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Using the high-frequency expansion of the random-phase approximation, we study the nor-
mal modes of plasma oscillations at a bimetallic interface. %e find that the surface plas-
mons decay by damping into bulk oscillations of the low-density metal, whose wavelength be-
comes shorter as the low-density-side density decreases. If the low-density-side electron
density is less than approximately a third that on the high-density side, the high-frequency
expansion fails because the surface plasmons begin to decay into individual particle-hole
states. Thus we are unable to use this expansion to study the modes at metal-vacuum inter-
faces, where the low-density-side electron density is zero, For bimetallic systems that
allow the high-frequency expansion, we show how to determine the dependence of the plas-
mon dispersion relations on the density profile and stress tensor.

I. INTRODUCTION

By measuring energy loss as a function of angle
for electrons transmitted through metallic films'
or reQected from them it is possible to determine
the surface plasmon dispersion relation. There-
fore, it is of interest to obtain a theoretical connec-
tion between this relation and the structure of the

metallic surface.
At long wavelengths, the surface-plasmon dis-

persion relation takes the form, &u = e,',[1+Cq

+0(q )], where q is the magnitude of the wave vec-
tor parallel to the surface. In a recent publica-

tion, ' the constant co,', has been sho~n to be inde-

pendent of the interfacial electronic density
profile, within the random-pha, se approximation
(RPA). The details of the surface structure first
appear in the constant C which determines the

slope of the dispersion curve at infinite wavelength.
In the past, several authors have derived values

of C for unrealistic but simple models of the metal-.
vacuum interface, in which the electron density
drops discontinuously from its value in bulk to
zero, or the electron gas is bound in a box with

infinitely steep square walls, ~ However, such mod-

els avoid the important issue, namely, what we

can learn about surface structure from electron
scattering experiments.

More recently, Bennett has attempted to go be-
yond the simplest models by applying hydrodynamic
equations to compute C for an electron density
which falls off linearly to zero from its bulk value.
He obtains a range of values of C corresponding
to different values of the surface diffuseness, and
finds agreement with both the magnitude and (nega-
tive) sign of the best available experimental C (for
magnesium) for a not unreasonable diffuseness.
The fact that Bennett's value of C can be positive or
negative, depending on the diffuseness, is signifi-

cant; the earlier ' calculated values of C were
positive in disagreement with experiment.

It is doubtful, however, that hydrodynamics de-
scribes the low-densjty region of the surface
properly. One of the equations Bennett must use
to fix his solution uniquely is, in fact, a boundary
condition on the electron velocity at the point where
the electron density rea.ches zero. At, and near,
this point, however, hydrodynamic equations cease
to describe the system. Thus, although Bennett's
results ale of the right order of magnitude a more
correct theory remains to be developed.

The fact that aH lengths in the surface plasmon
problem are of the order of X~, the Fermi wave-

length, essentially guarantees that C be equal to

a constant of order I times X~. It is therefore
not surprising that Bennett's results are of the

right order of magnitude, even if hydrodynamics
is incorrect.

I attempting to construct a n icroscopic quan-
tum-mechanical picture of the surface plasmon,
we naturally start from the HPA, which has been a
most useful tool in describing the collective excita-
tions of the electron gas. The RPA is known, how-

ever, to be exact only for a high density infinite

electron gas, One hopes that, despite this fact,
it can give an accurate qualitative picture of collec-
tive phenomena at suitably chosen interfaces. It
seems reasonaMe, therefore, to embark upon our

study of interfacial plasmons by considering a bi-
metallic rather than a, metal-vacuum interface, so
that the electron density may be taken to be high

throughout the junction.
In order to be able to learn something useful

about surface structure from the interfacial plas-
mon dispersion relation, we wish to express the

latter in terms of some simply electronic proper-
ties, such as the density profile aqd stress tensor.
This goal cannot be rea. lized unless the high-fre-
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quency approximation to the RPA is valid. This
approximation, which is based on the assumption
that Landau damping of the interfacial plasmon is
negligible, enables us to perform the sums on
single-particle wave functions which appear in the
kernel of the RPA integral equation, and thereby
convert it to a much simpler differential equation.

