,', ,.„.(R) I',.(n) r*,.(n').
rm r'm'

(4o)

In order to compare with the isotropic case, we
define an operator I as follows:

Eg(n) = f dn'E(n, n')$(n'),

E(n, n )= Z E,„y,„(n)I',*.(n'),

In the practical situation it is most convenient to
choose the direction of H as the z axis and there-
fore a coordinate system S2 different from S1. Since

p

E(k, k ) is not invariant under an arbitrary rotation,
the operator E defined in (38) will have a different
form in the coordinate system S2; we call it F~,
1.e ~,

2 2m1 ™2
(2l —1)(2l+3) ' (s6) and

which is proportional to X. For /=2 modes with

m, = 1 and m2 = 2, (36) is equal to —v~X. When the
direction of H changes continuously over the crys-
tal, the corresponding 5~,(0) will also change ac-

E, = f dR(lm Ee~lm&= f dRF,', . (R), (41)

where f dR means integration over all rotations.
Note that + are the diagonal elements of the average
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of E over all orientations of the crystal. More-
over, we can show that E& is independent of m, and
therefore F represents the isotropic part of F.

In general, we can always expand E(Q, 0') in
terms of the zero-order eigenfunction tjr',f '~) (belong-
ing to the l subspace) of the symmetry group of the
crystal,

Ce

F(fl fit) g Q F(a) Q y(n, P)(fl) y(&&, P')g(II&)
e, l P~P

=Q Q E,'„' d /(2l + 1)=T, . (4p)

( e,p j (e,p') +
~l jm ~l gnat ~pp'

m-"-l

and have used the relation of the theory of group
representation'

In obtaining the last form of (4V), we have assumed
that g', )'~' has been orthonormalized, i. e. ,

+ terms coupled with different l's, (42)

where d is the dimension of the irreducible repre-
sentation o, , and (~)&'~' is the jth eigenfunction of the
pth appearance of the ~ representation in the sub-
space E. Note that when e appears more than once,
the eigenfunctions with the same j but different P
will couple to each other. We expand g",~'~'(0) in
terms of y', „(A),

1 dft D(„'„), (ft)D(.'„), (ll) = 5„,„,/(2l+ 1).

Equation (47) tells us that E,„is independent of
rn and therefore represents the isotropic part of
E~. In a weakly anisotropic system we expect
(Es -F) to be very small and this anisotropy can
be determined by (5).

If we choose the direction of H to be the z axis,
the kinetic equation (1) has the form

p(&, "= 0 aI,„"Y',„(n).

We have

(43) 8 — ~o
—. —v+ v (vv)= v,

«) (d&, roc
(50)

F(O, a')= Z Z E,',,'.
eel pyp'

tie

xQ P ()",~'~ «I&g y', (fl) y,* ~ (q')
g=f m=-l

m'=-l

+ other terms. (44)

v= (1+E„)v.

In a weakly anisotropic system, we expand v to the
linear order of (E„-E)

1 1
1+ED 1+7'+ (Fs-E)

1 . 1 1

Making use of the relation

V', „(fta)= Z r...(n)D„(&,)„(fl),

where D'" is the representation of the rotation
group in the subspace l, we have from (40) and. (44),

&e

F(BO RQ ) ) P Eipp Q ) (&&y QJ
eg l pgp' j= & m"=l

l
x p r,„(n) I","„,(n') L)'„",„{ll)D'."„.(Z)

my-" -l
ma= -l

+other terms. (46)

Therefore, from (41) we have

7, =f dR (lm
~
F,

~
lm)

tie

P Q F(n) P g +(n, P) (e,P')
lPP' lgm) l jmgpp' j= & eg= -l

ttt2= - l

Substituting (52) into (50), we have

1 8 Q) — 1(1+E)—. —v+ —{Es-F) vi 8&t) ~, 1+E

v — 1++ vo vp

We consider (Ez -E) as a small perturbation.
Since the components of v span the / = 1 subspace,
we find that y&„(l + 1) is an eigenfunction of (53)
(when E„-E=0) with eigenfrequency &so&

= m(1+ E,)(&),. To see how the anisotropy affects
the resonant frequencies, we calculate the first-
order perturbation,

