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left. Equation (33) is solved for u and the eight
matching equations are solved for the eight re-
maining constants. The self-consistent equations
for Ao and A. , are solved as above, but now remem-
bering that u is not of O(q), but contains a com-
ponent of 0 (1). The coefficient c,". corresponding
to the outgoing wave e' '"& ' is obtained by this- pro-
cedure. It is the transmission coefficient. We ob-
tain at the same time, of course, the reflection co-
efficient, the cj which multiplies e 'I'~ I'.

VI. CONCLUSION

As long as the high-frequency expansion to the
BPA is valid, we may obtain expressions for the
dispersion of surface plasmons and the transmission
and reflection coefficients of bulk plasmons in a bi-

metallic system, which depend only on average
properties of the electron wave function. As the
ratio of the electron densities in the two metals dif-
fers too much from 1, the modes of the system be-
gin to couple to individual particle-hole. excitations,
whose density of states do not seem to be related
in any simple way to these average features. Be-
cause of this "Landau damping" effect, then, it is
difficult to extend our analysis of the plasma oscil-
lations at a bimetallic interface to those of a metal-
vacuum interface.
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We obtain an improved approximation for the inverse vertex function er, (v, ui with exchange
corrections. The imaginary part of the self-energy of hot electrons is calculated and com-
pared with the random-phase-approximation (BPA) values. The BPA results differ signifi-
cantly from Quinn's earlier BPA results owing to improved computational facilities. Themean
free path of an electron 5 eV above the Fermi surface in aluminum is compared with Kanter's
experimental value.

I. INTRODUCTION

Although exchange- corrected dielectric functions'

e«(x, &) have been used to calculate the pair distri-
bution function and correlation energy of an elec-
tron gas ' ' and phonon dispersion. curves of

metals, the effect of using exchange-corrected

vertex functions Ar, (x, &)=1/s-„,(z, &u) on the elec-
tron self-energy has not heretofore been calculated.
The present calculation of the imaginary part of the

self-energy has been stimulated by Kanter's' re-
cent measurement of the mean free path (MFP) of

electrons 5 eV above the Fermi surface in alumi-
num. The MFP is inversely proportional to the



EXCHANGE CORRECTIONS TO HOT-ELECTRON LIFETIMES 2983

imaginary part of the self-energy, and Kanter (at
our suggestion) attributed the discrepancy between
his measured value and the random-phase-approxi-
mation (RPA) theoretical value to the neglect of ex-
change contributions in" E'pp~, These arguments
were based on the effect of exchange on screening,
that is, on the real part of e, whereas the imaginary
self-energy depends most strongly on the imaginary
part of E and therefore a detailed numerical calcu-
lation is required.

It is instructive to compare our use of the ex-
change-corrected vertex function with the work of
Ritchie and Ashley who added a single-exchange
scattering diagram screened with ~gpss to the MFP
calculation. The exchange- corrected vertex func-
tion is equivalent to summing this diagram to in-
finite order, including not only exchange between
the incoming electron and an electron from the
Fermi sea but also exchange between pairs of elec-
trons within the Fermi sea. Furthermore, self-
energy corrections which were neglected by Ritchie
and Ashley are included in our vertex function. In
the very low-energy limit, the single-exchange
scattering diagram of Ritchie and Ashley' yields
a VO%%u[) increase to the RPA MFP in aluminum,
whereas the infinite sums included in the present
calculation reduce this to a I%%u[) increase (compare
the Kt and RPA columns of Table II for K» 1).

In Sec. II, a new approximation for «;,(», u&) is
presented. An earlier form" of e-„, involved an
approximation, which although quite acceptable for
Re Eg&, yields obviously incorrect values for Im&p&.

In Sec. III, we numerically evaluate the self-energy
integral. We compare the eg, results with those
obtained from Egt and Capg. At higher energies,
the RPA results differ significantly from Quinn's'4

owing to his analytic approximations and (we pre-
sume) insufficient numerical accuracy in his cal-
culations. At 5 eV, there is little difference be-
tween the RPA and exchange-corrected results and
the discrepancy between theory and experiment is
not explained.