The question of the validity of the high-frequency
expansion is discussed below. We find that if the
ratio of the low-density-side electron density to
that on the high-density side is less than a third,
the high-frequency approximation fails —the collec-
tive plasma oscillations begin to couple to high-
frequency particle-hole states. Thus we arrive
at the important if unfortunate conclusion that one
must go beyond the high-frequency approximation,
if not the RPA, in order to study the metal-vacuum
interface.

In a recent preprint, Harris and Griffin claim
to have derived a value of C for the surface plas-
mon at a metal-vacuum interface, using the method
of high-frequency expansion of the RPA kernel.
They retain only the lowest-order O(1/+z) term in
the expansion and obtain a value of C which is given
by an undefined integral. The singularity in their
integral occurs precisely at the point in space
where the local bulk plasma frequency equals the
surface plasmon frequency. Such a singularity is
a characteristic feature of an interface with a con-
tinuous electron density profile. The reason that
it occurs only at a single point is that by retaining
only O(1/z ) terms in the high-frequency expansion,
the bulk plasmon is forced to be dispersionless.
Below, we retain terms of up to O(1/~4), and find
that the interfacial plasmon is degenerate with a
finite-wavelength bulk plasmon at all points for
which the local infinite-wavelength bulk plasma
frequency is less than the interfacial plasmon fre-
quency. Thus the excitation of a surface plasmon
at a bimetallic interface is always accompanied by
bulk plasma oscillation in the low-density metal.
If the wavelength of this bulk oscillation becomes
sufficiently short (which it does if the low-density-
side density is less than one-third of the high-side
density&, the high-frequency expansion fails to con-
verge. Landau damping becomes significant, or in
other words, the surface plasrnon begins to couple
to individual particle-hole states rather than (col-
lective) bulk plasmons in the low-density region.

This is the case for the metal-vacuum interface,
for which the low-side electron density is zero.

We therefore conclude our study with the presen-
tation of the complete set of equations that describe
the bulk and interfacial modes of plasma oscillation
in bimetallic systems for which the high-frequency
expansion is valid. Our equations are the first to
put the surface and bulk modes of a metallic sys-
tem on the same footing.

In Sec. II of this article we begin our discussion
of interfacial plasmons by stating the RPA equa-
tion, and by carrying out the high-frequency expan-
sion of its kernel through terms of O(1/&o'). In
Sec. IG, we solve the approximate equation of mo-
tion, retaining terms only up to O(1/~ ), and find
that the solution suggests that surface plasmons
are damped by losing energy to bulk plasma excita-
tions. But to this order, the dispersion of the
bulk plasmons, which is important in obtaining
a correct theory of their coupling to the surface
modes, is not taken into account. We proceed,
therefore, to study the approximate RPA equation
with the O(1/&g ) terms retained. In Sec. IV we
investigate the qualitative features of the different
possible modes of plasma oscillation, bulk and
surface. We determine a criterion for the validity
of the high-frequency expansion. Then, in Sec. V,
we show how to calculate the interfacial plasmon
dispersion relation and the bulk plasmon inter-
metallic transmission coefficient, as functionals of
the electron density profile and stress tensor, for
systems in which the high-frequency expansion is
valid, In Sec. VI we summarize our conclusions.

II. EXPANSION OF RPA KERNEL

The basis of our method is the high-frequency
expansion of the RPA, whose validity depends on the
fact that collective plasma excitations lie at higher
energy than the particle-hole states of which they
are linear combinations. This expansion gives the
exact RPA infinite-wavelength surface plasmon
frequency, as discussed in I (see also Sec. V
below ).