=m((lm ~Es
~
lm) —E,)v, , (54)

&d& /m &
—

(&)& /m p = (lm, E„ lm, )

where we have replaced ~ by co, in the perturbation
term. Therefore the measure of the anisotropy (5)
has the value
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The relations (54) and (55) are derived for fixed
direction of the crystal axes with respect to H. If,
however, in an actual experiment a polycrystal is
used, the results of (54) and (55) are no longer true.
We have to average over all crystal directions with
respect to H. Both (54) and (55) have zero average
as can be seen from (47). Therefore, we have to
go to the second-order perturbation to obtain the
effects of the anisotropy.

We, therefore, conclude that single crystal favors
the observation of the anisotropy of the I' function.

III. STRONG ANISOTROPY

In the case without a magnetic field, "we pointed
out that a system having multiple maxima of q v
on the Fermi surface favors the existence of zero
sound in the weak coupling limit. In this section
we would like to study the propagation properties
of the magnetoplasma modes in such a system with
the magnetic field 0 parallel to q. Due to the pres-
ence of the magnetic field and the anisotropy of the
Fermi surface, the mathematics involved becomes
very difficult. It is therefore desirable to use a
simplified model Fermi surface which satisfies the
Gor'kov-Dzyaloshinskii condition and yet is free
from mathematical complexity. In this suggested
model it is also useful to study zero sound modes
(H = 0) and their relations to the magnetoplasma
modes (H 4 0).

We consider a Fermi surface which is essentially
spherical (with radius kz) except that there are two
(circular) holes around the z axis (Fig. 1), i. e. ,
there is no surface in the direction of z (or —z, the
surface has an inversion symmetry). Therefore
when q is parallel to the z axis, maximum of q v
will not occur on the z axis itself and hence the
Gor'kov-Dzyaloshinskii condition is satisf ied.
(This simplified model can be considered as the
Fermi surface of a free-electron system which is
confined in two parallel zone planes with the Fermi
surface touching the zone planes and neglecting all
effects of the crystal potential. )

f dP f sin8d8X„(8, Q)x„*. , (8, P)

= f '
dnx„.(n)x„*,„,(fl) = 5„„,5.„, (56)

where m is the index of the azimuthal dependence
e' ~ and f' indicates the range of the integration of
8 being from 80 to m —80. The first few X„are
(a = cos 80)

1/2
111=—

4 3 2 sin8 e '

15
X2, = — 3, z sin8 cos8 e'~4' (5 —3a (57)

1/2
22-- 4ma15-10, 2 3a4 sin e, ec.

All functions are defined only in the range 0- P ~ 2v
and Hp-8- m-80.

When both H and q are parallel to the z axis, the
cyclotron frequency , is independent of k„and
therefore the kinetic equation (1) can be written as

+ 8 '2 (~*(~.p)+~, (~,p))

Equation (58) is to be solved in a space spanned by
all X„. If we assume that the I function can be
expanded as"

We describe the Fermi surface by the usual
spherical angles (8, Q) with range 0~ P ~ 2m and 80
~8 ~ g-80, where k~ sin80 is the radius of the hole.
Therefore, when q isparallelto the z axis, (q ~ v),„
will have the value qv~ cos80 and occur at those k
on the Fermi surface with 8= 80. On this surface
the spherical harmonics F, (8, P) are no longer
orthonormal but are still linearly independent. Us-
ing Schmidt orthonormalization process, ' we can
find a new set of orthonormal functions X„„(8,P),
such that

F(fl, n, ') = &4va~„g X„.(fl)X* (fl'), (58)

FIG. 1. The side view
of the Fermi surface of
the hole model, where
k+sineo is the radius of
the hole.

we see that Eq. (58) separates into independent
equations for modes with azimuthal dependence

Since we have discussed the m = 1 modes for an
isotropic system in Ref. 4, we would like to see
the effects of anisotropy on these modes first. We
are interested only in modes with frequency near
„provided kzv~»(d, -q c, we can solve the prob-
lem the same way as we did in Ref. 4. Since the
components of the velocity v is in the n = 1 subspace,
Eq. (58) is equivalent to'
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P(&tv- qv, P v &-,Pv) = 0, ev- qav cos8 v —2+, v=0 (66)

where P projects on the subspace m = 1, n &2.
If we keep only Az in (59), we find the solution of