II. VERTEX FUNCTION

We have recently derived' approximate formulas
for e«(», [d), e[„(»,&), and e«(», ~), where e„and
Eg& are the inverse vertex functions of an average
electron in the Fermi sea and of a particular elec-
tron with wave vector k and e« is the ordinary di-
electric function. ' The basic formula'~ (I5) for e„
has independently been derived by Langreth" using
a variational technique. We estimated the integrals
in (I5) with the following sort of approximation:

Ap 8m

E(k' —») —E(k')+(o+iq (k —k') +Kg

1
E(P —»)-E(k')- ~-ir[ (R+» —F)'+K',

where

= 2[~~(», ~)+EAUX*(», —~)),

1
2 k2 o?k2 +K2 ? I 2 (k+») o?k K

e„(», &u)

~.i(», ~) —-'[x(», ~)+ x*(», —&)][1—'(~.+E-r)]

(2)

One might argue that although it is not necessary for
the reality of e«(»? 0) and e«(», 0), a similar correc-
tion should be made in e«(», [?)) and. «„(», [?)) for the
sake of consistency, i.e. ,

1~[x'(», &)+x*'(' —~)]+»x(», ~)x*(», —&)]

should be replaced by

-'(&+&)[x(», ~)+x"(», —~)]' .

This would, however, completely eliminate the ex-
change matrix element corrections to the plasma
frequency which are needed, since it is well known
that the infinite-wavelength RPA plasma frequency
is exactly correct, to cancel the self-energy cor-
rections to the plasma frequency.

III. NUMERICAL RESULTS

The imaginary part of the self-energy of an elec-
tron above the Fermi surface is given by (I39), '

f d? [?? —)?) [? f[ )[ (?'?)??-
or„([I—k, k~ —q') (3)

with & a factor between & and 1, and

X(», ~) =4(m) ' f [E(k' —»)-E(k') a [d+ir[] 'd'k'

is given in (I16)-(I21). Having obtained (I13) for
e„, E[ls. (I26) and (I31) for e;, and e«were derived
without further approximation.

The approximation (1) consists of replacing
(k —k') by k + o'kz when k' is integrated over the
Fermi sea. This is very reasonable for the real
part of the integral, but leads to errors in the imag-
inary part. Take &=0 in (1). Then the imaginary
part of the integral comes from the pole at $' —»)2

But with this substitution the second term on
the left-hand side becomes the complex conjugate
of the first, and the left-hand side is real (for [?) = 0).
The right-hand side remains complex, however.
Because of a further integration over k this error
cancels out in (I13) and (I31) and e„and e«are real
for &=0. On the other hand, the right-hand side of
(1) appears explicitly in (I26) for e-„,. We now re-
place it with —,

'
(A), +8[,) [X(»', [?))+X*(»', —[?))]. For

(d =0, this causes no change in the real part of &p,

while causing the imaginary part to vanish. Thus,
we have
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Using the fact that in the region where e~ is
inf initesmal

—E'2
Im —= ~ ~

= —m5(e)
E' 6'g + E'2

.15
we have

,10

.05

From (4) it follows that

Z~ = (K~ —Q~) —2K(K2- Q~)'~~ p+K2

or that

(6)

FIG. 1. Normalized imaginary self-energy of a hot
electron in aluminum p=- ~/E~ vs normalized wave
vector of the hot electron &=k/k~. The solid curves are
for the RPA and the broken curve includes exchange cor-
rections.