We quote the RPA equation [Eq. (14) of I] for
y,„(z), the fluctuating potential associated with an

excitation of frequency ~ and wave vector q, as a
function of z, the coordinate perpendicular to the
surface' (q= tql) such that

q,„(z)= ', Q " "'" dz'f, (z, z') g„(z')(t)„*.(z') [dz" (*„(z")q„,(z")y,„(z") .
nn' a+en+ an'

In Eq. (1), the g„(z) are self-consistent single-
particle wave functions satisfying the Hartree equa-
tion
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where V„(z) is the Hartree potential. We have de-
fined

allel to the surface, is

f, (s, z') = (27&e /q) e '" (4)

Q]]]~= k /2@i + ((]g

ea.-=~(&z —~a.»

where e~ is the Fermi energy. The Coulomb
- force, Fourier transformed in the coordinate par-

%e now perform the high-frequency expansion
of the kernel of Eq. (1). We see that by virtue of
the symmetry of the n and n' sums and the R inte-
gration, the terms odd in 1/~ drop out. To order
1/~, we obtain, using the Schrodinger equation,
Eq. (2), and the completeness of the ]j(„,

1
I

dk "
q 1 Skq q ~ 3k/ 3g

q (s)=~,Z e~, dz'y, (z, z')]j]~ (z') —+ —, , +, — 2+ —, , +
((] „(2v) „J ' '

rn ((] 2m 4m co m 2m

~ (&', &] ~ a I(&', @], &I ——
a I [ [&', &], &I, &]I((. (~ ') . (5)

We reduce Eq. (5) to a more comprehensible form
by defining the low-order moments of the metallic
ground-state density matrix, The electron density
profile is

Let

h (~) =P, (~) —
4 d, a

then one can easily demonstrate the useful identity

while the components of the stress-tensor profile
are

dk k

(2,)a»~2

dVH dS
dz '

which permits us to eliminate the Hartree potential
in favor of the physical quantities, no and PJ.

We evaluate the commutators in Eq. (5), inte-
grate by parts, and use Eqs. (6)-(8), and thus
convert Eq. (5) to the form

(10)

where the (self-adjoint) differential operator 2 is given by

)+4 2 2+0(~ ) 3~+ 2 2~0 & +4 2 2 d &2 +op 18
mM PBQ) 4~ co cia vl~ 2rpl ~ dS 4tfL a) &ST dz

Equations (10) and (11)provide the starting point for
our analysis of the bimetallic interface.

Note that by retaining terms only up to O(1/& ),
i.e. , by dropping the last term in

(&(u)' (»)' (&(u)'
+ 2 3 + 4 + 46((] ((] &(] ((] &(] (&7 (Q] —+&8 )

which is the way we derived Eq. (10), we have

neglected the effect of Landau damping. If damping
is important the last term of Eq. (12) must be re-
tained, at least in an approximate way.

III. DEGENERACY OF SURFACE AND BULK PLASMONS
IN O(1/~ ) APPROXIMATION

The first evidence that the high-frequency approx-
imation may fail to describe the surface plasmons
at a metal-vacuum interface comes from the study
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of Eq. (10) with the retention of terms only up to
O(1/~ ). In this case (cf. I), Eq. (10) becomes

m~
2 =n~ —g „,n, (z')[n —n, (z')]

m(o'/4pe' —n, (z')

q)(z)= —— dz'e "' ' '

2Q g
2me n2

+q 1— dz', ' z', (20)

d (4pe n (z') d } 4me no(z')

dz ( m(d dz) m(d

or, integrating by parts,

z q(z) =no(z)q(z)
4pe

dz' e "' ' ' sgn(z —z'), q(z') . (14)
dz

in which n„ is the density deep inside the metal
n„=no —

The result of Eq. (20} can be given a meaning by
allowing ~ to be complex. But rather than press
Eq. (20) for a value of a&', we prefer to explore the

physical significance of the divergent integral on
its right-hand side.