(60) as follows:

q~v~=A, ~, /z[I - (I+As)h(z)1, z = (~- ~,)/qav~,

(61)

If we expand

v=g„v„X„,, (6V

and make use of the expansion {59), we have from
(66),

Vff g + KfIffl g 13gz Vtfc P g 2e

h(z) =
az[zK(z) —1]-dK(z) (5- Sa'tu

a[zK(z)- 1] ' 5(3 —u )
3 (62)

z = (&o —2~,)/qav~, B„=A„/(1+ A„), (69)

~(z) +11+11 dfl Sz (1 —8 )dQ
z —cosa/0 cl(3 —8 ) zz-gz/gz (vo)

The function h(z) decreases monotonically from
2(5 —a )/5(3 —a ) atz= 1, to 0 atz=~. Therefore,
we have a cutoff wave vector at [by putting z = 1 in
(61)]

5(3 —az)A,
(5 —Sa2) —2 (5 —a2)A. 2

pl ovided

(5 —Sa')
2 2(5 z) (65)

Note that the value of X(z) at z = 1 has a discon-
tinuity at a = 1, and therefore the cutoff wave vec-
tor does not reduce to the isotropic value obtained
ln Ref. 4 when we let 8 = 1 ln (64). Therefore the
anisotropy (a &1) has changed the cutoff wave vec-
tor discontinuously; however, the over-aQ effect
is not significant. It is easy to see from (64) and

(65) that even though the cutoff wave vector is larger
in comparison with the isotropic case for the same
size of the interaction, the cutoff wave vector ap-
proaches zero when A. 2 goes to zero, as in the iso-
tropic case.

Therefore the anisotropy does not change the
structure of the m = 1 mode too much. The reason
for this is that, as we pointed out in Ref. 11, for a
zero-sound mode to exist with an arbitrarily small
I' function we require the mode to belong to differ-
ent irreducible representation from the density and
current oscillations (in the frequency range &z-qzcz
«loud, we require both the longitudinal and trans-
verse currents to be negligible). Since the trans-
verse currents belong to the m = 1 representation,
zero sound cannot exist with an arbitrarily small
F function for the m = 1 modes. Therefore, the
effects of strong anisotropy cannot be fully under-
stood from the m =1 modes.

%e, therefore, look for the m = 2 modes. Since
these modes carry no density and current oscilla-
tions, the kinetic equation (58) becomes

2(o,/qav„= G(z), (vl)

which determines z as a function of q and therefore
the dispersion relation.

We discuss the case of zero sound first. By let-
ting &@ =0 we have from (Vl)

c(z) = o, (V2)

from which we solve z as a function of 8„. For
zero-sound mode to exist, {V2) must have a real
solution zo such that

G(.,)=O, ~z,
~

1. (VS)

Condition (VS) requires B„to satisfy certain condi-
tions; if they are not met, zero sound w'ill not exist.
If (V3) is satisfied, zero sound will exist with veloc-
ity boa ~.

It is easy to see from (Vl) that if (VS) is satis-
fied, the corresponding magnetoplasma mode will
have no cutoff wave vector, since as z approaches

o, the wave vector q approaches infinity. Thus the
mode exists for any value of q. Therefore we have
established a one-to-one correspondence between
zero-sound modes and magnetoplasma modes with-
out cutoffs: If a zero-sound mode exists then there
corresponds a magnetoplasma mode with no cutoff
eave vector.

For instance, if we keep Ba only eve have from
(68),

it is easy to see that Eq. (66), and therefore (68),
reduces to the equation for zero sound (where we
define z= &o/qavv) if we let &u, =o. Therefore, the
solutions of zero sound (H=0) can be obtained from
those of magnetoplasma modes ( He 0) simply by let-
ting &,=0.