Z= (K-Qf, Q=K —Q, U=Q/Z, (4)

where Q=q/k~, to obtain

dUdZ Imk~ 1
mE eg, Z, & (5)

where R is the wave vector of the electron and q
of the state into which it is being scattered. The
factor 1 f(q) ensu-res that the final state lies above
the Fermi surface and the step function 8(k —q )
ensures that it lies below the original state k.
Equation (3) reduces to a two-dimensional numeri-
cal integration over p. =the cosine of the angle q
makes with% and over the magnitude of q. The
single-particle excitation contribution (i. e. , the
Im&ft 40 contribution) to I'(k) was obtained straight-
forwardly by dividing the —1& p. &1 and k~ &q &k

region into an N &&M mesh. For k = 1.63k& and less,
convergence was obtained with N = 200 and M = 100
but for k=1. 75k+ and greater, N= 1600 or 3200
and M = 200 was required. ' This very slow con-
vergence for k &1.75k+ is due to the region where
the plasma line enters the single-particle excitation
continuum, i. e. , where Re«Im&. In Fig. 1,
y= —&/E~ is plotted against K= 4/k~ for aluminum
P', =2. 07) in the RPA. Comparing the single-par-
ticle excitation graph with Quinn's' Fig. 2, we see
the two curves are similar for very small E, but
our curve has a relatively sharp peak of &=0. 21 at
K= 2. 2, whereas Quinn's has a very broad peak of
y=0. 14 at K=3. 5. Noting that each point (for
K&1.75) on the curve took 9 min of CDC 6600 time
to calculate, it would not be surprising if Quinn's
1961 calculation failed to converge. .

To evaluate ~~, the plasma contribution to ~, we
made the following substitutions

TABLE I. Normalized plasma, frequency &&(ZjI = cu&(g)/
k~ for several values of Z =

) k —q 1 /k~ in the RI'A a.nd
with exchange corrections.

0
0.100
0.200
0.300
0.400
0.500
0.600
0.700
0.708
0.738'

1.3530
1.3620
1.3890
1.4356
1.5044
1.6007
1.7339
l.9232
l.9419
2.0208

1.3529
1.3620
l.3862
1.4283
1.4917
1.5829
1.7145
l.9162
1.9385

K- [K' —Q (Z)]'~'HZ&K+[K'- Q,(Z)j'~', (7)

where Q~(Z) = cu~(Z)/k~~. To evaluate (6) with the
condition (7), we first determined the plasma. line
by fixing Z and searching numerically for that value
of ~ which made e& vanish. This was done for all
values of ~ between 0. 1 and the point where the
plasma line enters the single-particle continuum

(i. e. , e2 40) in increments of &Z= 0. 001. Since
this upper limit was less than 0. 8 and & is always
greater than unity the upper limit of Z(for x, = 2. 07)
is the end of the plasma line while the lower limit
is still given by (7). At the same time that we de-
termined the plasma line, we numerically calculated
(~e,/sV)t' for each value of Z. The K dependence
of ~~ then enters through the lower limit and through
the factor 1/K. For K, only slightly larger than

Q~(Z), the lower limit lies above the upper limit and
I'&= 0. As K increases, the lower limit continually
drops and ~~ increases rapidly from zero. At

large K, the 1/K factor dominates and I'~ slowly
decreases. In Fig. 1, we show y~ as a function of
K in the RPA. This curve differs from Quinn's
which was obtained analytically with some severe
approximations mainly in that it begins at E'= 1.725,
whereas, his begins at K=1.606. '

In Table I we list Q~(Z) for several values of Z in

the RPA and with exchange corrections. The ex-
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TABLE II. Single-particie and plasma contributions to y= —I /&~ for several values of K=k/4 evaluatedusing &axe,
e K„and qq.