The value of z at which the singularity occurs is
given by

Suppose that I qz 1 «1, and that ) qa ~ «1, where

a is a measure of the surface diffuseness. Then
we may expand the exponential in Eq. (14) to obtain

, -n, (z)
~

p(z) = —2
t'm(o'

~4m e
dz' sgn(z —z'), q&(z')

dnQ

dz

+2 qzAO —
p qA, , (15)

where

dz'„,' (z')'q (z') . (16)

Differentiating Eq. (15) with respect to z, yields

|'m~' & dq, -n, (z)
~

—=-. qA, .
~4ve ) dz

2
mQ) 1 1 I

4me
z W(z) = ——, Ao+ 2 qz Ao ——, q A,

——, qAO (
dz z-- z (, , (19)
f'",( ')

m~ 4pe —no z'

an equation for p(z), which is not well defined if
there exists a z' & z for which no(z') = mrna /4ve .

Neglecting this problem for the moment, we note
that the formal solution for p and r~ is completed
by substituting Eq. (19) in Eq. (16), thus obtaining
the secular equation for the surface-plasmon fre-
quency,

By taking advantage of the fact that no(z) -0 rapidly
as z-~, for a metal-vacuum interface, Eq. (15)
may be rewritten as

2 ao

mal)

1 1

4ge z q (z) = —2 Ao — dz no(z ), +r qzAo ——, qA,dz'

(18)

It is now straightforward to obtain a forrnal solution

for q&. Substitute Eq. (17) in Eq. (18). This yields

(u' = 4pe'n, (z)/m, (21)

(u~ = (u,'(z) [1+c,(z)k'+ c,(z)k'+ . ] (22)

will have a solution for k, for any z such that &~~(z)

is less than or equal to the surface plasmon fre-
quency squared&2. Thus, a correct estimate of
the coupling of surface and bulk plasmons must go
beyond the O(1/+') approximation to the RPA.

or in other words, the value at which the frequency
of the surface oscillation is degenerate with the

local bulk plasma frequency. According to Eq.
(12), the surface plasma frequency" is less than

the bulk plasma frequency deep inside the metal

by a factor of I/v 2 +0(q). Therefore there will

always exist a point z for an interface with a con-
tinuous electron density profile, such that

4&e no(z)/m equals the square of the surface plas-
mon frequency.

What we have learned from Eq. (20) is that the

high-frequency approximation to the RPA predicts
that surface plasmons can couple to bulk plasma
excitation. We must not, however, be satisfied to
solve Eq. (20) for complex z, and simply to ascribe
its imaginary part of damping into bulk plasma ex-
citation. This is because the O(1/!q ) approximation
misses the important physical effect of dispersion
of the bulk plasma excitations.

On the basis of our knowledge of the infinite elec-
tron gas we expect a bulk plasmon of (three-dimen-
sional) wave vector k to have a frequency
v'=u&&(I+ cok +c&k + ~ ~ ), where co, c„.. ., are
positive constants which, in general, may depend
on the electron density. The importance of the
dispersive terms is that with them, for any z such
that the local infinite-wavelength plasma frequency

~~(z) is less than the surface plasmon frequency,
there exists a bulk plasma excitation of wave vector
k which is degenerate with the surface plasmon.
(This is illustrated in Fig. 1. ) In other words, the
equation
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IV. QUALITATIVE FEATURES OF THE SOLUTION OF RPA
TO 0(l j~") FOR SIMETALLIC INTERFACE

We wish to solve Eq. (10) to O(q) for a bimetallic
interface. A schematic representation of the elec-
tron density profile of the bimetallic system is
given in Fig. 2. The density far to the left n~ is
taken to be greater than or equal to the density far
to the right n„,

Integrating by parts, Eq. (10) is transformed
into

1
p(z) = &q ——

I dz' sgn(z —z') e ' ' '
dC (,)

4ve no(z ) d VH dy
(23)I & dz dZ

Droppingtermsof O(q ), we obtain from Eq. (11) the
approximate expression

n, (z) —,—8(z)—4g8 3 d d
Vl Q)

1 d d
(24)

4m + dz dz

We begin by examining the solutions y in the a,symp-
totic regions z -+ ~. The analysis is simplified
if we a.ssume tha, t no, 8, and V~ a,re constant for
z outside the region ——,'g & z & 2a, where g is a mea-
sure of the surface diffuseness. With this a,ssump-
tion we have, for z & --,'g,

(gZ (,)
4ve na(z') d V„dq&

(23)X i p8 —
g g d p2 d g p

and the constants e& a,re to be determined by satis-
fying boundary conditions.