If we keep only a finite number, say p, of B„,
then (68) will become a p &&p homogeneous system.
It is easy to see from the form of (68) that we can
always solve (2&v, /qaev) as a function of z (with the
B„as fixed parameters). Therefore in general we

have p solutions of the form
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2(u, /qav~ = G(z) = z [(1+1/A, ) W(z)
' —1], (74)

where
slope=Zo

Xg~X~~
W(z) = zKzz (z) = z dO

z —cos8/a

QQVp 1

2~, [1~(A,)-']/W(z) -1 G(z)
' (77)

The function 1/G(z) is plotted against z in Fig. 4 for
Az& 0. Note that 1/G approaches infinity as z ap-

15 ~ u'(1 - u') „a'(15 —10a'+ 3a'), z' —u'/a'

(75)

The corresponding equation for zero sound is

1+ I/Az ——W(z).

Note that the function W(z) is even in z and de-
creases monotonically from ~ at z=1 to 1 at z=~.
The function approaches infinity logarithmically as
z approaches 1 from above, due to the presence of
the holes 0& a& 1. The function W(z) is plotted
against z in Fig. 2 for 0& a& 1. We distinguish hvo

cases:
(i) Az& 0: It is easy to see from Fig. 2 that for

any value of Az & 0, Eci. (76) will always have a real
solution z= go, zo&1. We therefore have an un-
damped zero sound with frequency qz00vp, Due to
the symmetry of W(z) there will also exist a mode
with frequency —qzoav~. Note that the condition for
the existence of zero sound depends only on the sign
but not the strength of A2. This is the condition we

found in Ref. 11, and therefore we refer to the
above two zero-sound modes as Gor'kov-Dzyalosh-
inskii modes (Fig. 3). (The mode with negative
frequency can be interpreted as propagation along
the negative z axis. )

When we turn on a magnetic field H, we have
from (74),

qQYF

slope=-Zo

FIG. 3. The dispersion relation ~ vs qav~ for
zero sound (H = 0) in the hole model.

proaches zo, where zo& 1 is a solution of (76). It
can be seen from Fig. 4 that for any given value of
q, Eq. (77) will have at least one real solution
z= z, (q), such that z, &1. Therefore an undamped
magnetoplasma mode exists with frequency += 2m,
+qz, (q)ave. Since there is no restriction on the
magnitude of q, there is no cutoff wave vector as
we expected (since the corresponding zero-sound
mode exists). Furthermore, two modes will pro-
pagate in the region q& 2&@,/av~ (Fig. 5). We refer
to these two modes as Gor'kov-Dzyaloshinskii zero-
sound modes affected by the magnetic field H.

By comparing Figs. 3 and 5, we see that the mag-
netic field H destroys the equivalence of the propa-
gation along the positive and negative directions of
the z axis. In the presence of H, the mode propa-
gating along the field (v & 0) exists for any value of

q & 0, while the mode propagating opposite to the
field (&u & 0) exists only for q & 2e, /ave .

We have seen that because of the presence of the
holes (a c 1) the function W(z) defined in ('75) ap-
proaches infinity as z approaches 1 from above.

„w(z)

I

I

-I 0

0 j

FIG. 2. W(z) vs z(0&a&1). FIG. 4. 1/6(z) vs z, &2&0.
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qavF/2mc

FIG. 5. The dispersion relation &/2~~ vs qae~/2~~
in the hole model (5 &0), A2&0.

In the isotropic case (a = 1), W(l) =~5, and therefore
we require A~ &4 for the existence of zero sound
and for the magnetoplasma model to have no cutoff
wave vector. The effect of anisotropy is therefore
very clear in this case.

(ii) A2& 0: In this case we can see from Fig. 2

that zero-sound modes cannot exist, and therfore
the magnetoplasma mode will have a cutoff wave
vector. However, the effect of the anisotropy plays
an important role in the determination of the cutoff
wave vector in this case.

The cutoff wave vector is obtained from (VV) by
putting z=-1, we have

q,.= 2(u, /avI, . (V8)

Note that due to the anisotropy, W(1) = ~, q„js in-
dependent of A2. This means that the cutoff wave
vector remains at a large constant value for an ar-
bitrarily small negative A&. In the isotropic case,
however, W(1) = ~~ and q„will be proportional to A, .