1.02
1.10
1.20
1.35
l. 50
1.63
1.72
le 73
1.74
1.75
2.00
2. 25
2. 50
3.0
4.0
5.0

0.000.130
0.003 ll
0.011 5

0.031 8
0.062 4
0.096 0

0.1296
0.1999
0.2078
0.1999
0.1792
0.1430
0.1176

RPA

0.0
0.0298
0.0422

+0.0499
+0.1386
+0.17VV
+ 0.1990
+0.2182
+0.2214
+0.2115

0.000 129
0.003 08
0.0115
0.032 3
0.065 3
0.1020

0.1534
0.2026
0.2068
0.1986
0.1802
0.1436
0.1190

0.0252
0.0345
0.0413

+0.0473
+0.1266
+0.1642
+0.1857
+0.2059
+0.2114
+0.2033

0.000 143
0.003 42
0.012 81
0, 036 1
0.0723
0.1122

0.1676
0.2211
0. 2249
0.2152
0.1929
0.1513
0.1237

0.0278
0.0379
0.0453

+0.0518
+0.1353
+0.1737
+0.1952
+O. 2147
+0.2186
+0.2092

change corrected Q~(0) has an error of 0. 0001 due
to the approximation (1) which causes the cancella-
tion between the exchange matrix element and self-
energy contributions to be incomplete. For large
Z, the differences between RPA and exchange are-
much larger than 0. 0001' and we believe them to be
real. The RPA plasma curve enters the single-
particle excitation continuum at Z = 0. 738, while
the exchange curve enters at Z = 0. 708. This is
due partially to the exchange curve lying below the
RPA but mainly because the lower boundary of the
continuum with exchange is given by Z + 2Z = ~ —6,
where & is a self-energy correction. '

In Table II we list the single-particle and plasma
contributions to y as a function of E obtained with

~gpss ~gt and ~tg. The RPA plasma contributions
are, in general, larger than the &t and tt because
the plasma curve ends at Z = 0. 738 whereas the Et
and tt end at Z =0. 708. On the other hand, because
the &t and tt plasma curve lies below the RPA,
their plasma contributions to ~ begin at a slightly
smaller value of K. The differences between Kt
and tt are due to differences in (~s,/sU)~ and have
no simple physical interpretation. There is also
not much physical interpretation one can give to the
differences between the various single-particle con-
tributions. %e note that the tt contributions are
always greater than the Kt and RPA and that the Kt
is mainly larger but can be slightly smaller than
the RPA (see Fig. 1). Also the ratio of tt to Kt
single-particle contributions decreases steadily
towards unity as E increases beyond 1.35. This is
to be expected, for the hotter the hot electron is,
the less it exchanges with the Fermi sea of electrons
and the more like a test particle it becomes (with

the exception that the hot electron cannot scatter to
states below the Fermi surface). "

The lifetime of a hot electron is &= —I/O& and
the MFP ~=v7 may be written

X=Kaa/yk~m*

where ao is the Bohr radius and m* is the effective
mass of the electron. For &=I.1948, i. e. , an
electron 5 eV above the Fermi surface, we have
y= 0. 0110 using either ERpg 01 EKE. Assuming
m*= 1, this yields X--62. 0 A compared to Kanter's
experimental value of 50 A. The band and electron
self-energy contributions to the effective mass are
probably quite small. The phonon contribution can
also probably be neglected since the 2x10 ' sec
that the electron spends in a 400-A film does not
give the lattice time to respond. Thus, the discrep-
ancy between the theoretical and experimental MFP
must either be attributed to the approximations in
cK, or to experimental error. Surface scattering
was eliminated from the experimental MFP by con-
sidering films of various thicknesses and phonon
contributions were removed by subtracting off the
temperature-dependent contribution to I/X. It was
claimed by Kanter that impurity scattering was
comp'letely negligible. This claim was based on a
very long resistivity MFP measured in the plane
of the film. However, it is not obvious that the
resistivity in the plane of the film is the same as
that perpendicular to the plane. Furthermore,
small-angle scattering would not affect the resistiv-
ity MFP strongly but would strongly reduce the
hot-electron MFP. Therefore, we believe it pos-
sible that the electron-electron MFP is somewhat
larger than the experimental MFP.
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The subscript tt indicates that &&& is the function that
screens the potential produced by a test charge and seen
by a second test charge. Similarly & p, screens the po-
tential seen by an electron of wave vector k produced by
a test charge.
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