In order to see what kinds of oscillation may
exist for z & ——,'g, we study the y, The solutions
to Eq. (27) are

3 3 l/2 1/2
&=~ 2~' —P~+ I. +—2,3

—&

m h&p

Two cases occur;
(a) If co &aF~, then two of the y& are real and

two are imaginary. The boundary condition that
cp not diverge at z=-~ forces only one of the t..;
to vanish. The fact that two of the y,. are real
means that for &3&~~ there is a bulk plasma wave
in the high-density metal.

(b) If m &~&, then two of the y& have imaginary
parts greater than zero and two have imaginary
parts less than zero. The bounda, ry condition that

y not diverge as z —~ forces two of the e& to
vanish. The fact that y now dies off exponentially
as z —~ means that for ~ &~& the plasma exci-2

tation is localized near the interface on the high-
density side.

The situation for z & —,a is precisely analogous to
that for z & --,'a. In the above discussion, simply
substitute ~~ for w~, Pa for Pz, c, for c, , and
note that

2[1 —ropz/(o'+ O(q')] J

'ddz'e"'- —,q(z')
dz c

d&, „4me'n, (z') d'V„dy
dz I (0 dz dz

30

y(z) = Z cue*"~*+C~e",
&=i

(26)

where the y& are the four solutions of

a rz Pr~
Qp =+p 1+ 2 + (2V)

"a/3

2[1 —
&dp /(d +O(Q )] „

4ve'no(z') d'V„dq
pAd dz dz

The constant Pz=-3$(-~)/mno(-~). Using the
definitions (8) and (7), it is stra, ightforward to show"
that pi. =5v~, where v~ is the Fermi velocity for
the metal on the left. The bulk plasma frequency
on the left is w~ = (4ve nz/m)'i

The most general solution to Eq. (25) is

Therefore there are three possibilities [referred
to, henceforth, as possibilities (i), (ii), and (iii),
respectively, and depicted in Fig. 3].

(i) If +'&+~, then; by the assumption that ~~z

the fluctuating potential cp varies sinusoidally
for either z -+ ~. A mode with ~ & ~~ is there-
fore a bulk plasma mode incident from the left or
right, depending on the choice of boundary condi-
tions, with reflection and transmission at the sur-
face.

(ii) If a~i &M &iog, thencpvariessinusoidally as
z -~ and dies off exponentially as s - —~. This
mode is therefore either a. surface plasmon losing
energy by decaying into a bulk plasmon of the low-
density metal, or a bulk plasmon incident from
the right and reflected at the interface, again
depending on the choice of boundary conditions at
8 =+~.

(iii) If u& &a&~, then y is localized at the inter-
face. We shall show in Sec. V, that the frequency
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FIG. 1. Schematic drawing for a bimetallic junction
of the bulk plasmon dispersion relation appropriate to
the five local densities shown in the insert. For suffi-
ciently large z, the bulk plasmon of some wave number
k is degenerate with the surface plasmon frequency co~.
As the local infinite-wavelength bulk plasma frequency
decreases, this wave vector increases. Thus, the small-
er nR is, the shorter the wavelength will be of the bulk
plasmon deep in the low-density metal which is degener-
ate with the surface plasmon.

9 = —2At)+ ~qzAO ——,'qA, + Zy
a=a/2,

n„
(z)

nR

FIG. 2, Schematic drawing of the electron density
profile at a bimetallic interface.

of a, surface plasmon is given by &u =-,' (~~ +~~ )
+ O(q), which by assumption is greater than ~g .

R2Therefore the case co & ~~ cannot be realized.
%e turn now to a discussion of the solution for

p, in the region ——,'a& z & —,'a. Once we know this
solution, by matching at z =+-,'a, we will be able to
determine the dispersion relation for the surface
mode of oscillation [possibility (ii)], and the trans-
mission and reflection coefficients for the bulk
plasmons [possibility (i)].