There is no point to go to any higher-m modes.
The general conclusions would be the same as in
the m= 2 modes. We emphasize here that these
higher-m modes carry no current and density
oscillations. Therefore, as we discussed in Ref.
11, due to the fact that (q v),„occurs at more
than one point on the Fermi surface, these modes
would exist in the absence of a magnetic field for
an arbitrarily small positive I' function. The ap-
plication of a magnetic field to the system affects
only the propagation properties of the modes but not
their existence. In the case where zero-sound mode
(H= 0) does not exist, the anisotropy of the Fermi
surface still plays an important role in the propaga-
tion of the modes. The reason is that the multiplic-
ity of (q v),„makes it possible for the modes to
have nonzero amplitude around the regions where

Z&, K

Zone plane

Zone plan II

—K2

FIG. 6. The cross section for a simplified model of
the Fermi surface of the noble metals containing the
axis of a pair of necks.

(q v) have maximum and yet to carry no current
and density oscillations for a system. with very
small F function. Ee This makes the function K„„.(z)
defined in Eq. (VO) diverge at the edge of the con-
tinuum (z= 1), and therefore enhances the coupling
and the existence of the modes [see Eq. (68)].

Therefore, in the case of weak Fermi-liquid interac-
tions, a system with this simplified Fermi surface
favors the existence of the m ~ 2 plasma modes.
However, there arises a difficulty. Since all these
modes do not couple to the current oscillations, it
seems that they wouM be very difficult to detect ex-
perimentally. Fortunately, due to the anisotropy
of the Fermi surface, all the m~2 modes will be
slightly coupled to the currents if the applied mag-
netic field H lies along a direction slightly different
from the symmetry axis of the Fermi surface. The
deviation of the direction of H should be very small
so that all the modes described above are still well
defined.

We conclude this section by suggesting that the
Fermi surface of the noble metals has several pro-
perties similar to those of the "hole model" de-
scribed above, and they may be considered as the
best candidates for the observation of magnetoplas-
ma modes in anisotropic metals. The Fermi sur-
face of the noble metals are essentially spherical,
except there are four pairs of necks in the [111]
directions. When the magnetic field H and the wave
vector q of a propagating mode are both parallel to
the axis of a particular pair of necks, we may as-
sume that all the other three pairs of necks will
have negligible effects on the mode. Therefore we
may consider the Fermi surface as a sphere with a
pair of necks (having cylindrical symmetry) in the
direction of H ( and q).

We take the symmetry axis of the necks as the z
axis and calculate the simplified Fermi surface by
using nearly free-electron theory. The system can
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be considered as a free-electron system bounded

by two parallel zone planes perpendicular to the z
axis. We assume that the upper half of the Fermi
surface (k, & 0) is affected only by the zone plane at
—,
' K and the lower half (k, & 0) only by the zone plane

1at ——, K, where K is a reciprocal-lattice vector in
the [111]direction. We find

k K I kg IK
2m* 4m* 2m*

X' Ik IZ)'
) + Ux ) /kg/&zK,

(79)

where UK is the Fourier component of the crystal
potential. The cross section of the Fermi surface
containing the axis of the necks is shown in Fig. 6.

The Fermi surface, &(k) = sz, described by (V9)

has several properties which are similar to those
of the hole model:

(a) The. Fermi surface has cylindrical symmetry
around the z axis. (b) The cyclotron frequency tc,

is independent of k, when H is parallel to the s axis.
(c) There is no surface in the direction of z and
therefore q v(k) will have multiple maxima when

q is parallel to the z axis. Because of the above
properties, the general conclusions we reached for
the hole model will remain true for a system de-
scribed by (79) and might be relevant to the noble
metals.

There is an advantage of a system described in
(V9) over the hole model. In such a system,
(q v),„will occur on the Fermi surface where
(sv, /sk, ) = 0, q ~~2 (while in the hole model it does
not). Therefore the residue at the poles of the re-
sponse function of such a system will be proportion-
al to A, rather than e ~ '"z' (D is some positive
number) as we have in the hole model. Therefore
in the weak coupling limit, system (79) favors the
excitation of the mode.
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