In the interfacial region, Eq. (23) may be solved
in powers of q, by expanding e-, l. "I This is valid
since qa «1. To O(q) and integrating by parts, the
expansion yields

FIG, 3. Possible plasmon modes at a bimetallic inter-
face. {a) Bulk plasmon [referred to as possibility (i) in
the text], (b) Surface plasmon decaying by loss of en-

ergy into a bulk plasmon of the low-density metal [re-
ferred to as possibility (ii) in the text]. (c) Charge os-
cillation localized at the surface [referred to as possi-
bility (iii) in the text]. This possibility is never realized.

4ve n, dz d V„dp
2~4 dg 3

where now

A-=d' ''
d

4ve'n, (z ') d'V„dy
(32)

m co dg dz

Our method of solution is as follows: Differen-
tiate Eq. (31) with respect to z. This yields the
equation for u —= dp/dz,

4me'n (zo) d'V„
Q= 2QAO+ ~+ p 4, g Qm dz

(33)

an inhomogeneous linear fourth-order differential
equation. Its solution depends on four arbitrary
constants K&. Substitute the solution to Eq. (33)
into. Eq. (31) to obtain p. The constants K& are now

fixed by matching, at z=+ —,'a, to the right- and left-
hand solutions found earlier.

Two linear equations for Ao and A~ in terms of
themselves are obtained by substituting the resulting
y into Eq. (32). These two equations together with
four matching conditions (since 2 is a fourth-order
differential operator) at each of z= + —,'a determine
the dispersion relation in the case of the surface
mode and the transmission coefficient in that of the
bulk mode. The details of this procedure are de-
scribed in Sec. V.

Finally, let us examine the validity of the high-
frequency expansion. The crucial question is
whether or not the wavelength of a collective oscil-
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Thus, as the low-density-side electron density
n„ decreases to zero, &~ and P„ decrease to8 2

zero, while &„approaches a constant. This im-
plies, according to Eq. (34), that y becomes very
large as n~-0.

Landau damping will be important if y'/2m & (u„."
Neglecting the term in Pz in Eq. (34) (which is
small when n„-0), this criterion reduces to

2
—1 —1

which implies, using Eq. (35), that

g2 g L2
COp ( g Q)p (36)

Thus, if nR & —,'n ~, the bulk plasmon induced by the
surface mode will have such a short wavelength
that it cannot be described by the high-frequency
approximation.

Therefore, for interfaces such that nR& —,'nL, , we
have concluded that the surface mode is damped
into particle-hole excitations in the low-density
region. However, the matrix elements for the
coupling of surface and individual particle-hole
states are not known in terms of any simple prop-
erties of the surface structure. Consequently, we
are not able, at present, to give a useful formula
for the surface plasmon dispersion relation for
system with n~& 3n~. This class of systems in-
cludes, unfortunately, the important case of the
metal-vacuum interface, for which n~= 0. Al-
though in this case, there is no right-hand metal,
the conclusions we drew above by studying Eq. (34)
remain valid if we interpret this equation within a
local density, or WKB picture. Since our conclu-
sion from Eq. (34) was that y becomes large as the
density drops off, the WKB picture must be true
sufficiently far out in the low-density tail for the
metal-vacuum interf ace.

lation is sufficiently short to cause it to be Landau
damped. A study of the modes of an infinite elec-
tron gas suggests'3 that modes whose wavelengths
are of the order of or smaller than the Fermi
wavelength are Landau damped. A glance at Fig.
1, moreover, reveals that the wavelength of the
bulk excitation to which a surface plasmon is coupled
[cf. possibility (ii)] becomes shorter if the low-
density-side electron density decreases. This is
equally clear if we examine the equation [cf. Eq.
(2V)] for the wave number of the bulk mode induced
in the right-hand metal:

R 2 42 R2 1
Sp P ~2 ~ 4 2~2 ~ p

SQ SP

where & is the surface plasmon frequency. In
Sec. V we will see'. that

V. CALCULATION OF INTERFACIAL PLASMON DISPERSION
AND BULK PLASMON TRANSMISSION AT A BIMETALLIC

INTERFACE

In this section we elaborate on the remarks of
Sec. IV to show how Eq. (23) is solved for a model
bimetallic interface, and thus, how the dependence
of the normal modes on the surface structure is
derived.

To begin, we study the interfacial plasmon, for
8which (d~~ »»~ . In this case, according to

the discussion following Eq. (29), two of the c&

are forced to be zero by the condition, I y(- ~) I & ~,
and one of the cz~ is forced to be zero by I p(+ ~) I

Thus, there are five constants c; and c& still
to be determined. The interfacial region's solu-
tion for y contains four undetermined constants,
the E~. The total number of matching conditions
at z=+ —,'a is eight. Thus we have nine constants to
determine, and only eight equations. An additional
condition on the constants is necessary to fix the
dispersion relation for the interfacial plasmon.

The reason that there are three nonvanishing

cj, we remember, is that co»~ implies that jo

is sinusoidally varying at z-+ ~. By imposing
the condition of outgoing waves, or incoming waves,
or reflection at z = ~, we can fix one of the c&, and

reduce the number of undetermined constants. In
this case we obtain a secular equation which gives
the surface plasmon dispersion relations corre-
sponding to a decaying surface mode, a growing
mode with energy input from z = ~, or a standing-
surface mode. If we impose no condition at ~, the
physical situation corresponds to a bulk plasmon
incident from the right with reflection and energy
loss to a surface mode. In this case we do not ob-
tain a secular equation for (d'. Bather ur is given
in terms of the bulk plasmon wave number y by

„a Pz, 12

03 =4)~ 1+—
2 P +

and the solution of the matching equation yields the
coefficient of reflection of the plasmon from the
surface.

Let us assume, for example, that we have im-
posed a reflection condition at z - ~ such that

y (z- ~)- sin (y, +5). There are then eight undeter-
mined constants in y and eight matching conditions,
which implies that we are able to obtain the disper-
sion relation for the interfacial plasmon. %e now

show how this relation depends functiona11y on

u (z) -=dy jdz, following the method described in

Sec. IV.
Matching conditions on u follow directly from the

conditions on p and imply that the inhomogeneous
equation (33) for u has a unique solution, which is
proportional to the constant —,qAo. Substitute Kq.
(33) in Eq. (31), to yield
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1 1
p = —g (Ao+qAy) + 2 p ggz+ g qa Ao —J dz u (z ) We substitute Eqs. (44) in Eq. (41) and obtain

The fact that u is of 0 (q) means that only the terms
—2AO and Zy ),~z on the right-hand side of Eq. (3V)
are of 0(l).

We now use Eq. (3V) ln Eq. (32) 'to obtain equa-
tions for Aoand A, in terms of themselves. Since
we are keeping only up to 0 (q), we need A, only to
0 (1). Thus

"dZdz'z', (--,'Ao+Zq j,g, ) . (36)
GZ

I

The expression for dZ/dz is [cf. Eq. (24)]

6fS O'M GOO 3 G

Qz MQ7 lfZ Sl+ If' QZ Qg

gg qp

(46)

Solve Eq. (45) for &o =&a (q) to 0 (q). This yields the

dispersion relation
a/2

2 ~ R2 I 2 460
(0 = 2 ((0~ +(d& ) 1+ zq dzz

8-e/ 2

R~"', [-,'qa+v (-,'a)+n (- —,'a)]
Q)p +Quip

Thex'efol e,

, , dn,
~AO+~&jaiz) dz z dz~

-e/2

To obtain a simple equation for Ao, we integrate
by parts in Eq. (32), yielding

AD= Z+ j gz
—f dz (u —pqAO) (41)

4ze n, (z) [-v(AO+qAg)+ Rp j gg2+ g qaAO

48' Q 8 +5 8
q

42

where we have defined

4m'e 3 d 6 GQ
v (z)=-,— — —(Su)+, , n, —

ba(0 Pl(cP dz 4&Lid dz dz

(43)

According to Eq. (42),

Z y j,(z- ~2 [- —,'(Ao+qA, )+2 q'j, gz+ —,
'

qaAO]

+e(—,'a), (44)

I 3
(d~

Zi p j (3—- ---g [ g (Ao+qAg)+2 p j ~g g+ g qaAo
(d

e/2
dzu (z)]+v {-—,'a)

-e/3

Using the definition of Z, Eq. (24), and using Eq.
(3V), we have

The 0 (1) term of Eq. (46) is just the "classical"
surface plasmon frequency for the bimetallic in-
terface. " The remaining terms give corxections
of 0{q).

Thus, wg determine the dependence of the slope
of the interfacial plasmon frequency in terms of

no (z) and 8 (z). The fluctuating field u is obtained
by solving Eq. (33) and applying matching and

boundary conditions. The slope is then given by
the-coefficient of q in Eq. (46).

We must remember, however, that Eq. (46) only
has meaning if nz/nz, is greater than about —,'.
Qtherwise„ the high-frequency expansion used to
derive {46) is invalid.

Finally, we discuss possibility (i), &u' &u&~,
which corx esponds to bulk plasma oscillation with
transmission and reflection at the interface. If
(d &(d~ &(dp, then only one c& and one c& must
vanish because of the requirement the p not diverge
at z =+ ~. If we now impose a physical constraint,
say that of outgoing waves at z +~, we reduce the
total number of undetermined constants in p to nine.
Thus the satisfaction of the eight matching condi-
tions does not yield a secular equation. For any
wave number yl, there is a bulk plasma mode sat-
isfying

12 Pg a
4P =Gap 1+ 3 PI, +

4 P

The matching conditions fix the coefficient of trans-
mission of the bulk Qlode fol" the surface.

That is, we now solve for p, with the condition
that the cg multiplying e I- ' equal 1. This lmplles
a unit incident amplitude of bulk plasmon from the
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left. Equation (33) is solved for u and the eight
matching equations are solved for the eight re-
maining constants. The self-consistent equations
for Ao and A. , are solved as above, but now remem-
bering that u is not of O(q), but contains a com-
ponent of 0 (1). The coefficient c,". corresponding
to the outgoing wave e' '"& ' is obtained by this- pro-
cedure. It is the transmission coefficient. We ob-
tain at the same time, of course, the reflection co-
efficient, the cj which multiplies e 'I'~ I'.

VI. CONCLUSION

As long as the high-frequency expansion to the
BPA is valid, we may obtain expressions for the
dispersion of surface plasmons and the transmission
and reflection coefficients of bulk plasmons in a bi-

metallic system, which depend only on average
properties of the electron wave function. As the
ratio of the electron densities in the two metals dif-
fers too much from 1, the modes of the system be-
gin to couple to individual particle-hole. excitations,
whose density of states do not seem to be related
in any simple way to these average features. Be-
cause of this "Landau damping" effect, then, it is
difficult to extend our analysis of the plasma oscil-
lations at a bimetallic interface to those of a metal-
vacuum interface.
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We obtain an improved approximation for the inverse vertex function er, (v, ui with exchange
corrections. The imaginary part of the self-energy of hot electrons is calculated and com-
pared with the random-phase-approximation (BPA) values. The BPA results differ signifi-
cantly from Quinn's earlier BPA results owing to improved computational facilities. Themean
free path of an electron 5 eV above the Fermi surface in aluminum is compared with Kanter's
experimental value.

I. INTRODUCTION

Although exchange- corrected dielectric functions'

e«(x, &) have been used to calculate the pair distri-
bution function and correlation energy of an elec-
tron gas ' ' and phonon dispersion. curves of

metals, the effect of using exchange-corrected

vertex functions Ar, (x, &)=1/s-„,(z, &u) on the elec-
tron self-energy has not heretofore been calculated.
The present calculation of the imaginary part of the

self-energy has been stimulated by Kanter's' re-
cent measurement of the mean free path (MFP) of

electrons 5 eV above the Fermi surface in alumi-
num. The MFP is inversely proportional to the


